1
|
Beaucage N, Singh Z, Bourdon J, Collins SK. Tuning Co-Operative Energy Transfer in Copper(I) Complexes Using Two-Photon Absorbing Diimine-Based Ligand Sensitizers. Angew Chem Int Ed Engl 2025; 64:e202412606. [PMID: 39292148 DOI: 10.1002/anie.202412606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Photocatalysis mediated by low energy light wavelengths has potential to enable safer, sustainable synthetic methods. A phenanthroline-derived ligand bathocupSani, with a large two-photon absorption (TPA) cross section was used to construct a heteroleptic complex [Cu(bathocupSani)(DPEPhos)]BF4 and a homoleptic complex [Cu(bathocupSani)2]BF4. The ligand and the respective homoleptic complex with copper exhibit two-photon upconversion with an anti-Stokes shift of 1.2 eV using red light. The complex [Cu(bathocupSani)2]BF4 promoted energy transfer photocatalysis enabling oxidative dimerization of benzylic amines, sulfide oxidation, phosphine oxidation, boronic acid oxidation and atom-transfer radical addition.
Collapse
Affiliation(s)
- Noémie Beaucage
- Noémie Beaucage, Dr. Zujhar Singh, Jérémie Bourdon and Prof. Dr. Shawn K. Collins, Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal
| | - Zujhar Singh
- Noémie Beaucage, Dr. Zujhar Singh, Jérémie Bourdon and Prof. Dr. Shawn K. Collins, Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal
| | - Jérémie Bourdon
- Noémie Beaucage, Dr. Zujhar Singh, Jérémie Bourdon and Prof. Dr. Shawn K. Collins, Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal
| | - Shawn K Collins
- Noémie Beaucage, Dr. Zujhar Singh, Jérémie Bourdon and Prof. Dr. Shawn K. Collins, Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal
| |
Collapse
|
2
|
Mukherjee U, Shah JA, Ngai MY. Visible Light-Driven Excited-State Copper-BINAP Catalysis for Accessing Diverse Chemical Reactions. CHEM CATALYSIS 2024; 4:101184. [PMID: 39735819 PMCID: PMC11671124 DOI: 10.1016/j.checat.2024.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
The use of visible light to drive chemical transformations has a history spanning over a century. However, the development of photo-redox catalysts to efficiently harness light energy is a more recent advancement, evolving over the past two decades. While ruthenium and iridium-based photocatalysts dominate due to their photostability, long excited-state lifetimes, and high redox potentials, concerns about sustainability and cost have shifted attention to first-row transition metals. Luminescent Cu(I) complexes have emerged as promising alternatives, offering open-shell reactivity and tunable photoelectrochemical properties. This review (i) provides an overview of the structural, photophysical, and electrochemical properties governing copper(I) complexes; (ii) highlights advances in Cu(I)-BINAP catalysis for carbon-carbon and carbon-heteroatom bond formations under mild conditions; and (iii) analyzes the trajectory of this catalytic system, addressing challenges and identifying opportunities for further development.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jagrut A. Shah
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
3
|
Castellano FN, Rosko MC. Steric and Electronic Influence of Excited-State Decay in Cu(I) MLCT Chromophores. Acc Chem Res 2024; 57:2872-2886. [PMID: 39259501 DOI: 10.1021/acs.accounts.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
ConspectusFor the past 11 years, a dedicated effort in our research group focused on fundamentally advancing the photophysical properties of cuprous bis-phenanthroline-based metal-to-ligand charge transfer (MLCT) excited states. We rationalized that, by gaining control over the numerous factors limiting the more widespread use of CuI MLCT photosensitizers, they would be readily adopted in numerous light-activated applications given the earth-abundance of copper and the extensive library of 1,10-phenanthrolines developed over the last century. Significant progress has been achieved by recognizing valuable structure-property concepts developed by other researchers in tandem with detailed ultrafast and conventional time-scale investigations, in-silico-inspired molecular designs to predict spectroscopic properties, and applying novel synthetic methodologies. Ultimately, we achieved a plateau in exerting cooperative steric influence to control CuI MLCT excited state decay. This led to combining sterics with π-conjugation and/or inductive electronic effects to further exert control over molecular photophysical properties. The lessons gleaned from our studies of homoleptic complexes were recently extended to heteroleptic bis(phenanthrolines) featuring enhanced visible light absorption properties and long-lived room-temperature photoluminescence. This Account navigates the reader through our intellectual journey of decision-making, molecular and experimental design, and data interpretation in parallel with appropriate background information related to the quantitative characterization of molecular photophysics using CuI MLCT chromophores as prototypical examples.Initially, CuI MLCT excited states, their energetics, and relevant structural conformation changes implicated in their photophysical decay processes are described. This is followed by a discussion of the literature that motivated our research in this area. This led to our first molecular design in 2013, achieving a 7-fold increase in excited state lifetime relative to the current state-of-the-art. The lifetime and photophysical property enhancement resulted from using 2,9-branched alkyl groups in conjunction with flanking 3,8-methyl substituents, a strategy we adapted from the McMillin group, which was initially described in the late 1990s. Applications of this newly conceived chromophore are presented in solar hydrogen-producing photocatalysis, photochemical upconversion, and photosensitization of [4 + 4] anthracene dimerization of potential interest in thermal storage of solar energy in metastable intermediates. Ultrafast transient absorption and fluorescence upconversion spectroscopic characterization of this and related CuI molecules inform the resultant photophysical properties and vice versa, so the most comprehensive structure-property understanding becomes realized when these experimental tools are collectively utilized to investigate the same series of molecules. Computationally guided structural designs generated newly conceived molecules featuring visible light-harvesting and 2,9-cycloalkane substituted complexes. The latter eventually produced record-setting excited state lifetimes in molecules leveraging both cooperative steric influence and electronic inductive effects. Using photoluminescence data from structurally homologous CuI MLCT excited states collected over 44 years, an energy gap correlation successfully modeled the data spanning a 0.3 eV emission energy range. Finally, a new research direction is revealed detailing structure-photophysical property relationships in heteroleptic CuI phenanthroline chromophores that are photoluminescent at room temperature.
Collapse
Affiliation(s)
- Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
4
|
Kong P, Ye Y, Zhang X, Bao X, Huo C. Alkylation of Glycine Derivatives through a Synergistic Single-Electron Transfer and Halogen-Atom Transfer Process. Org Lett 2024; 26:7507-7513. [PMID: 39207059 DOI: 10.1021/acs.orglett.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Here, we present a versatile method for forming C(sp3)-C(sp3) bonds, enabling the synthesis of a range of natural and non-natural amino acids. This approach utilizes readily available glycine derivatives and alkyl iodides, combining single-electron transfer and halogen-atom transfer processes. The utility of this step-economic and redox-economic C(sp3)-C(sp3) bond formation is further highlighted in the late-stage site-selective modifications of the glycine residue in short peptides.
