1
|
Hou Z, Cui C, Yang Y, Huang Z, Zhuang Y, Zeng Y, Gong X, Zhang T. Strong Metal-Support Interactions in Heterogeneous Oxygen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407167. [PMID: 39460492 DOI: 10.1002/smll.202407167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Molecular oxygen redox electrocatalysis involves oxygen reduction and evolution as core reactions in various energy conversion and environmental technology fields. Strong metal-support interactions (SMSIs) based nanomaterials are regarded as desirable and state-of-the-art heterogeneous electrocatalysts due to their exceptional physicochemical properties. Over the past decades, considerable advancements in theory and experiment have been achieved in related studies, especially in modulating the electronic structure and geometrical configuration of SMSIs to enable activity, selectivity, and stability. In this focuses on the concept of SMSI, explore their various manifestations and mechanisms of action, and summarizes recent advances in SMSIs for efficient energy conversion in oxygen redox electrocatalysis applications. Additionally, the correlation between the physicochemical properties of different metals and supports is systematically elucidated, and the potential mechanisms of the structure-activity relationships between SMSIs and catalytic performance are outlined through theoretical models. Finally, the obstacles confronting this burgeoning field are comprehensively concluded, targeted recommendations and coping strategies are proposed, and future research perspectives are outlined.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Yanan Yang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Zhikun Huang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Yu Zhuang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Ye Zeng
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Xi Gong
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Yu Z, Wang Y, Fu K, Wang J, Zhu L, Xu H, Cheng D. Real-Time Simulation of the Reaction Kinetics of Supported Metal Nanoparticles. NANO LETTERS 2024. [PMID: 39373290 DOI: 10.1021/acs.nanolett.4c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
A common issue with supported metal catalysts is the sintering of metal nanoparticles, resulting in catalyst deactivation. In this study, we propose a theoretical framework for realizing a real-time simulation of the reactivity of supported metal nanoparticles during the sintering process, combining density functional theory calculations, microkinetic modeling, Wulff-Kaichew construction, and sintering kinetic simulations. To validate our approach, we demonstrate its feasibility on α-Al2O3(0001)-supported Ag nanoparticles, where the simulated sintering behavior and ethylene epoxidation reaction rate as a function of time show qualitative agreement with experimental observation. Our proposed theoretical approach can be employed to screen out the promising microstructure feature of α-Al2O3 for stable supported Ag NPs, including the surface orientation and promoter species modified on it. The outlined approach of this work may be applied to a range of different thermocatalytic reactions other than ethylene epoxidation and provide guidance for the development of supported metal catalysts with long-term stability.
Collapse
Affiliation(s)
- Zuran Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yuqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kun Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiayi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lin Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haoxiang Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
3
|
Gao Y, Zhu B. Simulating Structural Dynamics of Metal Catalysts under Operative Conditions. J Phys Chem Lett 2024; 15:8351-8359. [PMID: 39110671 DOI: 10.1021/acs.jpclett.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Structural reconstructions of metal catalysts have been recognized as common phenomena during catalytic reactions, which play a key role in their activities in heterogeneous catalysis. Precisely identifying the structures under the operative conditions becomes a prerequisite to establish a reliable structure-activity relationship and further rationalize the design of metal catalysts. However, real-time capture of the structural variations of catalysts at the atomic level with high-temporal resolution is a grand challenge for present in situ characterizations. During the past decade, significant progress has been made in theory to couple the structures with the reaction conditions to reproduce the experimental observations and predict the adsorbate-induced changes of catalysts in composition, morphology, size, etc. Modeling the dynamic correlation between the structure and activity of the metal catalysts brings us advanced knowledge of heterogeneous catalysis and becomes indispensable for accurate evaluation of the performance of metal catalysts.
Collapse
Affiliation(s)
- Yi Gao
- Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Beien Zhu
- Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| |
Collapse
|
4
|
Li S, Wang G, Lv H, Lin Z, Liang J, Liu X, Wang YG, Huang Y, Wang G, Li Q. Constructing Gradient Orbital Coupling to Induce Reactive Metal-Support Interaction in Pt-Carbide Electrocatalysts for Efficient Methanol Oxidation. J Am Chem Soc 2024; 146:17659-17668. [PMID: 38904433 DOI: 10.1021/jacs.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Reactive metal-support interaction (RMSI) is an emerging way to regulate the catalytic performance for supported metal catalysts. However, the induction of RMSI by the thermal reduction is often accompanied by the encapsulation effect on metals, which limits the mechanism research and applications of RMSI. In this work, a gradient orbital coupling construction strategy was successfully developed to induce RMSI in Pt-carbide system without a reductant, leading to the formation of L12-PtxM-MCy (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) intermetallic electrocatalysts. Density functional theory (DFT) calculations suggest that the gradient coupling of the d(M)-2p(C)-5d(Pt) orbital would induce the electron transfer from M to C covalent bonds to Pt NPs, which facilitates the formation of C vacancy (Cv) and the subsequent M migration (occurrence of RMSI). Moreover, the good correlation between the formation energy of Cv and the onset temperature of RMSI in Pt-MCx systems proves the key role of nonmetallic atomic vacancy formation for inducing RMSI. The developed L12-Pt3Ti-TiC catalyst exhibits excellent acidic methanol oxidation reaction activity, with mass activity of 2.36 A mgPt-1 in half-cell and a peak power density of 187.9 mW mgPt-1 in a direct methanol fuel cell, which is one of the best catalysts ever reported. DFT calculations reveal that L12-Pt3Ti-TiC favorably weakens *CO absorption compared to Pt-TiC due to the change of the absorption site from Pt to Ti, which accounts for the enhanced MOR performance.
Collapse
Affiliation(s)
- Shenzhou Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Houfu Lv
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, China
- Suzhou Laboratory, Suzhou 215000, China
| | - Zijie Lin
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuan Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Li XY, Ou P, Duan X, Ying L, Meng J, Zhu B, Gao Y. Dynamic Active Sites In Situ Formed in Metal Nanoparticle Reshaping under Reaction Conditions. JACS AU 2024; 4:1892-1900. [PMID: 38818067 PMCID: PMC11134379 DOI: 10.1021/jacsau.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024]
Abstract
Understanding the nonequilibrium transformation of nanocatalysts under reaction conditions is important because metastable atomic structures may be created during the process, which offers unique activities in reactions. Although reshaping of metal nanoparticles (NPs) under reaction conditions has been widely recognized, the dynamic reshaping process has been less studied at the atomic scale. Here, we develop an atomistic kinetic Monte Carlo model to simulate the complete reshaping process of Pt nanoparticles in a CO environment and reveal the in situ formation of atomic clusters on the NP surface, a new type of active site beyond conventional understanding, boosting the reactivities in the CO oxidation reaction. Interestingly, highly active peninsula and inactive island clusters both form on the (111) facets and interchange in varying states of dynamic equilibrium, which influences the catalytic activities significantly. This study provides new fundamental knowledge of nanocatalysis and new guidance for the rational design of nanocatalysts.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Pengfei Ou
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xinyi Duan
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lei Ying
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jun Meng
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Beien Zhu
- Photon
Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Gao
- Photon
Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key
Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, China
| |
Collapse
|
6
|
Zhou L, Sun Y, Wu Y, Zhu Y, Xu Y, Jia J, Wang F, Wang R. Controlled Growth of Pd Nanocrystals by Interface Interaction on Monolayer MoS 2: An Atom-Resolved in Situ Study. NANO LETTERS 2023. [PMID: 38010863 DOI: 10.1021/acs.nanolett.3c03960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The crystal growth kinetics is crucial for the controllable preparation and performance modulation of metal nanocrystals (NCs). However, the study of growth mechanisms is significantly limited by characterization techniques, and it is still challenging to in situ capture the growth process. Real-time and real-space imaging techniques at the atomic scale can promote the understanding of microdynamics for NC growth. Herein, the growth of Pd NCs on monolayer MoS2 under different atmospheres was in situ studied by environmental transmission electron microscopy. Introducing carbon monoxide can modulate the diffusion of Pd monomers, resulting in the epitaxial growth of Pd NCs with a uniform orientation. The electron energy loss spectroscopy and theoretical calculations showed that the CO adsorption assured the specific exposed facets and good uniformity of Pd NCs. The insight into the gas-solid interface interaction and the microscopic growth mechanism of NCs may shed light on the precise synthesis of NCs on two-dimensional (2D) materials.
