1
|
Lin F, Jiang J. CO 2-switchable emulsion with controllable stability and viscosity based on chitosans and cetyltrimethylammonium bromide. Carbohydr Polym 2024; 343:122470. [PMID: 39174136 DOI: 10.1016/j.carbpol.2024.122470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/24/2024]
Abstract
Emulsions have extensive applications in food, cosmetics, and agriculture, while the requirements for emulsions differ in various fields. It is a challenge for one emulsion to satisfy multiple requirements in different applications. Herein, CO2-switchable emulsions with controllable stability and viscosity were prepared by a mixture of chitosans (CS) and CTAB. After adding low concentrations of CTAB (e.g. 0.5 mM), the viscous Pickering emulsions stabilized by CS alone were converted into moderate-viscous Pickering emulsions due to the competition adsorption between CS aggregates and CTAB at the oil-water interface. The transformation of emulsion types (such as Pickering and conventional emulsions) and the emulsion's stability and viscosity were controlled by CO2/N2 trigger. Furthermore, at high CTAB concentrations (≥ 0.8 mM), a novel long-term stable conventional emulsion was obtained after the CS aggregates at the oil-water interface were entirely replaced by CTAB. Compared with other stimuli, CO2 is recognized as a green trigger that doesn't cause contaminations in the system, which has potential applications in organic synthesis and polymerization. Our strategy provides a simple and effective method to smartly control the properties of the emulsions (such as the emulsion type, stability, and viscosity), obtaining an intelligent emulsion to meet different requirements in many applications.
Collapse
Affiliation(s)
- Feilin Lin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Shi J, Jiang J. CO 2/N 2 Triggered Aqueous Recyclable Surfactants for Biphasic Catalytic Reactions in the Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20416-20427. [PMID: 39292966 DOI: 10.1021/acs.langmuir.4c01784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The utilization of Pickering emulsions in interfacial catalysis offers a promising environmental platform for biphasic reactions. However, complicated surface coating or chemical grafting methods are always required to prepare the surface-active catalysts for the Pickering emulsions, since most of them are commercially unavailable. Here, we report CO2-switchable Pickering emulsions for biphasic reactions, in which Pd@Al2O3 nanoparticles are in situ modified by a CO2/N2 responsive surfactant. Compared with the chemical grafted methods, the in situ formed Pickering interfacial catalysts avoid complex chemical modification. Furthermore, efficient demulsification and separation of the oil phase and the products without surfactant contaminations can be achieved by CO2 trigger. The Pickering interfacial catalysis system can also be reformed after the aqueous phase containing the catalyst nanoparticles, and the surfactant is recycled and reused. The strategy is universal for nitrobenzene reductions and alcohol oxidations, providing a convenient and green method for the preparation of Pickering catalysts with commercially available nanoparticles, efficient emulsion separation, and recovery of the catalyst nanoparticles and emulsifiers in various two-phase organic reactions.
Collapse
Affiliation(s)
- Jin Shi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
3
|
Zhang X, Peng C, Jiang J. pH-Controllable Redox Responsive Amphiphilic Viologens for Switchable Emulsions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401651. [PMID: 38660702 DOI: 10.1002/smll.202401651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/12/2024] [Indexed: 04/26/2024]
Abstract
A pH and redox dual responsive amphiphilic viologen is synthesized, which can be reversibly transformed among the zwitterionic (SVa), monovalent anionic (SV+), and divalent anionic (SVH2+) forms upon pH variation, exhibiting pH-controllable redox responsive properties. Switchable Pickering emulsions with different droplet size and viscosity are prepared by the mixture of hydrophilic silica nanoparticles and the viologens (SV+ or SVH2+) at acidic conditions, while such combination yielded an oil-in-dispersion emulsion at neutral pH value. Not only can rapid reversible demulsification/stabilization of the Pickering emulsions be achieved by redox reactions, but the rate of redox-demulsification can also be controlled by pH trigger. The dual-responsive amphiphilic viologens have potential applications in developing intelligent colloid materials and molecular logic systems.
Collapse
Affiliation(s)
- Xinyue Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Chifang Peng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
4
|
Anand S, Galavan V, Mulik MU. Continuous Synthesis of Nanoscale Emulsions by Vapor Condensation (EVC). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307443. [PMID: 38353349 PMCID: PMC11022740 DOI: 10.1002/advs.202307443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/13/2024] [Indexed: 02/24/2024]
Abstract
Emulsions are widely used in many industrial applications, and the development of efficient techniques for synthesizing them is a subject of ongoing research. Vapor condensation is a promising method for energy-efficient, high-throughput production of monodisperse nanoscale emulsions. However, previous studies using this technique are limited to producing small volumes of water-in-oil dispersions. In this work, a new method for the continuous synthesis of nanoscale emulsions (water-in-oil and oil-in-water) is presented by condensing vapor on free-flowing surfactant solutions. The viability of oil vaporization and condensation is demonstrated under mild heating/cooling using diverse esters, terpenes, aromatic hydrocarbons, and alkanes. By systematically investigating water vapor and oil vapor condensation dynamics on bulk liquid-surfactant solutions, a rich diversity of outcomes, including floating films, nanoscale drops, and hexagonally packed microdrops is uncovered. It is demonstrated that surfactant concentration impacts oil spreading, self-emulsification, and such behavior can aid in the emulsification of condensed oil drops. This work represents a critical step toward advancing the vapor condensation method's applications for emulsions and colloidal systems, with broad implications for various fields and the development of new emulsion-based products and industrial processes.
Collapse
Affiliation(s)
- Sushant Anand
- Department of Mechanical and Industrial EngineeringUniversity of Illinois at Chicago842 West Taylor St.ChicagoIL60607USA
| | - Vincent Galavan
- Department of Mechanical and Industrial EngineeringUniversity of Illinois at Chicago842 West Taylor St.ChicagoIL60607USA
- Department of Nuclear Science & EngineeringMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA02139USA
| | - Mahesh Uttamrao Mulik
- Department of Mechanical and Industrial EngineeringUniversity of Illinois at Chicago842 West Taylor St.ChicagoIL60607USA
- Spruce Up IndustriesUndri – Pisoli RdPuneMaharashtra411060India
| |
Collapse
|
5
|
Zhu P, Chen J, Ding Y, Liu P, Fan H, Yang M. pH/Ion Dual-Responsive Emulsion Via a Cationic Surfactant and Positively Charged Magnesium Hydroxide Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5360-5368. [PMID: 38427799 DOI: 10.1021/acs.langmuir.3c03830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Emulsions, formed by dispersing a liquid into another immiscible one by virtue of emulsifiers, have been widely applied in commercial applications like foods, pharmaceuticals, cosmetics, and personal care, which always confront environmental and/or toxic questions due to emulsifiers' high dosage. Recently, a study on Pickering emulsions points out a solution to stable emulsions based on the costabilizing effect of colloidal particles, which focused on surface-active particles cooperating with oppositely charged ionic surfactants. Costabilized emulsions adopting a charge-similar ionic surfactant and particles were less studied. In this article, a hexane-in-water emulsion was prepared in use of a cationic surfactant cetyltrimethylammonium bromide (CTAB) with positively charged magnesium hydroxide (MH) nanosheets at low concentrations (10-5 M and 10-2 wt %, respectively). The emulsion is stable due to the synergy by CTAB and MH nanosheets, which functions in virtue of the electric repulsion by similarly charged particles, the mechanical shielding by MH nanosheets, and restrained water drainage in lamellae between droplets due to the gelation of MH nanosheets. Moreover, the emulsion is doubly switchable within emulsification/demulsification via convenient pH or ion manipulation, a mechanism based on the breakdown and rebuilding of the costabilizing synergy. Such dual-responsive emulsions show high potential for the delicate control of drug delivery, release, and biphasic biocatalysis applications.