Collapse
Affiliation(s)
- Peng Kong
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xin Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
5
|
Peng LY, Jin R, Zhang SR, Liu XY, Fang WH, Cui G. Roles of Nonadiabatic Processes, Reaction Mechanism, and Selectivity in Cu-Catalyzed [2 + 2] Photocycloaddition of Norbornene and Acetone to Oxetane. J Org Chem 2024; 89:11334-11346. [PMID: 39094225 DOI: 10.1021/acs.joc.4c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Oxetane has been extensively studied for its applications in medicinal chemistry and as a reactive intermediate in synthesis. Experiments report a Cu-catalyzed [2 + 2] photocycloaddition of acetone and norbornene to oxetane, which is proposed to deviate from the conventional Paternò-Büchi reaction. However, its mechanism at the atomic level is not clear. In this study, we used a combination of multistate complete active space second-order perturbation theory (MS-CASPT2) and density functional theory to systematically investigate the reaction mechanism and elucidate the factors contributing to the diastereomeric selectivity. Initially, the formation of the TpCu(Norb) complex is achieved by strong interaction between tris(pyrazolyl)borate Cu(I) (TpCu) and norbornene in the ground state (S0). Upon photoexcitation, TpCu(Norb) eventually decays to the T1 state, in which TpCu(Norb) attacks acetone to initiate subsequent reactions and produces final endo- or exo-oxetane products. All these reactions initially involve the C-C bond formation in the T1 state thereto leading to a ring-opening intermediate. This intermediate then undergoes a nonradiative transition to the S0 state, producing a five-membered ring intermediate, from which the C-O bond is formed, leading to the experimentally dominant exo-product. In contrast, the endo-oxetane formation requires a rearrangement process after the C-C bond is formed because of the large steric effects. As a consequence, the different reaction pathways generating exo- and endo-products exhibit large differences in the free-energy barriers, which results in a diastereomeric selectivity observed experimentally. Additionally, the nonradiative transition is found to play an important role in facilitating these reaction steps. The present computational study provides valuable mechanistic insights into Cu-catalyzed photocycloaddition reactions.
Collapse
Affiliation(s)
- Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Jin
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shi-Ru Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Kim D, Rosko MC, Castellano FN, Gray TG, Teets TS. Long Excited-State Lifetimes in Three-Coordinate Copper(I) Complexes via Triplet-Triplet Energy Transfer to Pyrene-Decorated Isocyanides. J Am Chem Soc 2024; 146:19193-19204. [PMID: 38956456 DOI: 10.1021/jacs.4c04288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
There has been much effort to improve excited-state lifetimes in photosensitizers based on earth-abundant first-row transition metals. Copper(I) complexes have gained significant attention in this field, and in most cases, sterically driven approaches are used to optimize their lifetimes. This study presents a series of three-coordinate copper(I) complexes (Cu1-Cu3) where the excited-state lifetime is extended by triplet-triplet energy transfer. The heteroleptic compounds feature a cyclohexyl-substituted β-diketiminate (CyNacNacMe) paired with aryl isocyanide ligands, giving the general formula Cu(CyNacNacMe)(CN-Ar) (CN-dmp = 2,6-dimethylphenyl isocyanide for Cu1; CN-pyr = 1-pyrenyl isocyanide for Cu2; CN-dmp-pyr = 2,6-dimethyl-4-(1-pyrenyl)phenyl isocyanide for Cu3). The nature, energies, and dynamics of the low-energy triplet excited states are assessed with a combination of photoluminescence measurements at room temperature and 77 K, ultrafast transient absorption (UFTA) spectroscopy, and DFT calculations. The complexes with the pyrene-decorated isocyanides (Cu2 and Cu3) exhibit extended excited-state lifetimes resulting from triplet-triplet energy transfer (TTET) between the short-lived charge-transfer excited state (3CT) and the long-lived pyrene-centered triplet state (3pyr). This TTET process is irreversible in Cu3, producing exclusively the 3pyr state, and in Cu2, the 3CT and 3pyr states are nearly isoenergetic, enabling reversible TTET and long-lived 3CT luminescence. The improved photophysical properties in Cu2 and Cu3 result in improvements in activity for both photocatalytic stilbene E/Z isomerization via triplet energy transfer and photoredox transformations involving hydrodebromination and C-O bond activation. These results illustrate that the extended excited-state lifetimes achieved through TTET result in newly conceived photosynthetically relevant earth-abundant transition metal complexes.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
7
|
Deng J, Huang H, Li Z, Jing X, Duan C. A novel Cu(I)-based coordination polymer for efficient photocatalytic oxidation of C(sp 3)-H bonds. Dalton Trans 2024; 53:10055-10059. [PMID: 38832528 DOI: 10.1039/d4dt01257g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
A novel coordination polymer CuCl-Pyhc was successfully synthesized, which can catalyze efficient and selective oxidation of C(sp3)-H bonds under mild conditions, exhibiting exceptional stability and remarkable recyclability. Furthermore, CuCl-Pyhc can mimic natural monooxygenases and activate oxygen into singlet oxygen (1O2).
Collapse
Affiliation(s)
- Jiangtao Deng
- State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Huilin Huang
- State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Zhentao Li
- State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| |
Collapse
|
8
|
Kim D, Teets TS. Sterically Encumbered Aryl Isocyanides Extend Excited-State Lifetimes and Improve the Photocatalytic Performance of Three-Coordinate Copper(I) β-Diketiminate Charge-Transfer Chromophores. J Am Chem Soc 2024. [PMID: 38853542 DOI: 10.1021/jacs.4c05180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Copper(I) complexes are prominent candidates to replace noble metal-based photosensitizers. We recently introduced a three-coordinate design for copper(I) charge-transfer chromophores that pair β-diketiminate ligands with aryl isocyanides. The excited-state lifetime in these compounds can be extended using a bichromophoric "triplet reservoir" strategy, which comes at the expense of a decrease in excited-state energy and reducing power. In this work, we introduce a complementary, sterically driven strategy for increasing the excited-state lifetimes of these photosensitizers, which gives a higher-energy, more strongly reducing charge-transfer triplet state than does the bichromophore approach. The compounds presented (Cu1-Cu4) have the general formula Cu(CyNacNacMe)(CN-Ar), where CyNacNacMe is a cyclohexyl-substituted β-diketiminate and CN-Ar is an aryl isocyanide with a variable steric profile. Their structural features and electrochemical and photophysical properties are described. The complexes with sterically encumbered 2,6-diisopropylphenyl or m-terphenyl isocyanide ligands (Cu2-Cu4) exhibit prolonged excited-state lifetimes relative to those of the parent 2,6-dimethylphenyl isocyanide compound Cu1. Specifically, one of the m-terphenyl isocyanide compounds, Cu3, displays an excited-state lifetime of 276 ns, approximately 30 times longer than that of Cu1 (9.3 ns). The photoluminescence quantum yield of Cu3 (0.09) also increases by two orders of magnitude compared to that of Cu1 (0.0008). The strong excited-state reducing power (*Eox = -2.4 V vs Fc+/0) and long lifetime of Cu3 lead to higher yields in photoredox and photocatalytic isomerization reactions, which include dehalogenation and/or hydrodgenation of benzophenone substrates, C-O bond activation of a lignin model substrate, and photocatalytic E/Z isomerization of stilbene.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
9
|
Trippmacher S, Demeshko S, Prescimone A, Meyer F, Wenger OS, Wang C. Ferromagnetically Coupled Chromium(III) Dimer Shows Luminescence and Sensitizes Photon Upconversion. Chemistry 2024; 30:e202400856. [PMID: 38523568 DOI: 10.1002/chem.202400856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
There has been much progress on mononuclear chromium(III) complexes featuring luminescence and photoredox activity, but dinuclear chromium(III) complexes have remained underexplored in these contexts until now. We identified a tridentate chelate ligand able to accommodate both meridional and facial coordination of chromium(III), to either access a mono- or a dinuclear chromium(III) complex depending on reaction conditions. This chelate ligand causes tetragonally distorted primary coordination spheres around chromium(III) in both complexes, entailing comparatively short excited-state lifetimes in the range of 400 to 800 ns in solution at room temperature and making photoluminescence essentially oxygen insensitive. The two chromium(III) ions in the dimer experience ferromagnetic exchange interactions that result in a high spin (S=3) ground state with a coupling constant of +9.3 cm-1. Photoinduced energy transfer from the luminescent ferromagnetically coupled dimer to an anthracene derivative results in sensitized triplet-triplet annihilation upconversion. Based on these proof-of-principle studies, dinuclear chromium(III) complexes seem attractive for the development of fundamentally new types of photophysics and photochemistry enabled by magnetic exchange interactions.