Collapse
Affiliation(s)
- Liang Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinghui Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yusong Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuchen Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingying Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Fang Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Groppo E, Rojas-Buzo S, Bordiga S. The Role of In Situ/ Operando IR Spectroscopy in Unraveling Adsorbate-Induced Structural Changes in Heterogeneous Catalysis. Chem Rev 2023; 123:12135-12169. [PMID: 37882638 PMCID: PMC10636737 DOI: 10.1021/acs.chemrev.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 10/27/2023]
Abstract
Heterogeneous catalysts undergo thermal- and/or adsorbate-induced dynamic changes under reaction conditions, which consequently modify their catalytic behavior. Hence, it is increasingly crucial to characterize the properties of a catalyst under reaction conditions through the so-called "operando" approach. Operando IR spectroscopy is probably one of the most ubiquitous and versatile characterization methods in the field of heterogeneous catalysis, but its potential in identifying adsorbate- and thermal-induced phenomena is often overlooked in favor of other less accessible methods, such as XAS spectroscopy and high-resolution microscopy. Without detracting from these techniques, and while aware of the enormous value of a multitechnique approach, the purpose of this Review is to show that IR spectroscopy alone can provide relevant information in this field. This is done by discussing a few selected case studies from our own research experience, which belong to the categories of both "single-site"- and nanoparticle-based catalysts.
Collapse
Affiliation(s)
- Elena Groppo
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| | - Sergio Rojas-Buzo
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| | - Silvia Bordiga
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| |
Collapse
|
8
|
Cao J, Xia J, Li X, Li Y, Liu P, Tian L, Qiao P, Liu C, Wang Y, Meng X. Defect-Mediated Growth of Crystallographic Shear Plane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302365. [PMID: 37420328 DOI: 10.1002/smll.202302365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Indexed: 07/09/2023]
Abstract
As representative extended planar defects, crystallographic shear (CS) planes, namely Wadsley defects, play an important role in modifying the physical and chemical properties of metal oxides. Although these special structures have been intensively investigated for high-rate anode materials and catalysts, it is still experimentally unclear how the CS planes form and propagate at the atomic scale. Here, the CS plane evolution in monoclinic WO3 is directly imaged via in situ scanning transmission electron microscope. It is found that the CS planes nucleate preferentially at the edge step defects and proceed by the cooperative migration of WO6 octahedrons along particular crystallographic orientations, passing through a series of intermediate states. The local reconstruction of atomic columns tends to form (102) CS planes featured with four edge-sharing octahedrons in preference to the (103) planes, which matches well with the theoretical calculations. Associated with the structure evolution, the sample undergoes a semiconductor-to-metal transition. In addition, the controlled growth of CS planes and V-shaped CS structures can be achieved by artificial defects for the first time. These findings enable an atomic-scale understanding of CS structure evolution dynamics.
Collapse
Affiliation(s)
- Jianyu Cao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuanze Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuye Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pei Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lifeng Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peiyu Qiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chang Liu
- Institute for Computational Materials Science, Joint Center for Theoretical Physics, School of Physics and Electronics, Henan University, Kaifeng, 475004, China
| | - Yifan Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Han J, Yang J, Zhang Z, Jiang X, Liu W, Qiao B, Mu J, Wang F. Strong Metal-Support Interaction Facilitated Multicomponent Alloy Formation on Metal Oxide Support. J Am Chem Soc 2023; 145:22671-22684. [PMID: 37814206 DOI: 10.1021/jacs.3c07915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Multicomponent alloy (MA) contains a nearly infinite number of unprecedented active sites through entropy stabilization, which is a desired platform for exploring high-performance catalysts. However, MA catalysts are usually synthesized under severe conditions, which induce support structure collapse and further deteriorate the synergy between MA and support. We propose that a strong metal-support interaction (SMSI) could facilitate the formation of MA by establishing a tunnel of oxygen vacancy for metal atom transport under low reduction temperature (400-600 °C), which exemplifies the holistic design of MA catalysts without deactivating supports. PtPdCoFe MA is readily synthesized on anatase TiO2 with the help of SMSI, which exhibits good catalytic activity and stability for methane combustion. This strategy demonstrates excellent universality on various supports and multicomponent alloy compositions. Our work not only reports a holistic synthesis strategy for MA synthesis by synergizing unique properties of reducible oxides and the mixing entropy of alloy but also offers a new insight that SMSI plays a vigorous role in the formation of alloy NPs on reducible oxides.
Collapse
Affiliation(s)
- Jianyu Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyi Yang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Xunzhu Jiang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Botao Qiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Junju Mu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| |
Collapse
|
10
|
Qu J, Sui M, Li R. Recent advances in in-situ transmission electron microscopy techniques for heterogeneous catalysis. iScience 2023; 26:107072. [PMID: 37534164 PMCID: PMC10391733 DOI: 10.1016/j.isci.2023.107072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
The process of heterogeneous catalytic reaction under working conditions has long been considered a "black box", which is mainly because of the difficulties in directly characterizing the structural changes of catalysts at the atomic level during catalytic reactions. The development of in situ transmission electron microscopy (TEM) techniques offers opportunities for introducing a realistic chemical reaction environment in TEM, making it possible to uncover the mystery of catalytic reactions. In this article, we present a comprehensive overview of the application of in situ TEM techniques in heterogeneous catalysis, highlighting its utility for observing gas-solid and liquid-solid reactions during thermal catalysis, electrocatalysis, and photocatalysis. in situ TEM has a unique advantage in revealing the complex structural changes of catalysts during chemical reactions. Revealing the real-time dynamic structure during reaction processes is crucial for understanding the intricate relationship between catalyst structure and its catalytic performance. Finally, we present a perspective on the future challenges and opportunities of in situ TEM in heterogeneous catalysis.
Collapse
Affiliation(s)
- Jiangshan Qu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM-2011), Dalian 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM-2011), Dalian 116023, China
| |
Collapse
|
11
|
Single Metal Atoms Embedded in the Surface of Pt Nanocatalysts: The Effect of Temperature and Hydrogen Pressure. Catalysts 2022. [DOI: 10.3390/catal12121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Embedding energetically stable single metal atoms in the surface of Pt nanocatalysts exposed to varied temperature (T) and hydrogen pressure (P) could open up new possibilities in selective and dynamical engineering of alloyed Pt catalysts, particularly interesting for hydrogenation reactions. In this work, an environmental segregation energy model is developed to predict the stability and the surface composition evolution of 24 Metal M-promoted Pt surfaces (with M: Cu, Ag, Au, Ni, Pd, Co, Rh and Ir) under varied T and P. Counterintuitive to expectations, the results show that the more reactive alloy component (i.e., the one forming the strongest chemical bond with the hydrogen) is not the one that segregates to the surface. Moreover, using DFT-based Multi-Scaled Reconstruction (MSR) method and by extrapolation of M-promoted Pt nanoparticles (NPs), the shape dynamics of M-Pt are investigated under the same ranges of T and P. The results show that under low hydrogen pressure and high temperature ranges, Ag and Au—single atoms (and Cu to a less extent) are energetically stable on the surface of truncated octahedral and/or cuboctahedral shaped NPs. This indicated that coinage single-atoms might be used to tune the catalytic properties of Pt surface under hydrogen media. In contrast, bulk stability within wide range of temperature and pressure is predicted for all other M-single atoms, which might act as bulk promoters. This work provides insightful guides and understandings of M-promoted Pt NPs by predicting both the evolution of the shape and the surface compositions under reaction gas condition.