Collapse
Affiliation(s)
- Pei Zhu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100149, P. R. China
| | - Juan Chen
- Beijing National Laboratory for Molecular Science, Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanfen Ding
- Beijing National Laboratory for Molecular Science, Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Peng Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haijun Fan
- Beijing National Laboratory for Molecular Science, Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mingshu Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100149, P. R. China
| |
Collapse
|
6
|
Pei X, Song W. CO 2-Triggered Hierarchical-Pore UiO-66-Based Pickering Emulsions for Efficient and Recyclable Suzuki-Miyaura Cross-Coupling in Biphasic Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15046-15054. [PMID: 37812683 DOI: 10.1021/acs.langmuir.3c02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Hierarchical-pore metal-organic frameworks (H-MOFs) are considered to be emerging stabilizers for Pickering emulsion formation because of their hierarchically arranged pores, tailorable structures, and ultrahigh surface areas. However, stimulus-triggered Pickering emulsions built by H-MOFs have been seldom presented to date despite their great significance in diverse applications. Herein, by grafting Pd(OAc)2 on the hierarchical-pore zirconium MOF UiO-66, namely, H-UiO-66, with the aid of 1-alkyl-3-methylimidazolium 2-cyanopyrrolide salts ([CnMIM][2-CN-Pyr], n = 4, 6, and 8), a series of Pd(OAc)2-[CnMIM][2-CN-Pyr]@H-UiO-66 have been developed and utilized as emulsifiers for constructing CO2-switching Pickering emulsions. It was found that Pd(OAc)2-[CnMIM][2-CN-Pyr]@H-UiO-66 was able to stabilize the n-hexane-water mixture to form a Pickering emulsion even at an amount of 0.5 wt %. Upon alternate addition of CO2 and N2 at normal pressure, Pickering emulsions could be smartly converted between demulsification and re-emulsification. Through combining varieties of spectroscopic techniques, the mechanism of the switchable phase transformation lay in the acid-base reaction of ionic liquids with CO2 on H-UiO-66 and the creation of more hydrophilic salts, which reduced the wettability of the emulsifier and destabilized the emulsion. As an example of application, the stimulus-triggered Pickering emulsion was employed as a palladium-catalyzed Suzuki-Miyaura cross-coupling microreactor to achieve the combination of chemical reactions, isolation of products, and recovery of catalysts.
Collapse
Affiliation(s)
- Xiaoyan Pei
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, P. R. China
| | - Wangyue Song
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, P. R. China
| |
Collapse
|
7
|
Zhang W, Binks BP, Jiang J, Cui Z. Smart Emulsions Stabilized by a Multi-headgroup Surfactant Tolerant to High Concentrations of Acids and Salts. Angew Chem Int Ed Engl 2023; 62:e202310743. [PMID: 37599266 DOI: 10.1002/anie.202310743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Retaining emulsions stable at high acidity and salinity is still a great challenge. Here, we report a novel multi-headgroup surfactant (C3 H7 -NH+ (C10 COOH)2 , di-UAPAc) which can be reversibly transformed among cationic, anionic and zwitterionic forms upon pH variation. Stable oil-in-dispersion (OID) emulsions in strong acidity (pH=2) can be co-stabilized by low concentrations of di-UAPAc and silica nanoparticles. High salinity at pH=2 improves the adsorption of di-UAPAc on silica particles through hydrogen bonding, resulting in the transformation of OID emulsions into Pickering emulsions. Moreover, emulsification/demulsification and interconversion between OID and Pickering emulsions together with control of the viscosity and droplet size can be triggered by pH. The present work provides a new protocol for designing surfactants for various applications in harsh aqueous media, such as strong acidity and high salinity, involved in oil recovery and sewerage treatments.
Collapse
Affiliation(s)
- Wanqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, HU6 7RX, Hull, UK
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, China
| |
Collapse
|
8
|
Liu Y, He H, Zhang TJ, Zhang TC, Wang Y, Yuan S. A biomimetic beetle-like membrane with superoleophilic SiO 2-induced oil coalescence on superhydrophilic CuC 2O 4 nanosheet arrays for effective O/W emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131142. [PMID: 36893603 DOI: 10.1016/j.jhazmat.2023.131142] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
It is highly attractive to develop highly efficient oil-in-water (O/W) emulsion separation technologies for promoting the oily wastewater treatment. Herein, a novel inversely Stenocara beetle-like hierarchical structure of superhydrophobic SiO2 nanoparticle-decorated CuC2O4 nanosheet arrays were prepared on copper mesh membrane by bridging polydopamine (PDA) to make a SiO2/PDA@CuC2O4 membrane for substantially enhanced separation of O/W emulsions. The superhydrophobic SiO2 particles on the as-prepared SiO2/PDA@CuC2O4 membranes were served as localized active sites to induce coalescence of small-size oil droplets in oil-in-water (O/W) emulsions. Such innovated membrane delivered outstanding demulsification ability of O/W emulsion with a high separation flux of 2.5 kL⋅m-2⋅h-1 and its filtrate's chemical oxygen demand (COD) being 30 and 100 mg⋅L-1 for surfactant-free emulsion (SFE) and surfactant-stabilized emulsion (SSE), respectively, and also exhibited a good anti-fouling performance in cycling tests. The innovative design strategy developed in this work broadens the application of superwetting materials for oil-water separation and presents a promising prospect in practical oily wastewater treatment applications.
Collapse
Affiliation(s)
- Yajie Liu
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huaqiang He
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tie-Jun Zhang
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Tian C Zhang
- Civil and Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
| | - Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Abbas A, Zhang C, Hussain S, Li Y, Gao R, Li J, Liu X, Zhang M, Xu S. A Robust Switchable Oil-In-Water Emulsion Stabilized by Electrostatic Repulsions between Surfactant and Similarly Charged Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206621. [PMID: 36581561 DOI: 10.1002/smll.202206621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
How to control the stability of oil-in-water (O/W) emulsions is one of the main topics for scientists working in colloidal systems. Recently, carbon dots (CDs) have received great interest as smart materials because of their excellent physicochemical properties and versatile applications. Herein, for the first time, advanced and switchable O/W emulsions are presented that are stabilized by the synergistic effect of cationic surfactant cetyltrimethylammonium bromide CTAB (emulsifier) and similarly charged CDs (stabilizer). In the formulated emulsion, the cationic surfactant molecules are adsorbed at the oil and water interface to decrease the interfacial tension and enrich the drops with a positive charge to ensure intensive electrostatic repulsions among them. On the contrary, cationic CDs are distributed in the water phase among the droplets to reduce the water secretion and prevent flocculation and droplet coalescence. The stabilizing effect is found to be universal for emulsions of a range of oil phases. Furthermore, the formulated emulsion is found to be switchable between "stable" and "unstable" modes by adding an equivalent of anionic surfactant sodium dodecyl benzene sulphonate (SDBS). The stabilized and switchable O/W emulsions are believed to have wide practical applications in water purification, pharmaceuticals, protein recognition, as well as catalysis.