Collapse
Affiliation(s)
- Simon Trippmacher
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Alessandro Prescimone
- Department of Chemistry, BPR 1096, University of Basel, Mattenstrasse 24a, 4058, Basel, Switzerland
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Cui Wang
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| |
Collapse
|
10
|
Rosko MC, Wheeler JP, Alameh R, Faulkner AP, Durand N, Castellano FN. Enhanced Visible Light Absorption in Heteroleptic Cuprous Phenanthrolines. Inorg Chem 2024; 63:1692-1701. [PMID: 38190287 DOI: 10.1021/acs.inorgchem.3c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This work presents a series of Cu(I) heteroleptic 1,10-phenanthroline chromophores featuring enhanced UVA and visible-light-harvesting properties manifested through vectorial control of the copper-to-phenanthroline charge-transfer transitions. The molecules were prepared using the HETPHEN strategy, wherein a sterically congested 2,9-dimesityl-1,10-phenanthrolne (mesPhen) ligand was paired with a second phenanthroline ligand incorporating extended π-systems in their 4,7-positions. The combination of electrochemistry, static and time-resolved electronic spectroscopy, 77 K photoluminescence spectra, and time-dependent density functional theory calculations corroborated all of the experimental findings. The model chromophore, [Cu(mesPhen)(phen)]+ (1), lacking 4,7-substitutions preferentially reduces the mesPhen ligand in the lowest energy metal-to-ligand charge-transfer (MLCT) excited state. The remaining cuprous phenanthrolines (2-4) preferentially reduce their π-conjugated ligands in the low-lying MLCT excited state. The absorption cross sections of 2-4 were enhanced (εMLCTmax = 7430-9980 M-1 cm-1) and significantly broadened across the UVA and visible regions of the spectrum compared to 1 (εMLCTmax = 6494 M-1 cm-1). The excited-state decay mechanism mirrored those of long-lived homoleptic Cu(I) phenanthrolines, yielding three distinguishable time constants in ultrafast transient absorption experiments. These represent pseudo-Jahn-Teller distortion (τ1), singlet-triplet intersystem crossing (τ2), and the relaxed MLCT excited-state lifetime (τ3). Effective light-harvesting from Cu(I)-based chromophores can now be rationalized within the HETPHEN strategy while achieving directionality in their respective MLCT transitions, valuable for integration into more complex donor-acceptor architectures and longer-lived photosensitizers.
Collapse
Affiliation(s)
- Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan P Wheeler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Reem Alameh
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Adrienne P Faulkner
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Nicolas Durand
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
11
|
Moreno-da Costa D, Zúñiga-Loyola C, Droghetti F, Robles S, Villegas-Menares A, Villegas-Escobar N, Gonzalez-Pavez I, Molins E, Natali M, Cabrera AR. Air- and Water-Stable Heteroleptic Copper (I) Complexes Bearing Bis(indazol-1-yl)methane Ligands: Synthesis, Characterisation, and Computational Studies. Molecules 2023; 29:47. [PMID: 38202630 PMCID: PMC10780253 DOI: 10.3390/molecules29010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A series of four novel heteroleptic Cu(I) complexes, bearing bis(1H-indazol-1-yl)methane analogues as N,N ligands and DPEPhos as the P,P ligand, were synthesised in high yields under mild conditions and characterised by spectroscopic and spectrometric techniques. In addition, the position of the carboxymethyl substituent in the complexes and its effect on the electrochemical and photophysical behaviour was evaluated. As expected, the homoleptic copper (I) complexes with the N,N ligands showed air instability. In contrast, the obtained heteroleptic complexes were air- and water-stable in solid and solution. All complexes displayed green-yellow luminescence in CH2Cl2 at room temperature due to ligand-centred (LC) phosphorescence in the case of the Cu(I) complex with an unsubstituted N,N ligand and metal-to-ligand charge transfer (MLCT) phosphorescence for the carboxymethyl-substituted complexes. Interestingly, proper substitution of the bis(1H-indazol-1-yl)methane ligand enabled the achievement of a remarkable luminescent yield (2.5%) in solution, showcasing the great potential of this novel class of copper(I) complexes for potential applications in luminescent devices and/or photocatalysis.
Collapse
Affiliation(s)
- David Moreno-da Costa
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - César Zúñiga-Loyola
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile; (C.Z.-L.); (S.R.)
| | - Federico Droghetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy;
| | - Stephania Robles
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile; (C.Z.-L.); (S.R.)
| | - Alondra Villegas-Menares
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Nery Villegas-Escobar
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile;
| | - Ivan Gonzalez-Pavez
- Departamento de Química, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile;
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus de la UAB, 08193 Barcelona, Spain;
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy;
| | - Alan R. Cabrera
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| |
Collapse
|
12
|
Kim D, Dang VQ, Teets TS. Improved transition metal photosensitizers to drive advances in photocatalysis. Chem Sci 2023; 15:77-94. [PMID: 38131090 PMCID: PMC10732135 DOI: 10.1039/d3sc04580c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
To function effectively in a photocatalytic application, a photosensitizer's light absorption, excited-state lifetime, and redox potentials, both in the ground state and excited state, are critically important. The absorption profile is particularly relevant to applications involving solar harvesting, whereas the redox potentials and excited-state lifetimes determine the thermodynamics, kinetics, and quantum yields of photoinduced redox processes. This perspective article focuses on synthetic inorganic and organometallic approaches to optimize these three characteristics of transition-metal based photosensitizers. We include our own work in these areas, which has focused extensively on exceptionally strong cyclometalated iridium photoreductants that enable challenging reductive photoredox transformations on organic substrates, and more recent work which has led to improved solar harvesting in charge-transfer copper(i) chromophores, an emerging class of earth-abundant compounds particularly relevant to solar-energy applications. We also extensively highlight many other complementary strategies for optimizing these parameters and highlight representative examples from the recent literature. It remains a significant challenge to simultaneously optimize all three of these parameters at once, since improvements in one often come at the detriment of the others. These inherent trade-offs and approaches to obviate or circumvent them are discussed throughout.