Collapse
|
12
|
Duan X, Li XY, Zhu B, Gao Y. Identifying the morphology of Pt nanoparticles for the optimal catalytic activity towards CO oxidation. NANOSCALE 2022; 14:17754-17760. [PMID: 36422007 DOI: 10.1039/d2nr04929e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The morphology of nanoparticles (NPs) is crucial for determining their catalytic performance. The dramatic changes in the morphology of metal NPs during reactions observed in many in situ experiments pose great challenges for the identification of the geometry for optimal catalytic activities, which arouses the controversial understanding of the reaction mechanism. In this work, taking CO oxidation as a model reaction, we coupled a multiscale structure reconstruction model with kinetic Monte Carlo simulations to study the catalytic performance of the Pt NPs with changing morphology and reaction conditions. Through the quantitative analysis of contour plots for turnover frequencies, we show that the NPs with more well-coordinated sites exhibit optimal activity under CO-rich conditions at higher temperatures, while the reactivity of NPs with more low-coordination sites is optimal under O2-rich conditions at lower temperatures. Further analysis indicates that the competitive adsorption of CO and O2 plays the key role, in which the structure with optimal activity has a closer CO and O coverage. This work not only reconciles the controversy of the active geometry in the experiments, but offers an efficient method to guide the rational design of high-performance catalysts.
Collapse
Affiliation(s)
- Xinyi Duan
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Yan Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Beien Zhu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences
| | - Yi Gao
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences
| |
Collapse
|
13
|
Wu Z, Li Z, Li Y, Zhang Y, Li J. Improving the DFT computational accuracy for CO activation on Fe surfaces by Bayesian error estimation functional with van der Waals correlation. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
14
|
Liu Y, Zhang G, Liu S, Zhu J, Liu J, Wang J, Li R, Wang M, Fu Q, Hou S, Song C, Guo X. Promoting n-Butane Dehydrogenation over PtMn/SiO 2 through Structural Evolution Induced by a Reverse Water-Gas Shift Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Shida Liu
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian 116045, People’s Republic of China
| | - Jie Zhu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Jiaxu Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Jianyang Wang
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, People’s Republic of China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, People’s Republic of China
| | - Mingrui Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, People’s Republic of China
| | - Shuandi Hou
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian 116045, People’s Republic of China
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, People’s Republic of China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| |
Collapse
|
15
|
Han Y, Li XY, Zhu B, Gao Y. Unveiling the Au Surface Reconstruction in a CO Environment by Surface Dynamics and Ab Initio Thermodynamics. J Phys Chem A 2022; 126:6538-6547. [PMID: 36099447 DOI: 10.1021/acs.jpca.2c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface reconstruction changes the atomic configuration of the metal surface and thus alters its intrinsic physical and chemical properties. Recent in situ experiments have shown a variety of surface reconstructions under reaction conditions, but how to effectively predict and characterize these structures remains challenging. Herein, we combine a DFT-based kinetic Monte Carlo simulation method and ab initio thermodynamics to explore the low-energy configurations of metal surface reconstructions, which takes the surface dynamics under the reactive environment into account. We systematically simulate 13 Au surfaces ((100), (110), (111), (210), (211), (221), (310), (311), (320), (321), (322), (331), and (332)) in the CO environment and identify 19 candidate reconstruction patterns driven by CO adsorption. The breakup of the original surfaces is attributed to the lateral interactions among the nearest-neighboring adsorbates. This work provides an efficient approach to unveil the reconstructed metal surface structures in reactive environments for guiding the experiments.
Collapse
Affiliation(s)
- Yu Han
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Yan Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Beien Zhu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Gao
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
16
|
Adnan RH, Madridejos JML, Alotabi AS, Metha GF, Andersson GG. A Review of State of the Art in Phosphine Ligated Gold Clusters and Application in Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105692. [PMID: 35332703 PMCID: PMC9130904 DOI: 10.1002/advs.202105692] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Indexed: 05/28/2023]
Abstract
Atomically precise gold clusters are highly desirable due to their well-defined structure which allows the study of structure-property relationships. In addition, they have potential in technological applications such as nanoscale catalysis. The structural, chemical, electronic, and optical properties of ligated gold clusters are strongly defined by the metal-ligand interaction and type of ligands. This critical feature renders gold-phosphine clusters unique and distinct from other ligand-protected gold clusters. The use of multidentate phosphines enables preparation of varying core sizes and exotic structures beyond regular polyhedrons. Weak gold-phosphorous (Au-P) bonding is advantageous for ligand exchange and removal for specific applications, such as catalysis, without agglomeration. The aim of this review is to provide a unified view of gold-phosphine clusters and to present an in-depth discussion on recent advances and key developments for these clusters. This review features the unique chemistry, structural, electronic, and optical properties of gold-phosphine clusters. Advanced characterization techniques, including synchrotron-based spectroscopy, have unraveled substantial effects of Au-P interaction on the composition-, structure-, and size-dependent properties. State-of-the-art theoretical calculations that reveal insights into experimental findings are also discussed. Finally, a discussion of the application of gold-phosphine clusters in catalysis is presented.
Collapse
Affiliation(s)
- Rohul H. Adnan
- Department of Chemistry, Faculty of ScienceCenter for Hydrogen EnergyUniversiti Teknologi Malaysia (UTM)Johor Bahru81310Malaysia
| | | | - Abdulrahman S. Alotabi
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
- Department of PhysicsFaculty of Science and Arts in BaljurashiAlbaha UniversityBaljurashi65655Saudi Arabia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Gunther G. Andersson
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
| |
Collapse
|
17
|
Fan W, Wang B, Gao R, Dimitrakopoulos G, Wang J, Xiao X, Ma L, Wu K, Yildiz B, Li J. Anodic Shock-Triggered Exsolution of Metal Nanoparticles from Perovskite Oxide. J Am Chem Soc 2022; 144:7657-7666. [PMID: 35471024 DOI: 10.1021/jacs.1c12970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nanoparticles decorated electrodes (NDEs) are useful in fuel cells, electrolyzers, water treatment, and chemical synthesis. Here, we show that by rapidly bringing a mixed ionic-electronic conductor outside its electrochemical stability window, one can achieve uniform dispersion of metallic nanoparticles inside its bulk and at the surface and improve its electrocatalytic performance when back under normal functional conditions. Surprisingly, this can happen under anodic as well as cathodic current/voltage shocks in an ABO3 perovskite oxide, La0.4Ca0.4Ti0.88Fe0.06Ni0.06O3-δ (LCTFN), across a wide range of H2/O2 gas environments at 800 °C. One possible mechanism for bulk Fe0/Ni0 precipitation under anodic shock condition is the incomplete oxygen oxidation (O2- → Oα-, 0 < α < 2), migration and escape of oxygen to interfaces, and "whiplash" transition-metal reduction due to low electronic conductivity. We show that both cathodic and anodic shocks can produce NDEs to enhance electrocatalytic performance, potentially improving the flexibility of this approach in practical devices.