Collapse
Affiliation(s)
- Ansar Abbas
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chen Zhang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Sameer Hussain
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yang Li
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ruixia Gao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueyi Liu
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Minghui Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Silong Xu
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
10
|
Pei X, Liu J, Song W, Xu D, Wang Z, Xie Y. CO 2-Switchable Hierarchically Porous Zirconium-Based MOF-Stabilized Pickering Emulsions for Recyclable Efficient Interfacial Catalysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1675. [PMID: 36837307 PMCID: PMC9960431 DOI: 10.3390/ma16041675] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/08/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Stimuli-responsive Pickering emulsions are recently being progressively utilized as advanced catalyzed systems for green and sustainable chemical conversion. Hierarchically porous metal-organic frameworks (H-MOFs) are regarded as promising candidates for the fabrication of Pickering emulsions because of the features of tunable porosity, high specific surface area and structure diversity. However, CO2-switchable Pickering emulsions formed by hierarchically porous zirconium-based MOFs have never been seen. In this work, a novel kind of the amine-functionalized hierarchically porous UiO-66-(OH)2 (H-UiO-66-(OH)2) has been developed using a post-synthetic modification of H-UiO-66-(OH)2 by (3-aminopropyl)trimethoxysilane (APTMS), 3-(2-aminoethylamino)propyltrimethoxysilane (AEAPTMS) and 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AEAEAPTMS), and employed as emulsifiers for the construction of Pickering emulsions. It was found that the functionalized H-UiO-66-(OH)2 could stabilize a mixture of toluene and water to give an emulsion even at 0.25 wt % content. Interestingly, the formed Pickering emulsions could be reversibly transformed between demulsification and re-emulsification with alternate addition or removal of CO2. Spectral investigation indicated that the mechanism of the switching is attributed to the reaction of CO2 with amino silane on the MOF and the generation of hydrophilic salts, leading to a reduction in MOF wettability. Based on this strategy, a highly efficient and controlled Knoevenagel condensation reaction has been gained by using the emulsion as a mini-reactor and the emulsifier as a catalyst, and the coupling of catalysis reaction, product isolation and MOF recyclability has become accessible for a sustainable chemical process.
Collapse
|
11
|
Sun G, Guo T, Luo J, Liu R, Ngai T, Binks BP. Phase Inversion of Pickering Emulsions Induced by Interfacial Electrostatic Attraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1386-1393. [PMID: 36633936 DOI: 10.1021/acs.langmuir.2c02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phase inversion of Pickering emulsions from water-in-oil (W/O) to oil-in-water (O/W) is achieved by the formation of an interfacial particle bilayer using negatively charged and positively charged particles dispersed in water and oil, respectively, before emulsification. A mechanism based on electrostatic attraction across the toluene-water interface is proposed and verified by systematic investigation of the parameters that affect the surface charge of negatively charged particles such as pH and salt concentration. Cationic silica-FITC particles (600 nm) can be dispersed in toluene and stabilize W/O emulsions alone; phase inversion of this emulsion can be induced by the addition of anionic silica-RB particles in the aqueous phase at a concentration of 1.0 wt % or above. It is revealed that silica-RB particles of a smaller size (100 nm) can induce emulsion phase inversion at a much lower concentration (0.4 wt %) and an interfacial particle bilayer is clearly revealed by CLSM and SEM images. By tuning the surface charge density of silica-RB particles, the electrostatic attraction mechanism leading to the formation of the interfacial particle bilayer is confirmed and emulsion stability can be tuned as demonstrated by osmotic pressure enhancement results obtained from centrifugation.
Collapse
Affiliation(s)
- Guanqing Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tiehuang Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jing Luo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ren Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin 000000, N.T. Hong Kong, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, U.K
| |
Collapse
|
12
|
Liu C, Li Y, Liang R, Sun H, Wu L, Yang C, Liu Y. Development and characterization of ultrastable emulsion gels based on synergistic interactions of xanthan and sodium stearoyl lactylate. Food Chem 2023; 400:133957. [PMID: 36055138 DOI: 10.1016/j.foodchem.2022.133957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022]
Abstract
Emulsion gels with the mixtures of low-molecular-weight emulsifier (LME) and polymer have attracted much attention in food; however, the LME-polymer interactions in emulsion system are complex and unclear. Here, the interactions between SSL and xanthan in emulsions and the mechanisms of stabilizing emulsions were investigated by using tensiometry, zeta potential, Fourier transform infrared spectroscopy (FTIR), confocal laser scanning microscopy (CLSM), cryo-scanning electron microscopy (cryo-SEM) and rheology. SSL was more efficiently adsorbed on the oil-water interface than xanthan. Interestingly, the honeycomb structure was formed in emulsion gels, which firmly immobilized oil droplets. Furthermore, electrostatic repulsion and hydrophobic interactions between xanthan and SSL facilitated the efficient bonding at interface and in bulk. Both linear and nonlinear rheology strongly supported the fact that the interactions between xanthan and SSL enhanced gel-like viscoelastic structure of emulsion gels. This structure endows excellent stability of emulsion gels under high temperature storage, sealed conditions and pH change.
Collapse
Affiliation(s)
- Chunhuan Liu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Yunxing Li
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Rong Liang
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Hong Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Lei Wu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Cheng Yang
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China.
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China; Future Food (Bai Ma) Research Institute, Nanjing 210000, P.R. China
| |
Collapse
|
13
|
Liu Y, Zhang H, Zhang W, Binks BP, Cui Z, Jiang J. Charge Density Overcomes Steric Hindrance of Ferrocene Surfactant in Switchable Oil-in-Dispersion Emulsions. Angew Chem Int Ed Engl 2023; 62:e202210050. [PMID: 36328980 DOI: 10.1002/anie.202210050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
A ferrocene surfactant can be switched between single and double head form (FcN+ C12 /Fc+ N+ C12 ) triggered by redox reaction. FcN+ C12 can neither stabilize an O/W emulsion alone nor an oil-in-dispersion emulsion in combination with alumina nanoparticles due to the steric hindrance of the ferrocene group. However, such steric hindrance can be overcome by increasing the charge density in Fc+ N+ C12 , so that oil-in-dispersion emulsions can be co-stabilized by Fc+ N+ C12 and alumina nanoparticles at very low concentrations (1×10-7 M (≈50 ppb) and 0.001 wt %, respectively). Not only can reversible formation/destabilization of oil-in-dispersion emulsions be achieved by redox reaction, but also reversible transformation between oil-in-dispersion emulsions and Pickering emulsions can be obtained through reversing the charge of alumina particles by adjusting the pH. The results provide a new protocol for the design of surfactants for stabilization of smart oil-in-dispersion emulsions.
Collapse
Affiliation(s)
- Yunshan Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Haojie Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Wanqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
14
|
Liu P, Pei X, Cui Z, Song B, Jiang J, Binks BP. Recyclable Nonionic-Anionic Bola Surfactant as a Stabilizer of Size-Controllable and pH-Responsive Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:841-850. [PMID: 36603129 DOI: 10.1021/acs.langmuir.2c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel nonionic-anionic Bola surfactant (abbreviated as CH3O(EO)7-R11-COOH) was designed and synthesized by condensation of methyl polyoxyethylene (7) ether with 12-bromododecanoic acid. In neutral aqueous solution, the surfactant behaves as a nonionic one and can stabilize oil-in-water (O/W) conventional emulsions alone and costabilize O/W Pickering emulsions with positively charged alumina nanoparticles with n-decane as the oil. In alkaline solution, the carboxylic acid group is deprotonated, becoming anionic and the surfactant is converted to Bola form, which is an inferior emulsifier and does not adsorb on particle surfaces, resulting in demulsification of both kinds of emulsions. With strong hydrophilicity, both the Bola surfactant and the bare particles return to the aqueous phase after demulsification, which is therefore recyclable and reusable in accordance with sustainable chemistry and engineering. In acidic media between pH 3 and 6, the ethyleneoxy groups tend to desorb from particle surfaces, slightly reducing the hydrophobicity of the particles. However, Pickering emulsions are still stable but their droplet size increases on lowering the pH. The Pickering emulsions are therefore pH-responsive and size-controllable. This newly designed Bola surfactant is effective in preparing smart emulsions, which are extensively applied in heterogeneous catalysis, oil product transportation, emulsion polymerization, and new material preparation.