Collapse
Affiliation(s)
- Dooyoung Kim
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Vinh Q Dang
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
13
|
Kim D, Rosko MC, Dang VQ, Castellano FN, Teets TS. Sterically Encumbered Heteroleptic Copper(I) β-Diketiminate Complexes with Extended Excited-State Lifetimes. Inorg Chem 2023; 62:16759-16769. [PMID: 37782937 DOI: 10.1021/acs.inorgchem.3c02042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
One of the main challenges in developing effective copper(I) photosensitizers is their short excited-state lifetimes, usually attributed to structural distortion upon light excitation. We have previously introduced copper(I) charge-transfer chromophores of the general formula Cu(N^N)(ArNacNac), where N^N is a conjugated diimine ligand and ArNacNac is a substituted β-diketiminate ligand. These chromophores were promising regarding their tunable redox potentials and intense visible absorption but were ineffective as photosensitizers, presumably due to short excited-state lifetimes. Here, we introduce sterically crowded analogues of these heteroleptic chromophores with bulky alkyl substituents on the N^N and/or ArNacNac ligand. Structural analysis was combined with electrochemical and photophysical characterization, including ultrafast transient absorption (UFTA) spectroscopy to investigate the effects of the alkyl groups on the excited-state lifetimes of the complexes. The molecular structures determined by single-crystal X-ray diffraction display more distortion in the ground state as alkyl substituents are introduced into the phenanthroline or the NacNac ligand, showing smaller τ4 values due to the steric hindrance. UFTA measurements were carried out to determine the excited-state dynamics. Sterically encumbered Cu5 and Cu6 display excited-state lifetimes 15-20 times longer than unsubstituted complex Cu1, likely indicating that the incorporation of bulky alkyl substituents inhibits the pseudo-Jahn-Teller (PJT) flattening distortion in the excited state. This work suggests that the steric properties of these heteroleptic copper(I) charge-transfer chromophores can be readily modified and that the excited-state dynamics are strongly responsive to these modifications.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Vinh Q Dang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
14
|
Liu Q, Ni Q, Zhou Y, Chen L, Xiang S, Zheng L, Liu Y. P/N-heteroleptic Cu(I)-photosensitizer-catalyzed domino radical relay annulation of 1,6-enynes with aryldiazonium salts. Org Biomol Chem 2023; 21:7960-7967. [PMID: 37750337 DOI: 10.1039/d3ob01177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
A visible-light driven photocatalytic construction of benzo[b]fluorenones from 1,6-enynes and aryldiazonium salts has been achieved via a P/N-heteroleptic Cu(I)-photosensitizer-catalyzed domino radical relay annulation process. Preliminary mechanistic studies revealed that the aryl radicals in situ generated from aryldiazonium salts with the excited state of the Cu(I)-photosensitizer played a dual role of a radical initiator and a radical terminator in the concise construction of the highly fused benzo[b]fluorenone scaffold.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Qibo Ni
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yan Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Lang Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Siwei Xiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Limeng Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
15
|
Guo Y, Wang X, Li C, Su J, Xu J, Song Q. Decarboxylation of β-boryl NHPI esters enables radical 1,2-boron shift for the assembly of versatile organoborons. Nat Commun 2023; 14:5693. [PMID: 37709736 PMCID: PMC10502150 DOI: 10.1038/s41467-023-41254-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
In recent years, numerous 1,2-R shift (R = aliphatic or aryl) based on tetracoordinate boron species have been well investigated. In the contrary, the corresponding radical migrations, especially 1,2-boryl radical shift for the construction of organoborons is still in its infancy. Given the paucity and significance of such strategies in boron chemistry, it is urgent to develop other efficient and alternative synthetic protocols to enrich these underdeveloped radical 1,2-boron migrations, before their fundamental potential applications could be fully explored at will. Herein, we have demonstrated a visible-light-induced photoredox neutral decarboxylative radical cross-coupling reaction, which undergoes a radical 1,2-boron shift to give a translocated C-radical for further capture of versatile radical acceptors. The mild reaction conditions, good functional-group tolerance, and broad β-boryl NHPI esters scope as well as versatile radical acceptors make this protocol applicable in modification of bioactive molecules. It can be expected that this methodology will be a very useful tool and an alternative strategy for the construction of primary organoborons via a novel radical 1,2-boron shift mode.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Xiaosha Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, 350108, Fuzhou, P. R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China.
| |
Collapse
|
16
|
Rana P, Saini KM, Kaushik B, Solanki K, Dixit R, Sharma RK. Unleashing the photocatalytic potential of a noble-metal-free heteroleptic copper complex-based nanomaterial for an enhanced aza-Henry reaction. NANOSCALE 2023; 15:14007-14017. [PMID: 37539685 DOI: 10.1039/d3nr01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
In this work, we fabricated a versatile and noble metal free copper-based heterogeneous photocatalyst, representing a green shift away from precious group metals such as Ir, Ru, Pt, which have been widely utilized as photocatalysts. The successfully synthesized and characterized copper photocatalyst was employed to establish a cross dehydrogenative coupling via C-H activation between tertiary amines and carbon nucleophiles. The highly efficient copper-based photocatalyst was characterized by numerous physico-chemical techniques, which confirmed its successful formation as well as its high activity. Inductively coupled plasma (ICP-OES) analysis revealed that the composite Cu@Xantphos@ASMNPs had a very high loading of 0.423 mmol g-1 of copper. The magnetic Cu@Xantphos@ASMNPs were utilized as a potential heterogeneous photocatalyst for the very facile and regioselective conversion of aryl tetrahydroqinoline to the respective nitroalkyl aryl tetrahydroisoquinoline in high yield using air as an oxidant and methanol as a green solvent with irradiation with visible light under mild reaction conditions. Additionally, the catalyst shows exceptional chemical stability and reusability without any agglomeration even after several cycles of use, which is one of the key features of this material, rendering it a potential candidate from economic and environmental perspectives.
Collapse
Affiliation(s)
- Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Kapil Mohan Saini
- Kalindi College, University of Delhi, New Delhi, Delhi-110008, India
| | - Bhawna Kaushik
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi-110019, India
| | - Kanika Solanki
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Shyamlal College, University of Delhi, New Delhi, Delhi-1100032, India
| | - Ranjana Dixit
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Ramjas College, University of Delhi, New Delhi-110007, India
| | - Rakesh K Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| |
Collapse
|
17
|
Wang C, Ge Q, Xu C, Xing Z, Xiong J, Zheng Y, Duan WL. Photoinduced Copper-Catalyzed C(sp 3)-P Bond Formation by Coupling of Secondary Phosphines with N-(Acyloxy)phthalimides and N-Fluorocarboxamides. Org Lett 2023; 25:1583-1588. [PMID: 36826372 DOI: 10.1021/acs.orglett.3c00475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A photoinduced copper-catalyzed C(sp3)-P bond formation has been developed by using N-(acyloxy)phthalimides as radical precursors and secondary phosphine boranes as coupling partners. A variety of alkyl carboxylic acid derivatives can be readily transformed into the corresponding phosphines with high reaction efficiency and structural diversity. Besides, utilizing the 1,5-HAT of the N-centered radical process, the δ C(sp3)-H bond can be coupled with secondary phosphines, which provides a novel method for the regioselective formation of C(sp3)-P bonds.
Collapse
Affiliation(s)
- Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Qiangqiang Ge
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Cheng Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Zhongqiu Xing
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Jianqi Xiong
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an 710119, China
| |
Collapse
|
18
|
Reichle A, Koch M, Sterzel H, Großkopf LJ, Floss J, Rehbein J, Reiser O. Copper(I) Photocatalyzed Bromonitroalkylation of Olefins: Evidence for Highly Efficient Inner-Sphere Pathways. Angew Chem Int Ed Engl 2023; 62:e202219086. [PMID: 36732299 DOI: 10.1002/anie.202219086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
We report the visible light-mediated copper-catalyzed vicinal difunctionalization of olefins utilizing bromonitroalkanes as ATRA reagents. This protocol is characterized by high yields and fast reaction times under environmentally benign reaction conditions with exceptional scope, allowing the rapid functionalization of both activated and unactivated olefins. Moreover, late-stage functionnalization of biologically active molecules and upscaling to gram quantities is demonstrated, which offers manifold possibilities for further transformations, e.g. access to nitro- and aminocyclopropanes. Besides the synthetic utility of the title transformation, this study undergirds the exclusive role of copper in photoredox catalysis showing its ability to stabilize and interact with radical intermediates in its coordination sphere. EPR studies suggest that such interactions can even outperform a highly favorable cyclization of transient to persistent radicals contrasting iridium-based photocatalysts.
Collapse
Affiliation(s)
- Alexander Reichle
- Fakultät Chemie & Pharmazie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Magdalena Koch
- Fakultät Chemie & Pharmazie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Hannes Sterzel
- Fakultät Chemie & Pharmazie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Lea-Joy Großkopf
- Fakultät Chemie & Pharmazie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Johannes Floss
- Fakultät Chemie & Pharmazie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Julia Rehbein
- Fakultät Chemie & Pharmazie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Oliver Reiser
- Fakultät Chemie & Pharmazie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
19
|
Meier A, Badalov SV, Biktagirov T, Schmidt WG, Wilhelm R. Diquat Based Dyes: A New Class of Photoredox Catalysts and Their Use in Aerobic Thiocyanation. Chemistry 2023; 29:e202203541. [PMID: 36700523 DOI: 10.1002/chem.202203541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
A series of new organic donor-π-acceptor dyes incorporating a diquat moiety as a novel electron-acceptor unit have been synthesized and characterized. The analytical data were supported by DFT calculations. These dyes were explored in the aerobic thiocyanation of indoles and pyrroles. Here they showed a high photocatalytic activity under visible light, giving isolated yields of up to 97 %. In addition, the photocatalytic activity of standalone diquat and methyl viologen through formation of an electron donor acceptor complex is presented.