Collapse
Affiliation(s)
- Weiwei Fan
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Baoming Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rui Gao
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Georgios Dimitrakopoulos
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jiayue Wang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xianghui Xiao
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kai Wu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Bilge Yildiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Saini MK, Kumar S, Li H, Babu SA, Saravanamurugan S. Advances in the Catalytic Reductive Amination of Furfural to Furfural Amine: The Momentous Role of Active Metal Sites. CHEMSUSCHEM 2022; 15:e202200107. [PMID: 35171526 DOI: 10.1002/cssc.202200107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
One-pot synthesis of sustainable primary amines by catalytic reductive amination of bio-based carbonyl compounds with NH3 and H2 is emerging as a promising and robust approach. The primary amines, especially furfuryl amine (FUA) derived from furfural (FUR), with a wide range of applications from pharmaceuticals to agrochemicals, have attracted much attention due to their versatility. This Review is majorly comprised of two segments on the reductive amination of FUR to FUA, one with precious (Ru, Pd, Rh) and the other with non-precious (Co, Ni) metals on different supports and in various solvent systems in the presence of NH3 and H2 . The active metal sites generated on multiple supports are accentuated with experimental evidence based on CO-diffuse reflectance infrared Fourier-transform spectroscopy, H2 temperature-programmed reduction, X-ray photoelectron spectroscopy, and calorimetry. Moreover, this Review comprehensively describes the role of acidic and basic support for the metal on the yield of FUA. Overall, this Review provides an insight into how to design and develop an efficiently robust catalyst for the selective reductive amination of a broad spectrum of carbonyl compounds to corresponding amines.
Collapse
Affiliation(s)
- Ms Kanika Saini
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| | - Sahil Kumar
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| |
Collapse
|
19
|
Fan W, Sun Z, Bai Y. Manipulating Electrocatalytic Activity of Perovskite Oxide Through Electrochemical Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107131. [PMID: 35064625 DOI: 10.1002/smll.202107131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Perovskite oxides are widely used in electrochemical cells, profiting from their excellent accommodation of different elements and structure stability. Here, it is reported that when rapidly exceeding the electrochemical stability window of a perovskite oxide through electrochemical treatment, nanoparticles can dynamically exsolve from the perovskite lattice, yielding a nanoparticle decorated material (NDM) with fascinating particle population and distribution. It is reported that as compared to the NDM produced by chemical gas reduction, electrochemical treatment fabricated NDM shows much better electrochemical performance. At 900 °C, a peak power density (PPD) of 896 mW cm-2 (more than tenfold enhancement) is obtained for a yttrium stabilized zirconia (YSZ) electrolyte-supported symmetrical cell with La0.43 Ca0.37 Ti0.8 Co0.1 Fe0.1 O3- δ (LCTCF) electrode after electrochemical treatment for several minutes, while it only reaches to 210 mW cm-2 after chemical gas treatment for tens of hours using humidified hydrogen as fuel. The study establishes a new fairyland for tuning the performance of-but not limited to-the electrochemical cells.
Collapse
Affiliation(s)
- Weiwei Fan
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhu Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yu Bai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
20
|
Fujita M, Yamamoto A, Tsuchiya N, Yoshida H. Hydrogen Adsorption/Desorption Isotherms on Supported Platinum Nanoparticles Determined by in‐situ XAS and ΔXANES Analysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Masami Fujita
- Kyoto University: Kyoto Daigaku Graduate School of Human and Environmental Studies 606-8501 Kyoto JAPAN
| | - Akira Yamamoto
- Kyoto University: Kyoto Daigaku Graduate School of Human and Environmental Studies #219 Building 2, Yoshida South Campus, Yoshida-Nihonmatsu-cho, Sakyo-ku 606-8501 Kyoto JAPAN
| | - Naoki Tsuchiya
- Kyoto University: Kyoto Daigaku Graduate School of Human and Environmental Studies 606-8501 Kyoto JAPAN
| | - Hisao Yoshida
- Kyoto University: Kyoto Daigaku Graduate School of Human and Environmental Studies 606-8501 Kyoto JAPAN
| |
Collapse
|
21
|
Lin L, Liu J, Liu X, Gao Z, Rui N, Yao S, Zhang F, Wang M, Liu C, Han L, Yang F, Zhang S, Wen XD, Senanayake SD, Wu Y, Li X, Rodriguez JA, Ma D. Reversing sintering effect of Ni particles on γ-Mo 2N via strong metal support interaction. Nat Commun 2021; 12:6978. [PMID: 34848709 PMCID: PMC8632928 DOI: 10.1038/s41467-021-27116-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
Reversing the thermal induced sintering phenomenon and forming high temperature stable fine dispersed metallic centers with unique structural and electronic properties is one of the ever-lasting targets of heterogeneous catalysis. Here we report that the dispersion of metallic Ni particles into under-coordinated two-dimensional Ni clusters over γ-Mo2N is a thermodynamically favorable process based on the AIMD simulation. A Ni-4nm/γ-Mo2N model catalyst is synthesized and used to further study the reverse sintering effect by the combination of multiple in-situ characterization methods, including in-situ quick XANES and EXAFS, ambient pressure XPS and environmental SE/STEM etc. The under-coordinated two-dimensional layered Ni clusters on molybdenum nitride support generated from the Ni-4nm/γ-Mo2N has been demonstrated to be a thermally stable catalyst in 50 h stability test in CO2 hydrogenation, and exhibits a remarkable catalytic selectivity reverse compared with traditional Ni particles-based catalyst, leading to a chemo-specific CO2 hydrogenation to CO.
Collapse
Affiliation(s)
- Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering and BIC-ESAT Peking University, 100871, Beijing, P. R. China
| | - Jinjia Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- National Energy Centre for Coal to Liquids, Synfuels China Co. Ltd, Beijing, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Science, Shanghai Jiao Tong University, Shanghai, China.
| | - Zirui Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering and BIC-ESAT Peking University, 100871, Beijing, P. R. China
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Siyu Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Feng Zhang
- Materials Science and Chemical Engineering Department, State University of New York, Stony Brook, NY, USA
| | - Maolin Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering and BIC-ESAT Peking University, 100871, Beijing, P. R. China
| | - Chang Liu
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Lili Han
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Xiao-Dong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- National Energy Centre for Coal to Liquids, Synfuels China Co. Ltd, Beijing, China
| | | | - Yichao Wu
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, China
| | - Xiaonian Li
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, China
| | - José A Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- Materials Science and Chemical Engineering Department, State University of New York, Stony Brook, NY, USA.
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering and BIC-ESAT Peking University, 100871, Beijing, P. R. China.
| |
Collapse
|
22
|
Piccolo L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Meng J, Zhu B, Gao Y. Structure reconstruction of metal/alloy in reaction conditions: a volcano curve? Faraday Discuss 2021; 229:62-74. [PMID: 33634798 DOI: 10.1039/c9fd00128j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent in situ works have shown extensive evidence of the dramatic and reversible structure reconstructions of metal and alloy materials in reaction conditions. The reconstructions are of primary interest because they could lead to alternative catalytic mechanisms during real reactions. However, how the catalyst structure evolves under the pressures relevant to industrial applications (>1 atm) is so far unexplored. In our recent works, we have developed multiscale theoretical models to give reliable and precise predictions of the equilibrium shapes of metal nanoparticles and of the segregation properties of alloy surfaces at a given temperature and gas pressure. The theoretical predictions have been successfully used in interoperations of various in situ experimental observations. In this work, we applied these methods to study the detailed structural information of metal NPs and of bimetallic alloys at the temperature from 300 to 1000 K and the gas pressure from 10 to 107 Pa. The results show, in some cases, both the gas-induced shape change and the gas-induced segregation change are maximized when the gas adsorption is 'just right'. The fraction of the low-coordinated sites of the metal NP shows a volcano-like curve with pressure at a constant temperature. A similar volcano shape could also be found in the plot of the environmental segregation energy as functions of temperature and pressure. The similar gas effects at low pressure and at high pressure indicate the structural information obtained in laboratory environments (<1 atm) could be of use to understanding the catalysts structure reconstruction in industrial conditions (>1 atm).