Collapse
Affiliation(s)
- Pei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi214122, Jiangsu, P. R. China
| | - Xiaomei Pei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi214122, Jiangsu, P. R. China
| | - Zhenggang Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi214122, Jiangsu, P. R. China
| | - Binglei Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi214122, Jiangsu, P. R. China
| | - Jianzhong Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi214122, Jiangsu, P. R. China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, HullHU6 7RX, U.K
| |
Collapse
|
15
|
Ma H, Xia S, Sun C, Yu F, Cameron A, Zheng W, Shu Q, Pei H, Han Y. Novel Strategy of Polymers in Combination with Silica Particles for Reversible Control of Oil-Water Interface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2216-2227. [PMID: 36576434 DOI: 10.1021/acsami.2c19037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hybrid smart emulsification systems are highly applicable in manipulating oil-in-water (O/W) droplets. Herein, novel switchable block polymers containing both zwitterionic and tertiary amine pendent groups were designed and synthesized to combine with charged silica particles to stabilize the O/W emulsion responsive to pH. This study was carried out in O/W emulsions stabilized with the polymer and silica particles under different pH conditions. The emulsion system was also simulated using molecular dynamics simulation to reveal the mechanism at molecular levels, thus gaining insight into the relationships between the emulsifying properties and the molecular interaction of the mixed system. Upon acidification of the continuous aqueous phase, protonated polymers with excellent hydrophilicity were induced by charged silica particles to cause rapid emulsion coalescence. In alkaline media, the mixed system conversely stabilized the O/W emulsions, cutting polymer consumption by over three-quarters. The emulsification and demulsification can be switched alternately by tuning the pH conditions. The applications exhibited excellent efficiency in separating heavy oil/water emulsions and proved the high conversion rate in emulsion polymerization. Overall, with this novel strategy to relieve tedious modifications on particle surfaces and massive consumption of polymers, the designed responsive emulsification systems can impart intelligent and controllable chemical reactivity to emulsions on demand in a more affordable and sustainable way.
Collapse
Affiliation(s)
- Hao Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Shuqian Xia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Caixia Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Fuce Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Alexandre Cameron
- School of Mining and Petroleum Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| | - Wangang Zheng
- Research Institute of Petroleum Engineering, Sinopec Shengli Oilfield Co., Ltd., Dongying, Shandong257067, China
| | - Qinglin Shu
- Research Institute of Petroleum Engineering, Sinopec Shengli Oilfield Co., Ltd., Dongying, Shandong257067, China
| | - Haihua Pei
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - You Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| |
Collapse
|
16
|
He J, Jia H, Wang Q, Xu Y, Zhang L, Jia H, Song L, Wang Y, Xie Q. Investigation on pH and redox-trigged emulsions stabilized by ferrocenyl surfactants in combination with Al2O3 nanoparticles and their application for enhanced oil recovery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Xue L, Li H, Pei X, Cui Z, Song B. Pickering Emulsions Synergistically Stabilized by Aliphatic Primary Amines and Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14109-14117. [PMID: 36349864 DOI: 10.1021/acs.langmuir.2c02072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Innovation in emulsion compositions is necessary to enrich emulsion formulations and applications. Herein, Pickering emulsions were prepared using silica nanoparticles and aliphatic primary amines with an oil-water ratio of 1:1 (v/v). Contact angle experiments revealed that the in situ hydrophobization of nanoparticles was caused by the surface adsorption of amine molecules. Notably, the interactions between amine compounds and the surface of silica nanoparticles were electrostatic attractions and mutual hydrogen bonding. The existence of hydrogen bonds was further confirmed by demulsification experiments using a chaotropic agent DMF and increasing temperatures. The hydrophobicity of silica nanoparticles can be effectively improved using most commercially available aliphatic primary amines such as n-hexylamine, n-octylamine, n-decylamine, dodecylamine, and tetradecylamine. The minimum concentrations of the aforementioned amines necessary for stabilizing the emulsions with 0.3 wt % silica nanoparticles are 3, 0.6, 0.3, 0.06, and 0.03 mM, respectively, decreasing significantly with increasing alkyl chain length. With the increase of the amine concentrations, the hydrophobicity of silica particles monotonically increased and finally resulted in the inversion of emulsions. The amine concentrations for emulsion phase inversion were 150, 40, 30, 20, and 20 mM, respectively, in the presence of 0.3 wt % silica nanoparticles. In this work, silica nanoparticles were hydrophobized using aliphatic primary amines. The composite stabilizers developed are useful for developing novel stimuli-responsive Pickering emulsions, while the synergistic effects introduced herein are also helpful in expanding the hydrophobization methods available for nanoparticles.
Collapse
Affiliation(s)
- Linyu Xue
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongye Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Binglei Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
18
|
Facile formulation of sustainable and stable oil-in-dispersion emulsion: A release agent with high demoulding efficacy. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Wu B, Li Y, Li Y, Li H, Li L, Xia Q. Encapsulation of resveratrol-loaded Pickering emulsions in alginate/pectin hydrogel beads: Improved stability and modification of digestive behavior in the gastrointestinal tract. Int J Biol Macromol 2022; 222:337-347. [PMID: 36152701 DOI: 10.1016/j.ijbiomac.2022.09.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
Abstract
In this study, alginate/pectin hydrogel beads were prepared with different mixing ratios (9:1, 8:2, 7:3, 6:4, and 5:5) to encapsulate resveratrol-loaded Pickering emulsions using Ca2+ crosslinking. The system with a suitable ratio of pectin and alginate can enhance the encapsulation efficiency and loading capacity. Scanning electron microscopy (SEM) study confirmed that the hydrogel beads were spherical, in which Pickering emulsion was distributed evenly within the polymer network. Fourier Transform Infrared Spectroscopy (FTIR) study indicated that the hydrogel beads were formed by physical cross-linking. X-ray diffraction (XRD) study demonstrated that resveratrol existed in hydrogel beads with an amorphous or dissolved form. Besides, the stability and antioxidant capacity suggested that hydrogel beads could offer protection to resveratrol by preventing degradation through environmental stresses, while maintaining its antioxidant capacity. Importantly, hydrogels significantly reduced the release of free fatty acids and resveratrol during in vitro digestion compared to emulsions, especially with the appropriate ratio of sodium alginate and pectin. Overall, Pickering emulsions-loaded alginate/pectin hydrogel beads could offer a novel option for the preparation of low-calorie foods and a potential substitute model for controlling the release of free fatty acids contributing to the transportation of resveratrol.