Collapse
Affiliation(s)
- Armin Meier
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678, Clausthal-Zellerfeld, Germany
| | - Sabuhi V Badalov
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - Timur Biktagirov
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - Wolf Gero Schmidt
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - René Wilhelm
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678, Clausthal-Zellerfeld, Germany
| |
Collapse
|
20
|
Sarkar S, Banerjee A, Ngai MY. Synthesis of Ketonylated Carbocycles via Excited-State Copper-Catalyzed Radical Carbo-Aroylation of Unactivated Alkenes. ChemCatChem 2023; 15:e202201128. [PMID: 38105796 PMCID: PMC10723085 DOI: 10.1002/cctc.202201128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 12/19/2023]
Abstract
Carbocycles are core skeletons in natural and synthetic organic compounds possessing a wide diversity of important biological activities. Herein, we report the development of an excited-state copper-catalyzed radical carbo-aroylation of unactivated alkenes to synthesize ketonylated tetralins, di- and tetrahydrophenanthrenes, and cyclopentane derivatives. The reaction is operationally simple and features mild reaction conditions that tolerate a broad range of functional groups. Preliminary mechanistic studies suggest a reaction pathway beginning with photoexcitation of [CuI-BINAP]2 and followed by a single electron transfer (SET), radical aroylation of unactivated alkenes, radical cyclization, and re-aromatization, affording the desired ketonylated carbocycles.
Collapse
Affiliation(s)
- Satavisha Sarkar
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794-3400, USA
| | - Arghya Banerjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794-3400, USA
| | - Ming-Yu Ngai
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794-3400, USA
| |
Collapse
|
21
|
Dorn M, East NR, Förster C, Kitzmann WR, Moll J, Reichenauer F, Reuter T, Stein L, Heinze K. d-d and charge transfer photochemistry of 3d metal complexes. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:707-788. [DOI: 10.1016/b978-0-12-823144-9.00063-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Petek N, Brodnik H, Reiser O, Štefane B. Copper- and Photoredox-Catalyzed Cascade to Trifluoromethylated Divinyl Sulfones. J Org Chem 2022; 88:6538-6547. [DOI: 10.1021/acs.joc.2c02422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nejc Petek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Helena Brodnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
24
|
Anti-Markovnikov ring-opening of sulfonium salts with alkynes by visible light/copper catalysis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Chen L, Li Y, Han M, Peng Y, Chen X, Xiang S, Gao H, Lu T, Luo SP, Zhou B, Wu H, Yang YF, Liu Y. P/ N-Heteroleptic Cu(I)-Photosensitizer-Catalyzed [3 + 2] Regiospecific Annulation of Aminocyclopropanes and Functionalized Alkynes. J Org Chem 2022; 87:15571-15581. [PMID: 36322051 DOI: 10.1021/acs.joc.2c02138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report here a regiospecific [3 + 2] annulation between aminocyclopropanes and various functionalized alkynes enabled by a P/N-heteroleptic Cu(I) photosensitizer under photoredox catalysis conditions. Thus, a divergent construction of 3-aminocyclopentene derivatives including methylsulfonyl-, arylsulfonyl-, chloro-, ester-, and trifluoromethyl-functionalized aminocyclopentenes could be achieved with advantages of high regioselectivity, broad substrate compatibility, and mild and environmentally benign reaction conditions.
Collapse
Affiliation(s)
- Lailin Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ya Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Mingfeng Han
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yun Peng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiahe Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Siwei Xiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hong Gao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Tianhao Lu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Shu-Ping Luo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, People's Republic of China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
26
|
Sarkar S, Banerjee A, Shah JA, Mukherjee U, Frederiks NC, Johnson CJ, Ngai MY. Excited-State Copper-Catalyzed [4 + 1] Annulation Reaction Enables Modular Synthesis of α,β-Unsaturated-γ-Lactams. J Am Chem Soc 2022; 144:20884-20894. [PMID: 36326178 PMCID: PMC9754811 DOI: 10.1021/jacs.2c09006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Synthesis of α,β-unsaturated-γ-lactams continue to attract attention due to the importance of this structural motif in organic chemistry. Herein, we report the development of a visible-light-induced excited-state copper-catalyzed [4 + 1] annulation reaction for the preparation of a wide range of γ-H, -OH, and -OR-substituted α,β-unsaturated-γ-lactams using acrylamides as the 4-atom unit and aroyl chlorides as the 1-atom unit. This modular synthetic protocol features mild reaction conditions, broad substrate scope, and high functional group tolerance. The reaction is amenable to late-stage diversification of complex molecular architectures, including derivatives of marketed drugs. The products of the reaction can serve as versatile building blocks for further derivatization. Preliminary mechanistic studies suggest an inner-sphere catalytic cycle involving photoexcitation of the Cu(BINAP) catalyst, single-electron transfer, and capture of radical intermediates by copper species, followed by reductive elimination or protonation to give the desired γ-functionalized α,β-unsaturated-γ-lactams.
Collapse
Affiliation(s)
- Satavisha Sarkar
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Arghya Banerjee
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Jagrut A. Shah
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Upasana Mukherjee
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Nicoline C. Frederiks
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Christopher J. Johnson
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Ming-Yu Ngai
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
- Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York, 11794-3400 USA
| |
Collapse
|
27
|
Kübler J, Pfund B, Wenger OS. Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion. JACS AU 2022; 2:2367-2380. [PMID: 36311829 PMCID: PMC9597861 DOI: 10.1021/jacsau.2c00442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/28/2023]
Abstract
Many CuI complexes have luminescent triplet charge-transfer excited states with diverse applications in photophysics and photochemistry, but for isoelectronic ZnII compounds, this behavior is much less common, and they typically only show ligand-based fluorescence from singlet π-π* states. We report two closely related tetrahedral ZnII compounds, in which intersystem crossing occurs with appreciable quantum yields and leads to the population of triplet excited states with intraligand charge-transfer (ILCT) character. In addition to showing fluorescence from their initially excited 1ILCT states, these new compounds therefore undergo triplet-triplet energy transfer (TTET) from their 3ILCT states and consequently can act as sensitizers for photo-isomerization reactions and triplet-triplet annihilation upconversion from the blue to the ultraviolet spectral range. The photoactive 3ILCT state furthermore facilitates photoinduced electron transfer. Collectively, our findings demonstrate that mononuclear ZnII compounds with photophysical and photochemical properties reminiscent of well-known CuI complexes are accessible with suitable ligands and that they are potentially amenable to many different applications. Our insights seem relevant in the greater context of obtaining photoactive compounds based on abundant transition metals, complementing well-known precious-metal-based luminophores and photosensitizers.
Collapse
|
28
|
Yang X, Yu W. Promoting effect of water on light and phenanthroline-diphosphine Cu(I) complex-initiated iodine atom transfer cyclisation. Chem Commun (Camb) 2022; 58:11693-11696. [PMID: 36177844 DOI: 10.1039/d2cc04324f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water can greatly facilitate the iodine atom transfer cyclisation of 2-allyloxy(or prop-2-yn-1-yloxy)-3-iodo tetrahydropyrans and tetrahydrofurans initiated by phenanthroline-diphosphine Cu(I) complexes under 455 nm light irradiation. Good yields were obtained in a mixture of acetonitrile and water (1 : 4, v/v) or in pure water, whereas no reaction took place in acetonitrile under the otherwise same conditions. The copper complexes are virtually heterogeneous in the water-dominant reaction media, which is believed to be a main reason for the beneficial effect of water.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
29
|
Kim D, Gray TG, Teets TS. Heteroleptic copper(I) charge-transfer chromophores with panchromatic absorption. Chem Commun (Camb) 2022; 58:11446-11449. [PMID: 36148809 DOI: 10.1039/d2cc03873k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new heteroleptic bis-chelate Cu(I) complexes showing panchromatic visible absorption are described here. With this heteroleptic design, we demonstrate that the energy levels of the spatially separated HOMO and LUMO can be independently and systematically controlled via ligand modification, with charge-transfer absorption bands throughout the visible and NIR regions that cover a wider range than typical Cu(I) chromophores.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, TX, 77204-5003, USA.