Collapse
Affiliation(s)
- Jun Meng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beien Zhu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Yi Gao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
24
|
Sheng M, Fujita S, Yamaguchi S, Yamasaki J, Nakajima K, Yamazoe S, Mizugaki T, Mitsudome T. Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds. JACS AU 2021; 1:501-507. [PMID: 34467312 PMCID: PMC8395685 DOI: 10.1021/jacsau.1c00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 06/13/2023]
Abstract
The development of metal phosphide catalysts for organic synthesis is still in its early stages. Herein, we report the successful synthesis of single-crystal cobalt phosphide nanorods (Co2P NRs) containing coordinatively unsaturated Co-Co active sites, which serve as a new class of air-stable, highly active, and reusable heterogeneous catalysts for the reductive amination of carbonyl compounds. The Co2P NR catalyst showed high activity for the transformation of a broad range of carbonyl compounds to their corresponding primary amines using an aqueous ammonia solution or ammonium acetate as a green amination reagent at 1 bar of H2 pressure; these conditions are far milder than previously reported. The air stability and high activity of the Co2P NRs is noteworthy, as conventional Co catalysts are air-sensitive (pyrophorous) and show no activity for this transformation under mild conditions. P-alloying is therefore of considerable importance for nanoengineering air-stable and highly active non-noble-metal catalysts for organic synthesis.
Collapse
Affiliation(s)
- Min Sheng
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shu Fujita
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Sho Yamaguchi
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Jun Yamasaki
- Research
Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kiyotaka Nakajima
- Institute
for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Seiji Yamazoe
- Department
of Chemistry, Tokyo Metropolitan University, 1-1 minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tomoo Mizugaki
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka,
University, Suita, Osaka 565-0871, Japan
| | - Takato Mitsudome
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
25
|
An Q, McDonald M, Fortunelli A, Goddard WA. Controlling the Shapes of Nanoparticles by Dopant-Induced Enhancement of Chemisorption and Catalytic Activity: Application to Fe-Based Ammonia Synthesis. ACS NANO 2021; 15:1675-1684. [PMID: 33355457 DOI: 10.1021/acsnano.0c09346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We showed recently that the catalytic efficiency of ammonia synthesis on Fe-based nanoparticles (NP) for Haber-Bosch (HB) reduction of N2 to ammonia depends very dramatically on the crystal surface exposed and on the doping. In turn, the stability of each surface depends on the stable intermediates present during the catalysis. Thus, under reaction conditions, the shape of the NP is expected to evolve to optimize surface energies. In this paper, we propose to manipulate the shape of the nanoparticles through doping combined with chemisorption and catalysis. To do this, we consider the relationships between the catalyst composition (adding dopant elements) and on how the distribution of the dopant atoms on the bulk and facet sites affects the shape of the particles and therefore the number of active sites on the catalyst surfaces. We use our hierarchical, high-throughput catalyst screening (HHTCS) approach but extend the scope of HHTCS to select dopants that can increase the catalytically active surface orientations, such as Fe-bcc(111), at the expense of catalytically inactive facets, such as Fe-bcc(100). Then, for the most promising dopants, we predict the resulting shape and activity of doped Fe-based nanoparticles under reaction conditions. We examined 34 possible dopants across the periodic table and found 16 dopants that can potentially increase the fraction of active Fe-bcc(111) vs inactive Fe-bcc(100) facets. Combining this reshaping criterion with our HHTCS estimate of the resulting catalytic performance, we show that Si and Ni are the most promising elements for improving the rates of catalysis by optimizing the shape to decrease reaction barriers. Then, using Si dopant as a working example, we build a steady-state dynamical Wulff construction of Si-doped Fe bcc nanoparticles. We use nanoparticles with a diameter of ∼10 nm, typical of industrial catalysts. We predict that doping Si into such Fe nanoparticles at the optimal atomic content of ∼0.3% leads to rate enhancements by a factor of 56 per nanoparticle under target HB conditions.
Collapse
Affiliation(s)
- Qi An
- Department of Chemical and Materials Engineering, University of Nevada-Reno, Reno, Nevada 89577, United States
| | - Molly McDonald
- Department of Chemical and Materials Engineering, University of Nevada-Reno, Reno, Nevada 89577, United States
| | - Alessandro Fortunelli
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
- CNR-ICCOM, Consiglio Nazionale delle Ricerche, ThC2-Lab, Pisa 56124, Italy
| | - William A Goddard
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
26
|
Straß‐Eifert A, Sheppard TL, Damsgaard CD, Grunwaldt J, Güttel R. Stability of Cobalt Particles In and Outside HZSM‐5 under CO Hydrogenation Conditions Studied by
ex situ
and
in situ
Electron Microscopy. ChemCatChem 2021. [DOI: 10.1002/cctc.202001533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Angela Straß‐Eifert
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Thomas L. Sheppard
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstr. 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christian D. Damsgaard
- DTU Nanolab and DTU Physics Technical University of Denmark Fysikvej – Building 307 2800 Kongens Lyngby Denmark
| | - Jan‐Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstr. 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Robert Güttel
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
27
|
Xiao Y, Li J, Wang C, Zhong F, Zheng Y, Jiang L. Construction and evolution of active palladium species on phase-regulated reducible TiO 2 for methane combustion. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01658f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-traditional amorphous Pd2+ species on the surface of Pd/TiO2 catalysts facilitate CH4 combustion, while formed PdxTi1−xO2 would be detrimental.