Collapse
Affiliation(s)
- Bi Wu
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Yang Li
- School of Forestry, Northeast Forestry University, Harbin 150000, China
| | - Yuanyuan Li
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; School of Pharmacy Administration, Southeast University Chengxian Colleague, Nanjing 210096, China
| | - Heng Li
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Lele Li
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
20
|
Wei P, Guo K, Xie Y, Huang X. Liquid Foam Stabilized by a CO 2-Responsive Surfactant and Similarly Charged Cellulose Nanofibers for Reversibly Plugging in Porous Media. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37134-37148. [PMID: 35917120 DOI: 10.1021/acsami.2c08986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CO2 foams are of great importance in oil recovery but challenging in some aspects like long-term stabilization and time-separated conflict. In this work, a stability-enhanced switchable foam was fabricated using bis-(2-hydroxyethoxy) olefine amine (BOA) and trace amounts (0.05 wt %) of cationic-modified cellulose nanofibers (CCNFs). The CCNF was developed using sequentially functionalized CNF with diamine groups, which were essential to promote the aqueous dispersibility and a key for strengthening the stabilization of foam. The combination of similarly charged CCNFs and BOA in the presence of CO2 contributed to both surface activity and viscoelasticity. It was demonstrated that CCNFs were entangled and stacked to form the compact films and possessed the ability to costabilize the lamellae, as observed by microscopic studies. In addition, the intermolecular H-bonds were promoted in the binary system after being protonated by CO2 and thus balancing the electrostatic forces, as explored by spectroscopy characterizations. The soft fibrous structure of the CCNF was also capable of wrapping gas bubbles in the form of a functional membrane with both low gas permeability and high surface potential, which slowed down the coarsening and coalescence. Of particular interest is that the reversible protonation state of CCNF-BOA complexes upon the alternate treatment with CO2/N2 led to reversible fast foaming/defoaming, which would be beneficial to construct the steerable plugging in the sand pack. This work is expected to provide a new direction and application of the CO2 responsive foam stabilized by similarly charged nanocellulose fibers in oilfield development.
Collapse
Affiliation(s)
- Peng Wei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Kaidi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Yahong Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Xueli Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
21
|
Zhang Y, Luo P, Liu Y, Li H, Li X, Lu H, Wu Y, Liu D. pH-Induced reversible conversion between non-Pickering and Pickering high internal phase emulsion. Phys Chem Chem Phys 2022; 24:17121-17130. [PMID: 35791919 DOI: 10.1039/d2cp01747d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solid-stabilized high internal phase emulsions have received extensive attention. Many previous studies have confirmed that solid emulsifiers in high internal phase Pickering emulsions (HIPPEs) provide a great interface mechanical barrier. With the development of research, novel solid-stabilized emulsions have emerged. These emulsions are stabilized by the electrostatic repulsion between the surfactants and hydrophilic solid particles. They are distinct from Pickering emulsions in that the solid particles do not exist at the oil-water interface, but are dispersed in the continuous phase, so it is called a non-Pickering emulsion. However, high internal phase non-Pickering emulsions (HIPNPEs) are rarely reported. Herein, HIPNPEs that are synergistically stabilized by anionic surfactants with dynamic covalent bonds and negatively charged nano-SiO2 particles were prepared. In the presence of dodecylamine, the acidity causes the dynamic covalent bonds to break and the surfactant to be inactivated. Additionally, the long-chain amine is protonated and adsorbed on nano-SiO2 particles to form a new surfactant for stabilizing HIPPEs. However, alkalinity causes the HIPNPEs to form again. In addition, rheological tests confirmed that the HIPNPEs and HIPPEs had similar rheological behaviors, which were typical gel-like fluids. The emulsion can quickly respond to realize the conversion between the different types of high internal phase emulsion by simple stimulation, which provides a new direction for stimulus-responsive high internal phase emulsions.
Collapse
Affiliation(s)
- Ying Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Pan Luo
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Ya Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Hanmin Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Xiaojiang Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Yuanpeng Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Dongfang Liu
- College of Science, Xihua University, Chengdu 610039, P. R. China.
| |
Collapse
|
22
|
Zheng R, Tian J, Binks BP, Cui Z, Xia W, Jiang J. Oil-in-Water emulsions stabilized by alumina nanoparticles with organic electrolytes: Fate of particles. J Colloid Interface Sci 2022; 627:749-760. [PMID: 35878465 DOI: 10.1016/j.jcis.2022.07.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
HYPOTHESIS Oil-in-dispersion emulsions can be stabilized by like charged particles and surfactant. Surfactant adsorbs at the oil-water interface to reduce the interfacial tension and endow the interface with charge, while particles remain dispersed in the aqueous phase to provide electrostatic repulsion between droplets and particles. Can weakly surface-active organic electrolytes adsorb at the oil-water interface and behave like surfactants in stabilizing oil-in-dispersion emulsions with like charged particles? EXPERIMENTS Symmetrical organic electrolytes, tetraalkylammonium bromides (R4NBr), with either no or very low interfacial activity endowing oil droplets with charge were combined with alumina nanoparticles to stabilize emulsions. The effect of R chain length (varying from methyl to butyl) on the type and stability of emulsions was investigated. FINDINGS Mixtures of high concentrations of short chain R4NBr salts (R = methyl or ethyl) and alumina particles stabilise oil-in-water Pickering emulsions, whereas longer chain (R = propyl or butyl) analogues stabilize oil-in-dispersion emulsions assisted by alumina particles. Tetrapropylammonium and tetrabutylammonium cations adsorb at the oil-water interface reducing the interfacial tension and endowing the interface with charge. The stability of the oil-in-dispersion emulsions is dominated by the electrostatic repulsion between the droplets and between droplets and particles in the continuous aqueous phase.
Collapse
Affiliation(s)
- Raojun Zheng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingjing Tian
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX. UK
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
23
|
Robust pH-switchable pickering emulsions stabilized solely by organic Rosin-based particles with adjustable wettability. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
pH-Induced Hydrogels and Viscoelastic Solutions Constructed by a Rosin-Based Pseudo-Gemini Surfactant. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
CO2-switchable oil-in-dispersion emulsions stabilized by tertiary amine surfactant and alumina particles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Yan S, Xu J, Liu G, Du X, Hu M, Zhang S, Jiang L, Zhu H, Qi B, Li Y. Emulsions co-stabilized by soy protein nanoparticles and tea saponin: Physical stability, rheological properties, oxidative stability, and lipid digestion. Food Chem 2022; 387:132891. [PMID: 35421647 DOI: 10.1016/j.foodchem.2022.132891] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/15/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
Abstract
Herein, the effects of the concentration (0.1%-1.0%, w/v) and addition sequence of tea saponin (TS) on the physical stability, oxidative stability, rheological properties, and in vitro digestion of the emulsions stabilized by heat-induced soy protein isolate nanoparticles (SPs) were investigated. The results revealed that the concentration and addition sequence of TS have significant impact on the microstructure, stability, rheological properties, and in vitro digestion of the emulsions. TS was shown to not only fill the interfacial gaps but also adsorb on the particle surfaces, contributing to interfacial wettability. With increasing TS concentration, interfacial tension decay is clearly observed. Further, TS endows the droplets with electrostatic repulsion and steric resistance, preventing their flocculation, coalescence, and oxidation. Finally, in vitro digestion experiments demonstrated that the presence of TS delayed the lipid digestion of the emulsions.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guannan Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoqian Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Miao Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huaping Zhu
- China Rural Technology Development Center, Beijing 100045, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Research Center of Soybean Engineering and Technology, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
27
|
Shi Y, Ye F, Zhu Y, Miao M. Development of dendrimer-like glucan-stabilized Pickering emulsions incorporated with β-carotene. Food Chem 2022; 385:132626. [PMID: 35305435 DOI: 10.1016/j.foodchem.2022.132626] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/29/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023]
Abstract
The impact of sugary maize dendrimer-like glucan octenyl succinate (OSA-SMDG) on the storage stability and antioxidant activity of β-carotene (BC)-loaded emulsions as well as bioaccessibility were investigated. The encapsulation efficiency of β-carotene in emulsions containing 3% OSA-SMDG (3OSA-SMDG-BC) or 5% OSA-SMDG (5OSA-SMDG-BC) was 89.6% and 94.9%, respectively. The antioxidant activity of both emulsions was higher than that of pure β-carotene. During simulated digestion, the particle size of emulsions was immediately reduced, whereas zeta-potential was continuously increased in intestinal digestion. After 2 h digestion, the free fatty acids (FFA) release rate of 3OSA-SMDG-BC and 5OSA-SMDG-BC was significantly higher than that of blank emulsion. Bioaccessibility of β-carotene encapsulated in 3OSA-SMDG-BC and 5OSA-SMDG-BC was also significantly higher than that of blank emulsion. FFA release rate and β-carotene bioaccessibility of 5OSA-SMDG-BC were higher than that of 3OSA-SMDG-BC. These results demonstrated that OSA-SMDG could be used to fabricate food-grade O/W Pickering emulsion as a delivery system for bioactive compounds.