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
30
|
Tripathy AR, Kumar A, Rahmathulla A R, Jha AK, Yatham VR. Visible-Light-Driven α-Aminoalkyl Radical-Mediated C(sp 3)-C(sp) Cross-Coupling of Iodoalkanes and Alkynyl Bromides. Org Lett 2022; 24:5186-5191. [PMID: 35833707 DOI: 10.1021/acs.orglett.2c02018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report a simple protocol for metal-free cross-coupling between unactivated alkyl iodides and terminal alkynyl bromides promoted by visible light. The salient features of this transformation are the utilization of an organic photocatalyst and commercially available tri-n-butylamine as a reductant. This protocol couples a variety of unactivated iodoalkanes containing different functional groups and with a variety of terminal alkynyl bromides under mild reaction conditions to afford the substituted alkynes in good yields.
Collapse
Affiliation(s)
- Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Amit Kumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Rizwana Rahmathulla A
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Avishek Kumar Jha
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| |
Collapse
|
31
|
Corpas J, Gomez-Mendoza M, Ramírez-Cárdenas J, de la Peña O'Shea VA, Mauleón P, Gómez Arrayás R, Carretero JC. One-Metal/Two-Ligand for Dual Activation Tandem Catalysis: Photoinduced Cu-Catalyzed Anti-hydroboration of Alkynes. J Am Chem Soc 2022; 144:13006-13017. [PMID: 35786909 PMCID: PMC9348838 DOI: 10.1021/jacs.2c05805] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
A dual catalyst system
based on ligand exchange of two diphosphine
ligands possessing different properties in a copper complex has been
devised to merge metal- and photocatalytic activation modes. This
strategy has been applied to the formal anti-hydroboration of activated
internal alkynes via a tandem sequence in which Cu/Xantphos catalyzes
the B2pin2-syn-hydroboration
of the alkyne whereas Cu/BINAP serves as a photocatalyst for visible
light-mediated isomerization of the resulting alkenyl boronic ester.
Photochemical studies by means of UV–vis absorption, steady-state
and time-resolved fluorescence, and transient absorption spectroscopy
have allowed characterizing the photoactive Cu/BINAP species in the
isomerization reaction and its interaction with the intermediate syn-alkenyl boronic ester through energy transfer from the
triplet excited state of the copper catalyst. In addition, mechanistic
studies shed light into catalyst speciation and the interplay between
the two catalytic cycles as critical success factors.
Collapse
Affiliation(s)
- Javier Corpas
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA Energy Institute, Technological Park of Mostoles, Avda. Ramón de la Sagra 3, 28935 Madrid, Spain
| | - Jonathan Ramírez-Cárdenas
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute, Technological Park of Mostoles, Avda. Ramón de la Sagra 3, 28935 Madrid, Spain
| | - Pablo Mauleón
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Ramón Gómez Arrayás
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Juan C Carretero
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| |
Collapse
|
32
|
Glaser F, Wenger OS. Red Light-Based Dual Photoredox Strategy Resembling the Z-Scheme of Natural Photosynthesis. JACS AU 2022; 2:1488-1503. [PMID: 35783177 PMCID: PMC9241018 DOI: 10.1021/jacsau.2c00265] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 05/11/2023]
Abstract
Photoredox catalysis typically relies on the use of single chromophores, whereas strategies, in which two different light absorbers are combined, are rare. In photosystems I and II of green plants, the two separate chromophores P680 and P700 both absorb light independently of one another, and then their excitation energy is combined in the so-called Z-scheme, to drive an overall reaction that is thermodynamically very demanding. Here, we adapt this concept to perform photoredox reactions on organic substrates with the combined energy input of two red photons instead of blue or UV light. Specifically, a CuI bis(α-diimine) complex in combination with in situ formed 9,10-dicyanoanthracenyl radical anion in the presence of excess diisopropylethylamine catalyzes ca. 50 dehalogenation and detosylation reactions. This dual photoredox approach seems useful because red light is less damaging and has a greater penetration depth than blue or UV radiation. UV-vis transient absorption spectroscopy reveals that the subtle change in solvent from acetonitrile to acetone induces a changeover in the reaction mechanism, involving either a dominant photoinduced electron transfer or a dominant triplet-triplet energy transfer pathway. Our study illustrates the mechanistic complexity in systems operating under multiphotonic excitation conditions, and it provides insights into how the competition between desirable and unwanted reaction steps can become more controllable.
Collapse
|
33
|
Sinha N, Pfund B, Wegeberg C, Prescimone A, Wenger OS. Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. J Am Chem Soc 2022; 144:9859-9873. [PMID: 35623627 PMCID: PMC9490849 DOI: 10.1021/jacs.2c02592] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many organometallic
iridium(III) complexes have photoactive excited
states with mixed metal-to-ligand and intraligand charge transfer
(MLCT/ILCT) character, which form the basis for numerous applications
in photophysics and photochemistry. Cobalt(III) complexes with analogous
MLCT excited-state properties seem to be unknown yet, despite the
fact that iridium(III) and cobalt(III) can adopt identical low-spin
d6 valence electron configurations due to their close chemical
relationship. Using a rigid tridentate chelate ligand (LCNC), in which a central amido π-donor is flanked by two σ-donating
N-heterocyclic carbene subunits, we obtained a robust homoleptic complex
[Co(LCNC)2](PF6), featuring a photoactive
excited state with substantial MLCT character. Compared to the vast
majority of isoelectronic iron(II) complexes, the MLCT state of [Co(LCNC)2](PF6) is long-lived because it
does not deactivate as efficiently into lower-lying metal-centered
excited states; furthermore, it engages directly in photoinduced electron
transfer reactions. The comparison with [Fe(LCNC)2](PF6), as well as structural, electrochemical, and UV–vis
transient absorption studies, provides insight into new ligand design
principles for first-row transition-metal complexes with photophysical
and photochemical properties reminiscent of those known from the platinum
group metals.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
34
|
Azetidine synthesis enabled by photo-induced copper-catalysis via [3+1] radical cascade cyclization. Innovation (N Y) 2022; 3:100244. [PMID: 35519513 PMCID: PMC9065902 DOI: 10.1016/j.xinn.2022.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Azetidines are an important type of saturated, highly strained, four-membered, nitrogen-containing heterocyclic compound. These compounds serve as important raw materials, intermediates, and catalysts in organic synthesis, as well as important active units in amino acids, alkaloids, and pharmaceutically active compounds. Thus, the development of an efficient and concise method to construct azetidines is of great significance in multiple disciplines. In this work, we reported on the photo-induced copper-catalyzed radical annulation of aliphatic amines with alkynes to produce azetidines. This reaction occurred in a two- or three-component manner. The alkynes efficiently captured photogenerated α-aminoalkyl radicals, forming vinyl radicals, which initiated tandem 1,5-hydrogen atom transfer and 4-exo-trig cyclization. Density functional theory calculations indicated that the tertiary radical intermediate was critical for the success of cyclization. In addition, the resulting saturated azetidine scaffolds possessed vicinal tertiary-quaternary and even quaternary-quaternary centers. Azetidines, four-membered N-heterocyclic compounds, are valuable targets for synthesis The first [3 + 1] cyclization approach is enabled by visible-light-induced copper catalysis This atom economic synthesis is characterized by double C-H activation This technology features operational simplicity, cheap catalyst, and broad substrate scope
Collapse
|
35
|
Sandoval-Pauker C, Santander-Nelli M, Dreyse P. Thermally activated delayed fluorescence in luminescent cationic copper(i) complexes. RSC Adv 2022; 12:10653-10674. [PMID: 35425025 PMCID: PMC8985689 DOI: 10.1039/d1ra08082b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/27/2022] [Indexed: 01/02/2023] Open
Abstract
In this work, the photophysical characteristics of [Cu(N^N)2]+ and [Cu(N^N)(P^P)]+ complexes were described. The concept of thermally activated delayed fluorescence (TADF) and its development throughout the years was also explained. The importance of ΔE (S1-T1) and spin-orbital coupling (SOC) values on the TADF behavior of [Cu(N^N)2]+ and [Cu(N^N)(P^P)]+ complexes is discussed. Examples of ΔE (S1-T1) values reported in the literature were collected and some trends were proposed (e.g. the effect of the substituents at the 2,9 positions of the phenanthroline ligand). Besides, the techniques (or calculation methods) used for determining ΔE (S1-T1) values were described. The effect of SOC in TADF was also discussed, and examples of the determination of SOC values by DFT and TD-DFT calculations are provided. The last chapter covers the applications of [Cu(N^N)2]+ and [Cu(N^N)(P^P)]+ TADF complexes and the challenges that are still needed to be addressed to ensure the industrial applications of these compounds.