Collapse
Affiliation(s)
- Yihong Xiao
- National Engineering Research Center of Chemical Fertilizer Catalyst
- Fuzhou University
- Fuzhou
- P. R. China
| | - Juanjuan Li
- National Engineering Research Center of Chemical Fertilizer Catalyst
- Fuzhou University
- Fuzhou
- P. R. China
| | - Chen Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst
- Fuzhou University
- Fuzhou
- P. R. China
| | - Fulan Zhong
- National Engineering Research Center of Chemical Fertilizer Catalyst
- Fuzhou University
- Fuzhou
- P. R. China
| | - Yong Zheng
- National Engineering Research Center of Chemical Fertilizer Catalyst
- Fuzhou University
- Fuzhou
- P. R. China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst
- Fuzhou University
- Fuzhou
- P. R. China
| |
Collapse
|
28
|
Tang M, Yuan W, Ou Y, Li G, You R, Li S, Yang H, Zhang Z, Wang Y. Recent Progresses on Structural Reconstruction of Nanosized Metal Catalysts via Controlled-Atmosphere Transmission Electron Microscopy: A Review. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03335] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanxing Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruiyang You
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Ding J, Wang L, Wu P, Li A, Li W, Stampfl C, Liao X, Haynes BS, Han X, Huang J. Confined Ru Nanocatalysts on Surface to Enhance Ammonia Synthesis: An In situ ETEM Study. ChemCatChem 2020. [DOI: 10.1002/cctc.202001423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia Ding
- School of Chemical and Biomolecular Engineering Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
| | - Ping Wu
- School of Chemical and Biomolecular Engineering Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
- School of Physics Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
| | - Ang Li
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials Beijing University of Technology Beijing 100024 P. R. China
| | - Wei Li
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials Beijing University of Technology Beijing 100024 P. R. China
| | - Catherine Stampfl
- School of Physics Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
| | - Xiaozhou Liao
- School of Aerospace Mechanical and Mechatronic Engineering Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
| | - Brian S. Haynes
- School of Chemical and Biomolecular Engineering Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials Beijing University of Technology Beijing 100024 P. R. China
| | - Jun Huang
- School of Chemical and Biomolecular Engineering Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
30
|
Li G, Fang K, Chen Y, Ou Y, Mao S, Yuan W, Wang Y, Yang H, Zhang Z, Wang Y. Unveiling the gas-dependent sintering behavior of Au-TiO2 catalysts via environmental transmission electron microscopy. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Murata K, Ogura K, Ohyama J, Sawabe K, Yamamoto Y, Arai S, Satsuma A. Selective Hydrogenation of Cinnamaldehyde over the Stepped and Plane Surface of Pd Nanoparticles with Controlled Morphologies by CO Chemisorption. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26002-26012. [PMID: 32429665 DOI: 10.1021/acsami.0c05938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Carbon monoxide (CO) molecules are attracting attention as capping agents that control the structure of metal nanoparticles. In this study, we aimed to control the shape and surface structure of Pd particles by reducing the supported Pd precursor with CO. The reduction of Pd nanoparticles with CO promoted the exposure of step sites and generated spherical and concave-tetrahedral Pd particles on carbon and SiO2 supports. On the other hand, conventional H2-reduced Pd particles show a flattened shape. The preferential exposure of the step sites by the adsorbed CO molecules was supported by the density functional theory-calculated surface energy and the Wulff construction. Morphology- and surface-controlled Pd nanoparticles were used to study the surface structure and morphology effects of Pd nanoparticles on cinnamaldehyde (CAL) hydrogenation. With an increase in the fraction of step sites on Pd nanoparticles, the hydrogenation activity and selectivity of hydrocinnamaldehyde (HCAL) increased. On step sites, the adsorption of the C═C bond of CAL proceeded preferentially, and HCAL was efficiently and selectively generated.
Collapse
Affiliation(s)
- Kazumasa Murata
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Keiji Ogura
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Kyoichi Sawabe
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuta Yamamoto
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
| | - Shigeo Arai
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
| | - Atsushi Satsuma
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
32
|
|
33
|
He B, Zhang Y, Liu X, Chen L. In‐situ Transmission Electron Microscope Techniques for Heterogeneous Catalysis. ChemCatChem 2020. [DOI: 10.1002/cctc.201902285] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bowen He
- In-situ Center for Physical Sciences School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Yixiao Zhang
- In-situ Center for Physical Sciences School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Xi Liu
- In-situ Center for Physical Sciences School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 P.R. China
- SynCat@BeijingSynfuels China Technology Co.Ltd Beijing 101407 P.R. China
- State Key Laboratory of Coal Conversion Institute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 P.R. China
| | - Liwei Chen
- In-situ Center for Physical Sciences School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 P.R. China
- i-Lab, CAS Center for Excellence in Nanoscience Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)Chinese Academy of Sciences Suzhou 215123 P.R. China
| |
Collapse
|
34
|
Zhu B, Meng J, Yuan W, Zhang X, Yang H, Wang Y, Gao Y. Umformung von Metallnanopartikeln unter Reaktionsbedingungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beien Zhu
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Yuan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Xun Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yong Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yi Gao
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
35
|
Zhu B, Meng J, Yuan W, Zhang X, Yang H, Wang Y, Gao Y. Reshaping of Metal Nanoparticles Under Reaction Conditions. Angew Chem Int Ed Engl 2020; 59:2171-2180. [DOI: 10.1002/anie.201906799] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/10/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Beien Zhu
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Yuan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Xun Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yong Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yi Gao
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
36
|
Real‐Time Atomic‐Scale Visualization of Reversible Copper Surface Activation during the CO Oxidation Reaction. Angew Chem Int Ed Engl 2020; 59:2505-2509. [DOI: 10.1002/anie.201915024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 11/07/2022]
|
37
|
Yuan W, Zhu B, Li XY, Hansen TW, Ou Y, Fang K, Yang H, Zhang Z, Wagner JB, Gao Y, Wang Y. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 2020; 367:428-430. [DOI: 10.1126/science.aay2474] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/24/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023]
Abstract
Imaging a reaction taking place at the molecular level could provide direct information for understanding the catalytic reaction mechanism. We used in situ environmental transmission electron microscopy and a nanocrystalline anatase titanium dioxide (001) surface with (1 × 4) reconstruction as a catalyst, which provided highly ordered four-coordinated titanium “active rows” to realize real-time monitoring of water molecules dissociating and reacting on the catalyst surface. The twin-protrusion configuration of adsorbed water was observed. During the water–gas shift reaction, dynamic changes in these structures were visualized on these active rows at the molecular level.
Collapse
Affiliation(s)
- Wentao Yuan
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xiao-Yan Li
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Thomas W. Hansen
- DTU Nanolab, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Yang Ou
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Ke Fang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Ze Zhang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Jakob B. Wagner
- DTU Nanolab, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Yong Wang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| |
Collapse
|
38
|
Liu L, Yu M, Wang Q, Hou B, Jia L, Chen C, Li D. Theoretically predicted surface morphology of FCC cobalt nanoparticles induced by Ru promoter. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01892a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The addition of Ru promoter has an important role in tuning the stability of the exposed facets of FCC Co NPs, accompanied by the change of surface morphology.
Collapse
Affiliation(s)
- Lili Liu
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- People's Republic of China
- University of Chinese Academy of Sciences
| | - Mengting Yu
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- People's Republic of China
- University of Chinese Academy of Sciences
| | - Qiang Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- People's Republic of China
| | - Bo Hou
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- People's Republic of China
| | - Litao Jia
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- People's Republic of China
- Dalian National Laboratory for Clean Energy
| | - Congbiao Chen
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- People's Republic of China
| | - Debao Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- People's Republic of China
- Dalian National Laboratory for Clean Energy
| |
Collapse
|
39
|
Luo L, Nian Y, Wang S, Dong Z, He Y, Han Y, Wang C. Real‐Time Atomic‐Scale Visualization of Reversible Copper Surface Activation during the CO Oxidation Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201915024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Langli Luo
- Institute of Molecular PlusTianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistryTianjin University 92 Weijin Road Tianjin 300072 China
| | - Yao Nian
- School of Chemical Engineering and TechnologyTianjin University and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300350 China
| | - Shuangbao Wang
- School of Physical Science and TechnologyGuangxi University Nanning 530004 China
| | - Zejian Dong
- Institute of Molecular PlusTianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistryTianjin University 92 Weijin Road Tianjin 300072 China
| | - Yang He
- Environmental Molecular Sciences LaboratoryPacific Northwest National Laboratory 902 Battelle Blvd Richland WA 99354 USA
| | - You Han
- School of Chemical Engineering and TechnologyTianjin University and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300350 China
| | - Chongmin Wang
- Environmental Molecular Sciences LaboratoryPacific Northwest National Laboratory 902 Battelle Blvd Richland WA 99354 USA
| |
Collapse
|
40
|
Guo Y, Guo X, Song C, Han X, Liu H, Zhao Z. Capsule-Structured Copper-Zinc Catalyst for Highly Efficient Hydrogenation of Carbon Dioxide to Methanol. CHEMSUSCHEM 2019; 12:4916-4926. [PMID: 31560446 DOI: 10.1002/cssc.201902485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/26/2019] [Indexed: 06/10/2023]
Abstract
To develop a new and efficient CO2 -to-methanol catalyst is of extreme significance but still remains a challenge. Herein, an innovative indirect two-step strategy is reported to synthesize a highly efficient capsule-structured copper-based CO2 -to-methanol catalyst (CZA-r@CZM). It consists of a structurally reconstructed millimeter-sized Cu/ZnO/Al2 O3 core (CZA-r) with intensified Cu-ZnO interactions, which is made by a facile hydrothermal treatment in an alkaline aqueous solution, and a Cu/ZnO/MgO (CZM) shell prepared by an ethylene glycol-assisted physical coating method. The CZA-r core displays 2.7 times higher CO2 hydrogenation activity with 2.0 times higher CO selectivity than the previously reported Cu/ZnO/Al2 O3 (CZA-p), whereas the CZM shell can efficiently catalyze hydrogenation of the as-formed CO from the CZA-r core to methanol as it passes through the shell. As a result, the developed capsule-structured CZA-r@CZM catalyst exhibits 2.4 times higher CO2 conversion with 1.8 times higher turnover frequency and 2.3-fold higher methanol space-time yield than the CZA-p catalyst (729.8 vs. 312.6 gMeOH kgcat -1 h-1 ). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) experiments reveal that the CO2 hydrogenation reaction proceeds through a reverse water-gas shift reaction followed by a CO hydrogenation pathway via an *H3 CO intermediate. This work not only produces an efficient CO2 -to-methanol catalyst, but also opens a new avenue for designing superior catalysts for other consecutive transformations.