Collapse
Affiliation(s)
- Yaning Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Fan Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yingjie Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
28
|
Liu P, Zhang S, Pei X, Song B, Jiang J, Cui Z, Binks BP. Recyclable and re-usable smart surfactant for stabilization of various multi-responsive emulsions alone or with nanoparticles. SOFT MATTER 2022; 18:849-858. [PMID: 34982810 DOI: 10.1039/d1sm01660a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel multi-responsive surfactant (abbreviated as N+-8P8-N) was synthesized, in which one octyl trimethylamine group (quaternary ammonium) and one octyl dimethylamine group are connected to a benzene ring through ether bonds. This novel surfactant can stabilize conventional oil-in-water (O/W) emulsions alone, and O/W Pickering emulsions and novel oil-in-dispersion emulsions together with oppositely and similarly charged nanoparticles, respectively. In all cases rapid demulsification can be achieved through either pH or CO2/N2 triggers, by which the surfactant is reversibly converted between a normal cationic surfactant form (N+-8P8-N) and a strongly hydrophilic and surface-inactive bola form (N+-8P8-NH+). Notably, the bola form N+-8P8-NH+ dissolves in the aqueous phase alone or together with nanoparticles after demulsification without contamination of the oil phase, and the aqueous phase can be recycled many times triggered by pH or CO2/N2 in accordance with the principle of green chemistry. This newly designed re-usable smart surfactant is significant for the development of various temporarily stable emulsions, which are extensively applied in emulsion polymerization, new material synthesis, heterogeneous catalysis and oil transportation.
Collapse
Affiliation(s)
- Pei Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, P. R. China.
| | - Sheng Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, P. R. China.
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, P. R. China.
| | - Binglei Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, P. R. China.
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, P. R. China.
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, P. R. China.
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
29
|
Yu S, Lv M, Lu G, Cai C, Jiang J, Cui Z. pH-Responsive Behavior of Pickering Emulsions Stabilized by a Selenium-Containing Surfactant and Alumina Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10683-10691. [PMID: 34448589 DOI: 10.1021/acs.langmuir.1c01179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we describe pH-responsive Pickering emulsions stabilized by a sodium carboxylate-derived selenium surfactant (C10-Se-C10·(COONa)2) in combination with positively charged alumina nanoparticles. Unlike other bola-type carboxylate surfactants (e.g., disodium eicosanoate), C10-Se-C10·(COONa)2 is soluble in water with a low Krafft temperature (36.1 °C). The emulsions are sensitive to pH variations, and efficient demulsification can be achieved by a pH trigger. The carboxylic sodium group in the C10-Se-C10·(COONa)2 structure can be reversibly cycled between its anionic and nonionic states (carboxylic acid), resulting in a pH-controlled electrostatic attraction between the surfactant and alumina. The Pickering emulsion can be reversibly switched between "on" (stable) and "off" (unstable) states by pH at least four times. Compared with the emulsions stabilized by specially synthesized stimuli-responsive particles or surfactants, the method reported here is much easier to implement and requires very low concentrations of the surfactant and nanoparticles, with potential applications in the fields of biomedicine, drug delivery, and cosmetics.
Collapse
Affiliation(s)
- Shijie Yu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Miao Lv
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Guoping Lu
- Chemical Engineering College, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Chun Cai
- Chemical Engineering College, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Jianzhong Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Zhenggang Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
30
|
Aqueous foams and emulsions stabilized by mixtures of silica nanoparticles and surfactants: A state-of-the-art review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Sun N, Li Q, Zhang Z, Ge S, Chang X, Yu M, Li A, Ma Y. Construction, modulation and transition of light responsive oil-in-water novel emulsions stabilized by similarly charged nanoparticles and dye molecules. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Ma R, Zeng M, Huang D, Wang J, Cheng Z, Wang Q. Amphiphilicity-adaptable graphene quantum dots to stabilize pH-responsive pickering emulsions at a very low concentration. J Colloid Interface Sci 2021; 601:106-113. [PMID: 34058546 DOI: 10.1016/j.jcis.2021.05.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS Stimuli-responsive Pickering emulsions have attracted considerable interest due to their widespread potential applications. Especially pH-responsive behavior could be easily implemented. In this work, we reported a pH-responsive Pickering emulsion based on amphiphilic graphene quantum dots at a low concentration which shows a great potential from the environmental and economic perspective. The stimuli responsive properties would make the smart Pickering emulsifiers recyclable and reusable. EXPERIMENTS The amphiphilic-adaptable graphene quantum dots functionalized by alkyl groups (C-GQDs) were synthesized by a facile one-step pyrolysis method. The pH-responsive emulsion performances were investigated, and the mechanism of pH-responsive of C-GQDs was studied by dynamic light scattering. FINDINGS The amphiphilicity of C-GQDs could be acquired controllably and effectively by this facile one-step pyrolysis method, which are able to stabilize Pickering emulsion at a very low concentration (0.001%). The amphiphilicity of C-GQDs are capable of changing in response to environmental stimuli. When the pH value of aqueous solution adjusts to 2, these C-GQDs aggregate in contrast to their stability in neutral condition due to the alternation of surface charges. The pH-responsive aggregation/ dispersion behavior of C-GQDs allows us to tune the interactions between oil-in-water emulsion droplets without introduction of destabilization agents. This will provide huge economic benefits in industrial applications in the future.
Collapse
Affiliation(s)
- Rong Ma
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Minxiang Zeng
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dali Huang
- Department of Material Science & Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jenny Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zhengdong Cheng
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Material Science & Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Qingsheng Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
33
|
Jiang J, Yu S, Zhang W, Zhang H, Cui Z, Xia W, Binks BP. Charge-Reversible Surfactant-Induced Transformation Between Oil-in-Dispersion Emulsions and Pickering Emulsions. Angew Chem Int Ed Engl 2021; 60:11793-11798. [PMID: 33739584 DOI: 10.1002/anie.202102098] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 11/08/2022]
Abstract
A novel charge-reversible surfactant, (CH3 )2 N-(CH2 )10 COONa, was designed and synthesized, which together with silica nanoparticles can stabilize a smart n-octane-in-water emulsion responsive to pH. At high pH (9.3) the surfactant is anionic carboxylate, which together with the negatively charged silica nanoparticles co-stabilize flowable oil-in-dispersion emulsions, whereas at low pH (4.1) it is turned to cationic form by forming amine salt which can hydrophobize in situ the negatively charged silica nanoparticles to stabilize viscous oil-in-water (O/W) Pickering emulsions. At neutral pH (7.5), however, this surfactant is converted to zwitterionic form, which only weakly hydrophobises the silica particles to stabilize O/W Pickering emulsions of large droplet size. Moreover, demulsification can be achieved rapidly triggered by pH. With this strategy particles can be controlled either dispersed in water or adsorbed at the oil-water interface endowing emulsions with the capacity for intelligent and precise control of stability as well as viscosity and droplet size.