Collapse
Affiliation(s)
- Christian Sandoval-Pauker
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso TX 79968 USA
- Departamento de Química, Universidad Técnica Federico Santa María Av. España 1680 Casilla 2390123 Valparaíso Chile
| | - Mireya Santander-Nelli
- Advanced Integrated Technologies (AINTECH) Chorrillo Uno, Parcela 21 Lampa Santiago Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins General Gana 1702 Santiago 8370854 Chile
| | - Paulina Dreyse
- Departamento de Química, Universidad Técnica Federico Santa María Av. España 1680 Casilla 2390123 Valparaíso Chile
| |
Collapse
|
36
|
Paderina A, Melnikov A, Slavova S, Sizov V, Gurzhiy V, Petrovskii S, Luginin M, Levin O, Koshevoy I, Grachova E. The Tail Wags the Dog: The Far Periphery of the Coordination Environment Manipulates the Photophysical Properties of Heteroleptic Cu(I) Complexes. Molecules 2022; 27:2250. [PMID: 35408648 PMCID: PMC9000333 DOI: 10.3390/molecules27072250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
In this work we show, using the example of a series of [Cu(Xantphos)(N^N)]+ complexes (N^N being substituted 5-phenyl-bipyridine) with different peripheral N^N ligands, that substituents distant from the main action zone can have a significant effect on the physicochemical properties of the system. By using the C≡C bond on the periphery of the coordination environment, three hybrid molecular systems with -Si(CH3)3, -Au(PR3), and -C2HN3(CH2)C10H7 fragments were produced. The Cu(I) complexes thus obtained demonstrate complicated emission behaviour, which was investigated by spectroscopic, electrochemical, and computational methods in order to understand the mechanism of energy transfer. It was found that the -Si(CH3)3 fragment connected to the peripheral C≡C bond changes luminescence to long-lived intra-ligand phosphorescence, in contrast to MLCT phosphorescence or TADF. The obtained results can be used for the design of new materials based on Cu(I) complexes with controlled optoelectronic properties on the molecular level, as well as for the production of hybrid systems.
Collapse
Affiliation(s)
- Aleksandra Paderina
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Alexey Melnikov
- Centre for Nano- and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Sofia Slavova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vladimir Sizov
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Vladislav Gurzhiy
- Institute of Earth Sciences, St. Petersburg University, 199034 St. Petersburg, Russia;
| | - Stanislav Petrovskii
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Maksim Luginin
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Oleg Levin
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Igor Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland;
| | - Elena Grachova
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| |
Collapse
|
37
|
Zhong B, Huang H, Jing X, Duan C. Binuclear copper iodine cluster-based coordination sheets as photocatalysts for decarboxylative cyanation. Chem Commun (Camb) 2022; 58:3961-3964. [PMID: 35244648 DOI: 10.1039/d2cc00547f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized two new MOFs (Cu-Tpxa-1 and Cu-Tpxa-2) that were used as heterogeneous photocatalysts, combining photocatalysis and copper catalysis to achieve decarboxylative radical cyanation reactions. This new heterogeneous catalysis method optimized the redox properties and excited-state lifetimes, providing a new idea for exploring photocatalytic mechanisms.
Collapse
Affiliation(s)
- Bingwen Zhong
- Add State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Huilin Huang
- Add State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Xu Jing
- Add State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Chunying Duan
- Add State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| |
Collapse
|
38
|
Nohara I, Wegeberg C, Devereux M, Prescimone A, Housecroft CE, Constable EC. The surprising effects of sulfur: achieving long excited-state lifetimes in heteroleptic copper(i) emitters. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:3089-3102. [PMID: 35340713 PMCID: PMC8870442 DOI: 10.1039/d1tc05591g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
A series of heteroleptic [Cu(N^N)(P^P)][PF6] complexes is reported in which N^N is a di(methylsulfanyl)-1,10-phenanthroline (2,9-, 3,8- or 4,7-(MeS)2phen) or di(methoxy)-1,10-phenanthroline (2,9-, 3,8- or 4,7-(MeO)2phen) and P^P is bis(2-(diphenylphosphano)phenyl)ether (POP) or 4,5-bis(diphenylphosphano)-9,9-dimethylxanthene (xantphos). The effects of the different substituents are investigated through structural, electrochemical and photophysical studies and by using DFT and TD-DFT calculations. Introducing methylsulfanyl groups in the 2,9-, 3,8- or 4,7-positions of the phen domain alters the composition of the frontier molecular orbitals of the [Cu(N^N)(P^P)]+ complexes significantly, so that ligand-centred (LC) transitions become photophysically relevant with respect to metal-to-ligand charge transfer (MLCT). Within this series, [Cu(2,9-(MeS)2phen)(POP)][PF6] exhibits the highest photoluminescence quantum yield of 15% and the longest excited-state lifetime of 8.3 μs in solution. In the solid state and in frozen matrices at 77 K, the electronic effects of the methylsulfanyl or methoxy substituents are highlighted, thus resulting in luminescence lifetimes of 2 to 4.2 ms at 77 K with predominantly LC character for both the 3,8- and 4,7-(MeS)2phen containing complexes. The results of the investigation give new guidelines on how to influence the luminescence properties in [Cu(N^N)(P^P)]+ complexes which will aid in the development of new sustainable and efficient copper(i) emitters.
Collapse
Affiliation(s)
- Isaak Nohara
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
- Department of Chemistry, University of Basel St Johanns-Ring 19 CH-4056 Basel Switzerland
| | - Mike Devereux
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Edwin C Constable
- Department of Chemistry, University of Basel, BPR 1096 Mattenstrasse 24a CH-4058 Basel Switzerland
| |
Collapse
|
39
|
DiLuzio S, Connell TU, Mdluli V, Kowalewski JF, Bernhard S. Understanding Ir(III) Photocatalyst Structure-Activity Relationships: A Highly Parallelized Study of Light-Driven Metal Reduction Processes. J Am Chem Soc 2022; 144:1431-1444. [PMID: 35025486 DOI: 10.1021/jacs.1c12059] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-throughput synthesis and screening methods were used to measure the photochemical activity of 1440 distinct heteroleptic [Ir(C^N)2(N^N)]+ complexes for the photoreduction of Sn(II) and Zn(II) cations to their corresponding neutral metals. Kinetic data collection was carried out using home-built photoreactors and measured initial rates, obtained through an automated fitting algorithm, spanned between 0-120 μM/s for Sn(0) deposition and 0-90 μM/s for Zn(0) deposition. Photochemical reactivity was compared to photophysical properties previously measured such as deaerated excited state lifetime and emission spectral data for these same complexes; however, no clear correlations among these features were observed. A formal photochemical rate law was then developed to help elucidate the observed reactivity. Initial rates were found to be directly correlated to the product of incident photon flux with three reaction elementary efficiencies: (1) the fraction of light absorbed by the photocatalyst, (2) the fraction of excited state species that are quenched by the electron donor, and (3) the cage escape efficiency. The most active catalysts exhibit high efficiencies for all three steps, and catalyst engineering requirements to maximize these elementary efficiencies were postulated. The kinetic treatment provided the mechanistic information needed to decipher the observed structure/function trends in the high-throughput work.