Collapse
Affiliation(s)
- Yongle Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Departments of Energy & Mineral Engineering and Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Xinghua Han
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, P.R. China
| | - Hongyang Liu
- Shenyang Research Center of Material Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P.R. China
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| |
Collapse
|
41
|
van Deelen TW, Hernández Mejía C, de Jong KP. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 2019. [DOI: 10.1038/s41929-019-0364-x] [Citation(s) in RCA: 652] [Impact Index Per Article: 108.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Bergmann A, Roldan Cuenya B. Operando Insights into Nanoparticle Transformations during Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01831] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
43
|
Pappert K, Loza K, Shviro M, Hagemann U, Heggen M, Dunin-Borkowski RE, Schierholz R, Maeda T, Kaneko K, Epple M. Nanoscopic Porous Iridium/Iridium Dioxide Superstructures (15 nm): Synthesis and Thermal Conversion by In Situ Transmission Electron Microscopy. Chemistry 2019; 25:11048-11057. [PMID: 31140211 DOI: 10.1002/chem.201901623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 11/05/2022]
Abstract
Porous particle superstructures of about 15 nm diameter, consisting of ultrasmall nanoparticles of iridium and iridium dioxide, are prepared through the reduction of sodium hexachloridoiridate(+IV) with sodium citrate/sodium borohydride in water. The water-dispersible porous particles contain about 20 wt % poly(N-vinylpyrrolidone) (PVP), which was added for colloidal stabilization. High-resolution transmission electron microscopy confirms the presence of both iridium and iridium dioxide primary particles (1-2 nm) in each porous superstructure. The internal porosity (≈58 vol%) is demonstrated by electron tomography. In situ transmission electron microscopy up to 1000 °C under oxygen, nitrogen, argon/hydrogen (all at 1 bar), and vacuum shows that the porous particles undergo sintering and subsequent compaction upon heating, a process that starts at around 250 °C and is completed at around 800 °C. Finally, well-crystalline iridium dioxide is obtained under all four environments. The catalytic activity of the as-prepared porous superstructures in electrochemical water splitting (oxygen evolution reaction; OER) is reduced considerably upon heating owing to sintering of the pores and loss of internal surface area.
Collapse
Affiliation(s)
- Kevin Pappert
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Meital Shviro
- Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Ulrich Hagemann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN) and Center for Nanointegration Duisburg-Essen (CENIDE), University of, Duisburg-Essen, Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Roland Schierholz
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Takuya Maeda
- Department of Materials Science and Engineering, Kyushu University, 744, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Kenji Kaneko
- Department of Materials Science and Engineering, Kyushu University, 744, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| |
Collapse
|
44
|
Qiu C, Zhao C, Sun X, Deng S, Zhuang G, Zhong X, Wei Z, Yao Z, Wang JG. Multiscale Simulation of Morphology Evolution of Supported Pt Nanoparticles via Interfacial Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6393-6402. [PMID: 31023009 DOI: 10.1021/acs.langmuir.9b00129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The structural and electronic properties of the interface are critical for the morphology of supported metal nanoparticles and thus the performance in catalysis, photonics, biomedical research, and other areas. To reveal the intrinsic mechanism of the formation of various morphologies, a multiscale simulation strategy is adopted to bridge the macroscopic structures by experimental observations and microscopic properties by theoretical calculations. This strategy incorporates the density functional theory (DFT) for the interaction energy calculation, the molecular dynamics (MD) simulation for the structure evolution, and theoretical model for the correlation with contact angles. The interaction energies between Pt atoms (four-atom clusters) and substrates are applied for the force field parametrization in the following MD simulation. Simulation results show the binding energies and structural properties such as radial distribution function and coordination number for supported metal nanoparticles with various sizes in detail. Notably, the contact angles of supported nanoparticles are well correlated by the strength of metal-support interactions. This work yields guidelines on the structure modulation of supported metal nanoparticles via interfacial control.
Collapse
Affiliation(s)
- Chenglong Qiu
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , China
| | - ChenXia Zhao
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Xiang Sun
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Shengwei Deng
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Guilin Zhuang
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Xing Zhong
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , China
| | - ZhongZhe Wei
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Zihao Yao
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Jian-Guo Wang
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology , Zhejiang University of Technology , Hangzhou 310014 , China
| |
Collapse
|
45
|
Liu L, Yu M, Hou B, Wang Q, Zhu B, Jia L, Li D. Morphology evolution of fcc Ru nanoparticles under hydrogen atmosphere. NANOSCALE 2019; 11:8037-8046. [PMID: 30968086 DOI: 10.1039/c9nr01611b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tuning the morphology and structural evolution of metal nanoparticles to expose specific crystal facets in a certain reaction atmosphere is conducive to designing catalysts with a high catalytic activity. Herein, coverage dependent hydrogen adsorption on seven fcc Ru surfaces was investigated using density functional theory (DFT) calculations. The morphology evolution of the fcc Ru nanoparticles under the reactive environment was further illustrated using the multiscale structure reconstruction (MSR) model, which combines the DFT results with the Fowler-Guggenheim (F-G) adsorption isotherm and the Wulff construction. At constant pressure, the shape of a fcc Ru nanoparticle changes from a rhombic dodecahedron to a truncated octahedron with an increase of the temperature. More importantly, the desired Ru morphology, with abundant open facets, was predicted to occur at a high temperature and low pressure. Our results provide an insightful understanding of the reshaping of Ru nanoparticles during real reactions, which is crucial for its rational design for use as a nanocatalyst.