Collapse
Affiliation(s)
- Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shijie Yu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Wanqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Haojie Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
34
|
Jiang J, Yu S, Zhang W, Zhang H, Cui Z, Xia W, Binks BP. Charge‐Reversible Surfactant‐Induced Transformation Between Oil‐in‐Dispersion Emulsions and Pickering Emulsions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Shijie Yu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Wanqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Haojie Zhang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | | |
Collapse
|
35
|
Zhu P, Wang F, Ding Y, Zhang S, Gao C, Liu P, Yang M. Double Phase Inversion of Pickering Emulsion Induced by Magnesium Hydroxide Nanosheets Adsorbed with Sodium Dodecyl Sulfate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4082-4090. [PMID: 33784455 DOI: 10.1021/acs.langmuir.0c03415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surfactants are often used as a cooperation stabilizer with solid particles for increasing the efficiency of Pickering emulsion. Accordingly, the effects of interaction between surfactants and solid particles on stabilizing Pickering emulsions have been attracting great attention. In this study, magnesium hydroxide (MH) nanosheets adsorbed with different amounts of sodium dodecyl sulfate (SDS) surfactants were designed and used to stabilize paraffin-water emulsions. Using SDS-adsorbed MH nanosheets as a stabilizer, the phenomenon of double phase inversion was found for Pickering emulsion. Pickering emulsion was inverted initially from O/W to W/O at about 0.022 mmol/g of the adsorption amount of SDS on the MH nanosheets, and subsequently back to O/W at about 2.312 mmol/g. The first phase inversion was because of the increased hydrophobicity of modified MH nanosheets, where SDS molecules were monolayer-adsorbed on the MH nanosheets surface. The second phase inversion occurred due to the bilayer adsorption of SDS on MH nanosheets, which converted the modified MH nanosheets hydrophilic again. These results are of great importance to understanding the double phase inversion of Pickering emulsions with the addition of surfactants and finding prospective applications in fields such as reversible drilling fluids and oil extraction.
Collapse
Affiliation(s)
- Pei Zhu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100149, P. R. China
| | - Feng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, P. R. China
| | - Yanfen Ding
- Beijing National Laboratory for Molecular Science, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, P. R. China
| | - Shimin Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, P. R. China
| | - Chong Gao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, P. R. China
| | - Peng Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, P. R. China
| | - Mingshu Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100149, P. R. China
| |
Collapse
|
36
|
Wei Y, Zhou D, Yang S, Dai L, Zhang L, Mao L, Gao Y, Mackie A. Development of β-carotene loaded oil-in-water emulsions using mixed biopolymer-particle-surfactant interfaces. Food Funct 2021; 12:3246-3265. [PMID: 33877248 DOI: 10.1039/d0fo02975k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, β-carotene loaded oil-in-water emulsions were stabilized by complex interfaces composed of propylene glycol alginate (PGA), rhamnolipids (Rha), and zein colloidal particles (ZCPs). The influence of mixed biopolymer-surfactant, biopolymer-particle, surfactant-particle and biopolymer-surfactant-particle interfaces on the performance of the emulsions was investigated. The stability, microstructure, rheological properties, and in vitro gastrointestinal digestion of the emulsions were controlled by regulating the adding sequence and mass ratio of the multiple stabilizers. The droplet size of the emulsion was in the range of 14-77 μm. After encapsulation into the emulsions stabilized by the complex interfaces, the photothermal stability of β-carotene were increased by 41.53% and 21.52%, respectively. The co-existence of particles, biopolymers, and surfactants could induce competitive displacement, multilayer deposition and an interparticle network at the interface. Compared with a single PGA- or Rha-stabilized emulsion, the complex interface-stabilized emulsion reduced the release of FFA by 28.06% and 26.16%, respectively. The interfacial composition of the emulsion and the delayed lipid digestion further affected the bioaccessibility of β-carotene in the gastrointestinal tract (GIT). The mixed biopolymer-particle-surfactant interface-stabilized emulsion could be incorporated in foods, pharmaceuticals and cosmetics for excellent stability, targeted nutrient delivery and controlled lipolysis.
Collapse
Affiliation(s)
- Yang Wei
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jia K, Guo Y, Yu Y, Zhang J, Yu L, Wen W, Mai Y. pH-Responsive Pickering emulsions stabilized solely by surface-inactive nanoparticles via an unconventional stabilization mechanism. SOFT MATTER 2021; 17:3346-3357. [PMID: 33630989 DOI: 10.1039/d1sm00081k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Using solely highly hydrophilic particles to stabilize emulsions, especially high internal phase emulsions, has always been an important challenge. Here pH-responsive Pickering emulsions stabilized by a low concentration of bare highly hydrophilic Ludox CL nanoparticles without surface modification or addition of surfactants are developed at neutral pH. The dispersed nanoparticles can be transformed into an aggregate state with a network-like structure near the isoelectric point, which contributes to the stabilization of the emulsions. Moreover, the vdW attraction between particles and droplets also plays a key role in the formation of emulsions, which can make the aggregated nanoparticles adsorb tightly around the droplets rather than penetrate the oil-water interface. The formed protective armor and network-like aggregates separate droplets from each other to prevent coalescence. At a low nanoparticle concentration (0.5 wt%), a high internal phase emulsion can be formed and can last up to half a year. This system can emulsify not only the hydrocarbon oil but also the fluoroalkane oil phase. Finally, organic-inorganic composite particles are fabricated using the template action of the Pickering emulsions. The method of preparing composite particles is more convenient than the traditional Pickering emulsion polymerization which often requires the modification of the surface of the hydrophilic particles or the addition of auxiliary monomers. This study provides a simple green strategy for the preparation of a more stable Pickering emulsion stabilized by surface-inactive nanoparticles and will broaden the scope of applications.
Collapse
Affiliation(s)
- Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510000, Guangdong, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Guan X, Ngai T. pH-Sensitive W/O Pickering High Internal Phase Emulsions and W/O/W High Internal Water-Phase Double Emulsions with Tailored Microstructures Costabilized by Lecithin and Silica Inorganic Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2843-2854. [PMID: 33595319 DOI: 10.1021/acs.langmuir.0c03658] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synergistic stabilization of Pickering emulsions by a mixture of surfactants and colloidal particles has received increasing interest in recent years but only a few of them can produce high internal phase double emulsions (HIPDEs) with good stability. In this study, we present a feasible and common method of preparing Pickering high internal phase emulsions (HIPEs) with tunable inner morphology costabilized by a biosurfactant lecithin and silica nanoparticles. We investigate the influence of the pH value on the interfacial behavior of lecithin and elucidate the synergistic mechanism between lecithin and silica nanoparticles in different conditions in the stability of as-prepared emulsions. Specifically, water-in-oil (W/O) Pickering HIPEs can be successfully stabilized by lecithin and hydrophobic silica nanoparticles in a wide pH range (pH 1-10), while catastrophic phase inversion occurred at high pH values (pH ≥ 11). Interestingly, stable water-in-oil-in-water (W/O/W) high internal phase double emulsions (HIPDEs) can also be prepared via a two-step method by the cooperation of lecithin and silica nanoparticles. Moreover, functional interconnected porous monoliths and microspheres are facilely fabricated by emulsion templates and their potential applications are explored.