Collapse
Affiliation(s)
- Stephen DiLuzio
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Timothy U Connell
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Velabo Mdluli
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jakub F Kowalewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
40
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Abstract
In recent years, visible light-induced transition metal catalysis has emerged as a new paradigm in organic photocatalysis, which has led to the discovery of unprecedented transformations as well as the improvement of known reactions. In this subfield of photocatalysis, a transition metal complex serves a double duty by harvesting photon energy and then enabling bond forming/breaking events mostly via a single catalytic cycle, thus contrasting the established dual photocatalysis in which an exogenous photosensitizer is employed. In addition, this approach often synergistically combines catalyst-substrate interaction with photoinduced process, a feature that is uncommon in conventional photoredox chemistry. This Review describes the early development and recent advances of this emerging field.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
42
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
43
|
Banerjee A, Sarkar S, Shah JA, Frederiks NC, Bazan‐Bergamino EA, Johnson CJ, Ngai M. Excited‐State Copper Catalysis for the Synthesis of Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arghya Banerjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Satavisha Sarkar
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Jagrut A. Shah
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Nicoline C. Frederiks
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Emmanuel A. Bazan‐Bergamino
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Christopher J. Johnson
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Ming‐Yu Ngai
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| |
Collapse
|
44
|
Banerjee A, Sarkar S, Shah JA, Frederiks NC, Bazan-Bergamino EA, Johnson CJ, Ngai MY. Excited-State Copper Catalysis for the Synthesis of Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202113841. [PMID: 34783154 PMCID: PMC8761179 DOI: 10.1002/anie.202113841] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 01/23/2023]
Abstract
Heterocycles are one of the largest groups of organic moieties with significant medicinal, chemical, and industrial applications. Herein, we report the discovery and development of visible-light-induced, synergistic excited-state copper catalysis using a combination of Cu(IPr)I as a catalyst and rac-BINAP as a ligand, which produces more than 10 distinct classes of heterocycles. The reaction tolerates a broad array of functional groups and complex molecular scaffolds, including derivatives of peptides, natural products, and marketed drugs. Preliminary mechanistic investigation suggests in situ generations of [Cu(BINAP)2 ]+ and [Cu(IPr)2 ]+ catalysts that work cooperatively under visible-light irradiation to facilitate catalytic carbo-aroylation of unactivated alkenes, affording a wide range of useful heterocycles.
Collapse
Affiliation(s)
- Arghya Banerjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Satavisha Sarkar
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Jagrut A. Shah
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Nicoline C. Frederiks
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Emmanuel A. Bazan-Bergamino
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Christopher J. Johnson
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Ming-Yu Ngai
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
45
|
Santander-Nelli M, Cortés-Arriagada D, Sanhueza L, Dreyse P. Dependence between luminescence properties of Cu( i) complexes and electronic/structural parameters derived from steric effects. NEW J CHEM 2022. [DOI: 10.1039/d2nj00407k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quantification of steric effects induced by bulky N^N ligands and their relationship with the luminescence properties of Cu(i) complexes.
Collapse
Affiliation(s)
- Mireya Santander-Nelli
- Advanced Integrated Technologies (AINTECH), Chorrillo Uno, Parcela 21, Lampa, Santiago, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Diego Cortés-Arriagada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación. Universidad Tecnológica Metropolitana, Ignacio Valdivieso, 2409, San Joaquín, Santiago 8940577, Chile
| | - Luis Sanhueza
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Universidad Católica de Temuco, Av. Rudecindo Ortega 02950, Temuco, Chile
| | - Paulina Dreyse
- Departamento de Química, Universidad Técnica Federico Santa María, Avda. España 1680, Casilla 2390123, Valparaíso, Chile
| |
Collapse
|
46
|
Santander-Nelli M, Sanhueza L, Navas D, Rossin E, Natali M, Dreyse P. Unusual fluorescence behaviour of a heteroleptic Cu( i) complex featuring strong electron donating groups on a diimine ligand. NEW J CHEM 2022. [DOI: 10.1039/d1nj04811b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of a novel bulky diimine ligand and its corresponding heteroleptic Cu(i). Unusual fluorescence behavior of a novel Cu(i) complex due to a strong electron-donor diimine ligand.
Collapse
Affiliation(s)
- Mireya Santander-Nelli
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 2390123, Valparaíso, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Luis Sanhueza
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Universidad Católica de Temuco, Av. Rudecindo Ortega, 02950 Temuco, Chile
| | - Daniel Navas
- Departamento de Química, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| | - Elena Rossin
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Paulina Dreyse
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 2390123, Valparaíso, Chile
| |
Collapse
|
47
|
Li X, Jiang M, Zhu X, Song X, Deng Q, Lv J, Yang D. A desulphurization strategy for Sonogashira couplings by visible light/copper catalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01548f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a new copper-based photocatalyst, [(binap)(tpy)Cu]Cl, and applied it in the visible-light promoted Sonogashira coupling reactions.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Min Jiang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Xiaolong Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qirong Deng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
48
|
Sun ZZ, Zhu N, Pan X, Wang G, Yang Y, Qiu QM, Li ZF, Xin XL, Liu JM, Li XQ, Jin Q, Ren ZG, Zhou Q. Designing luminescent diimine-Cu (I)-phosphine complexes by tuning N-ligand and counteranions: correlation of weak interactions, luminescence and THz absorption spectra. CrystEngComm 2022. [DOI: 10.1039/d1ce01574e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, six new [Cu(N^N)(P^P)]+/0 complexes with different N-ligand and counteranions [Cu2(dmp)2(bdppmapy)I2] (1), [Cu2(dmp)2(bdppmapy)(CN)2]·3CH3OH (2), [Cu(dmp)(bdppmapy)](BF4) (3), [Cu(dmp)(bdppmapy)](ClO4) (4), [Cu(phen)(bdppmapy)](BF4) (5), [Cu(phen)(bdppmapy)](ClO4) (6) have been synthesized and characterized (bdppmapy = N,N-bis[(diphenylphosphino)methyl]-2-pyridinamine,...
Collapse
|
49
|
Borjigin T, Noirbent G, Gigmes D, Xiao P, Dumur F, Lalevée J. The new LED-Sensitive photoinitiators of Polymerization: Copper complexes in free radical and cationic photoinitiating systems and application in 3D printing. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Rasool JU, Ali A, Ahmad QN. Recent advances in Cu-catalyzed transformations of internal alkynes to alkenes and heterocycles. Org Biomol Chem 2021; 19:10259-10287. [PMID: 34806741 DOI: 10.1039/d1ob01709h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous metal-catalyzed reactions involving internal alkynes and aimed towards synthetically and pharmacologically important alkenes and heterocycles have appeared in the literature. Among these, Cu-catalyzed reactions have a special place, which has prompted the investigation and development of carbon-carbon and carbon-heteroatom bond-forming reactions. These reactions possess wide scope, and during the paths of these reactions, either stable or in situ intermediates are formed via the addition of Cu as a core catalyst or synergistic catalyst. In this review, we aim to report different contributions relating to Cu-catalyzed reactions of internal alkynes for the synthesis of different valuable alkenes and heterocycles which have appeared in the literature in the last decade. We anticipate that this appraisal will deliver basic insights for the further advancement of Cu-catalyzed reactions in organic chemistry.
Collapse
Affiliation(s)
- Javeed Ur Rasool
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Asif Ali
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Sukhdev Vihar, Delhi-110025, India
| | - Qazi Naveed Ahmad
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu-180001, India.
| |
Collapse
|