Collapse
Affiliation(s)
- Lili Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Chmielewski A, Meng J, Zhu B, Gao Y, Guesmi H, Prunier H, Alloyeau D, Wang G, Louis C, Delannoy L, Afanasiev P, Ricolleau C, Nelayah J. Reshaping Dynamics of Gold Nanoparticles under H 2 and O 2 at Atmospheric Pressure. ACS NANO 2019; 13:2024-2033. [PMID: 30620561 DOI: 10.1021/acsnano.8b08530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite intensive research efforts, the nature of the active sites for O2 and H2 adsorption/dissociation by supported gold nanoparticles (NPs) is still an unresolved issue in heterogeneous catalysis. This stems from the absence of a clear picture of the structural evolution of Au NPs at near reaction conditions, i. e., at high pressures and high temperatures. We hereby report real-space observations of the equilibrium shapes of titania-supported Au NPs under O2 and H2 at atmospheric pressure using gas transmission electron microscopy. In situ TEM observations show instantaneous changes in the equilibrium shape of Au NPs during cooling under O2 from 400 °C to room temperature. In comparison, no instant change in equilibrium shape is observed under a H2 environment. To interpret these experimental observations, the equilibrium shape of Au NPs under O2, atomic oxygen, and H2 is predicted using a multiscale structure reconstruction model. Excellent agreement between TEM observations and theoretical modeling of Au NPs under O2 provides strong evidence for the molecular adsorption of oxygen on the Au NPs below 120 °C on specific Au facets, which are identified in this work. In the case of H2, theoretical modeling predicts no interaction with gold atoms that explain their high morphological stability under this gas. This work provides atomic structural information for the fundamental understanding of the O2 and H2 adsorption properties of Au NPs under real working conditions and shows a way to identify the active sites of heterogeneous nanocatalysts under reaction conditions by monitoring the structure reconstruction.
Collapse
Affiliation(s)
- Adrian Chmielewski
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Institut Charles Gerhardt Montpellier, CNRS/ENSCM/UM , 240, Avenue du Professeur Emile Jeanbrau , 34090 Montpellier , France
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Hazar Guesmi
- Institut Charles Gerhardt Montpellier, CNRS/ENSCM/UM , 240, Avenue du Professeur Emile Jeanbrau , 34090 Montpellier , France
| | - Hélène Prunier
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Damien Alloyeau
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Guillaume Wang
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Catherine Louis
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS , F-75252 Paris , France
| | - Laurent Delannoy
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS , F-75252 Paris , France
| | - Pavel Afanasiev
- Université de Lyon, Institut de Recherches sur la Catalyse et l'Environnement de Lyon - IRCELYON - UMR 5256, CNRS-UCB Lyon 1 , 2 Avenue Albert Einstein , 69626 Villeurebanne Cedex, France
| | - Christian Ricolleau
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Jaysen Nelayah
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| |
Collapse
|
47
|
Niu Y, Liu X, Wang Y, Zhou S, Lv Z, Zhang L, Shi W, Li Y, Zhang W, Su DS, Zhang B. Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH
x. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yiming Niu
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
- School of Materials Science and EngineeringUniversity of Science and Technology of China Shenyang 110016 China
| | - Xi Liu
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 China
- SynCat@BeijingSynfuels China Technology Co., Ltd. Beijing 101407 China
| | - Yongzhao Wang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
- School of Materials Science and EngineeringUniversity of Science and Technology of China Shenyang 110016 China
| | - Song Zhou
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 China
- SynCat@BeijingSynfuels China Technology Co., Ltd. Beijing 101407 China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Zhengang Lv
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 China
- SynCat@BeijingSynfuels China Technology Co., Ltd. Beijing 101407 China
| | - Liyun Zhang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| | - Wen Shi
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
- School of Materials Science and EngineeringUniversity of Science and Technology of China Shenyang 110016 China
| | - Yongwang Li
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 China
- SynCat@BeijingSynfuels China Technology Co., Ltd. Beijing 101407 China
| | - Wei Zhang
- School of Materials Science & EngineeringElectron Microscopy CenterKey Laboratory of Automobile Materials MOEJilin University Changchun 130012 China
| | - Dang Sheng Su
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| |
Collapse
|
48
|
Niu Y, Liu X, Wang Y, Zhou S, Lv Z, Zhang L, Shi W, Li Y, Zhang W, Su DS, Zhang B. Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH x. Angew Chem Int Ed Engl 2019; 58:4232-4237. [PMID: 30650222 DOI: 10.1002/anie.201812292] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/05/2018] [Indexed: 01/01/2023]
Abstract
Controllable synthesis of well-defined supported intermetallic catalysts is desirable because of their unique properties in physical chemistry. To accurately pinpoint the evolution of such materials at an atomic-scale, especially clarification of the initial state under a particular chemical environment, will facilitate rational design and optimal synthesis of such catalysts. The dynamic formation of a ZnO-supported PdZn catalyst is presented, whereby detailed analyses of in situ transmission electron microscopy, electron energy-loss spectroscopy, and in situ X-ray diffraction are combined to form a nanoscale understanding of PdZn phase transitions under realistic catalytic conditions. Remarkably, introduction of atoms (H and Zn in sequence) into the Pd matrix was initially observed. The resultant PdHx is an intermediate phase in the intermetallic formation process. The evolution of PdHx in the PdZn catalyst initializes at the PdHx /ZnO interfaces, and proceeds along the PdHx ⟨111⟩ direction.
Collapse
Affiliation(s)
- Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Xi Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing, 101407, China
| | - Yongzhao Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Song Zhou
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing, 101407, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengang Lv
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing, 101407, China
| | - Liyun Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wen Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing, 101407, China
| | - Wei Zhang
- School of Materials Science & Engineering, Electron Microscopy Center, Key Laboratory of Automobile Materials MOE, Jilin University, Changchun, 130012, China
| | - Dang Sheng Su
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
49
|
Deng S, Qiu C, Yao Z, Sun X, Wei Z, Zhuang G, Zhong X, Wang J. Multiscale simulation on thermal stability of supported metal nanocatalysts. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shengwei Deng
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology Zhejiang University of Technology Hangzhou China
| | - Chenglong Qiu
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology Zhejiang University of Technology Hangzhou China
| | - Zihao Yao
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology Zhejiang University of Technology Hangzhou China
| | - Xiang Sun
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology Zhejiang University of Technology Hangzhou China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology Zhejiang University of Technology Hangzhou China
| | - Guilin Zhuang
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology Zhejiang University of Technology Hangzhou China
| | - Xing Zhong
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology Zhejiang University of Technology Hangzhou China
| | - Jian‐guo Wang
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology Zhejiang University of Technology Hangzhou China
| |
Collapse
|
50
|
Wang J, Li Z, Dong C, Feng Y, Yang J, Liu H, Du X. Silver/Copper Interface for Relay Electroreduction of Carbon Dioxide to Ethylene. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2763-2767. [PMID: 30620171 DOI: 10.1021/acsami.8b20545] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CO2 electroreduction provides an effective solution on CO2 emission and greenhouse effect. However, it is a big challenge to produce hydrocarbon fuels with high energy density via the electroreduction of CO2. Here we report the efficient production of ethylene by constructing Ag-Cu bimetallic catalyst with sharp interface; the Faradaic efficiency for ethylene formation is enhanced to 42%, more than 2 times that of pure Cu catalyst. The high yield of ethylene can be rationalized by the relay catalysis of Ag and Cu component around the Ag/Cu interface.
Collapse
Affiliation(s)
- Jiaqi Wang
- Institute of New Energy Materials, School of Materials Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Zhe Li
- Institute of New Energy Materials, School of Materials Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Cunku Dong
- Institute of New Energy Materials, School of Materials Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Yi Feng
- Institute of New Energy Materials, School of Materials Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Jing Yang
- Institute of New Energy Materials, School of Materials Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Hui Liu
- Institute of New Energy Materials, School of Materials Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Xiwen Du
- Institute of New Energy Materials, School of Materials Science and Engineering , Tianjin University , Tianjin 300072 , China
| |
Collapse
|