Collapse
Affiliation(s)
- Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
39
|
Pei X, Zhang S, Zhang W, Liu P, Song B, Jiang J, Cui Z, Binks BP. Behavior of Smart Surfactants in Stabilizing pH‐Responsive Emulsions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 P. R. China
| | - Sheng Zhang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 P. R. China
| | - Wanqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 P. R. China
| | - Pei Liu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 P. R. China
| | - Binglei Song
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 P. R. China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 P. R. China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 P. R. China
| | | |
Collapse
|
40
|
Pei X, Zhang S, Zhang W, Liu P, Song B, Jiang J, Cui Z, Binks BP. Behavior of Smart Surfactants in Stabilizing pH-Responsive Emulsions. Angew Chem Int Ed Engl 2021; 60:5235-5239. [PMID: 33258181 DOI: 10.1002/anie.202013443] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Indexed: 11/10/2022]
Abstract
Newly structured pH-responsive smart surfactants (N+ -(n)-N, n=14, 16) from alkyl trimethylammonium bromides are reported. In neutral and alkaline media N+ -(n)-N behaves as a normal cationic surfactant and stabilizes conventional emulsions alone, as well as Pickering emulsions and oil-in-dispersion emulsions together with oppositely and similarly charged nanoparticles, respectively. In acidic media N+ -(n)-N becomes a hydrophilic Bola-type surfactant, N+ -(n)-NH+ , and is an inferior emulsifier either when used alone or together with charged nanoparticles, resulting in demulsification. N+ -(n)-NH+ returns to the aqueous phase alone or together with nanoparticles after demulsification without contaminating the oil phase, and the aqueous phase can be recycled when triggered by pH change. This protocol is a green process and leads to preparation of various temporarily stable emulsions which are often used in emulsion polymerization, heterogeneous catalysis, and oil transportation.
Collapse
Affiliation(s)
- Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Sheng Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Wanqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Pei Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Binglei Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
41
|
Wei Y, Zhou D, Mackie A, Yang S, Dai L, Zhang L, Mao L, Gao Y. Stability, Interfacial Structure, and Gastrointestinal Digestion of β-Carotene-Loaded Pickering Emulsions Co-stabilized by Particles, a Biopolymer, and a Surfactant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1619-1636. [PMID: 33512160 DOI: 10.1021/acs.jafc.0c06409] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Novel Pickering emulsions were stabilized by complex interfaces in the presence of zein colloidal particles (ZCPs), propylene glycol alginate (PGA), and rhamnolipid (Rha) for delivery of β-carotene. The influence of the particle-surfactant, particle-biopolymer, and particle-biopolymer-surfactant mixed interfaces on the physiochemical properties and digestion fate of Pickering emulsions was investigated. It is the first time that three different types of emulsifiers have been used to synergistically stabilize food Pickering emulsions for delivery of lipophilic nutraceuticals. The physicochemical stability, microstructure, rheological properties, and in vitro gastrointestinal digestion of Pickering emulsions were controlled by the addition sequence and mass ratio of multiple stabilizers, which showed the enhanced stability and delayed lipid digestion of the particle-biopolymer-surfactant-stabilized Pickering emulsions. After encapsulation into Pickering emulsions, the retention rate of β-carotene increased 2-fold under UV radiation for 8 h. The coexistence of ZCPs, PGA, and Rha could induce the competitive displacement, multilayer deposition, and interparticle network at the interface. The combination of particles, a biopolymer, and a surfactant delayed the lipolysis during in vitro gastrointestinal tract. By modulating the interfacial composition, the release rate of free fatty acids from Pickering emulsions was reduced from 19.46% to 2.83% through different mechanisms. The novel Pickering emulsion could be incorporated in foods as well as pharmaceuticals for controlled lipid digestion or targeted nutrient delivery purposes.
Collapse
Affiliation(s)
- Yang Wei
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Dan Zhou
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Alan Mackie
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Shufang Yang
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Lei Dai
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Liang Zhang
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| |
Collapse
|
42
|
Zhao X, Fang X, Yang S, Zhang S, Yu G, Liu Y, Zhou Y, Feng Y, Li J. Light-tuning amphiphility of host-guest Alginate-based supramolecular assemblies for photo-responsive Pickering emulsions. Carbohydr Polym 2021; 251:117072. [DOI: 10.1016/j.carbpol.2020.117072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023]
|
43
|
Li Z, Shi Y, Zhu A, Zhao Y, Wang H, Binks BP, Wang J. Light‐Responsive, Reversible Emulsification and Demulsification of Oil‐in‐Water Pickering Emulsions for Catalysis. Angew Chem Int Ed Engl 2020; 60:3928-3933. [DOI: 10.1002/anie.202010750] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Zhiyong Li
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yunlei Shi
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Anlian Zhu
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | | | - Jianji Wang
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
44
|
Zhang Y, Lu H, Wang B, Wang N, Liu D. pH-Responsive Non-Pickering Emulsion Stabilized by Dynamic Covalent Bond Surfactants and Nano-SiO 2 Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15230-15239. [PMID: 33296216 DOI: 10.1021/acs.langmuir.0c02422] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel stimulus-responsive non-Pickering emulsion stabilized by nano-SiO2 particles was prepared in our recent study. 4-formylbenzoic acid and hexylamine through a dynamic covalent bond form a surface-active substance, which was confirmed by Fourier transform infrared (FTIR) and 1H NMR. Through optimization experiments, it was proved that a stable emulsion can be formed by low surfactant concentration (below cmc) and low nano-SiO2 particle concentration (0.5 wt %). In this emulsion, nano-SiO2 particles are not located at the interface of oil-water but dispersed in the continuous phase of the emulsion, which is different from the Pickering emulsion. The negatively charged nano-SiO2 particles and anionic surfactants repel each other, thereby synergistically stabilizing the emulsion so that the concentrations of surfactants and nanoparticles required to stabilize the emulsion are reduced. In addition, the system can also control the formation and fracture of dynamic covalent bonds by changing pH, thereby controlling the stability and demulsification of the emulsion. At the same time, this non-Pickering emulsion could be used as a microreactor for chemical synthesis and still had a high yield after three cycles. This study provides a new application direction for this environmentally friendly emulsion.
Collapse
Affiliation(s)
- Ying Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| | - Baogang Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| | - Na Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| | - Dongfang Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- College of Science, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
45
|
Li Z, Shi Y, Zhu A, Zhao Y, Wang H, Binks BP, Wang J. Light‐Responsive, Reversible Emulsification and Demulsification of Oil‐in‐Water Pickering Emulsions for Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhiyong Li
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yunlei Shi
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Anlian Zhu
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | | | - Jianji Wang
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
46
|
Wei Y, Xie Y, Cai Z, Guo Y, Wu M, Wang P, Li R, Zhang H. Interfacial and emulsion characterisation of chemically modified polysaccharides through a multiscale approach. J Colloid Interface Sci 2020; 580:480-492. [DOI: 10.1016/j.jcis.2020.07.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 01/17/2023]
|
47
|
Influence of interfacial compositions on the microstructure, physiochemical stability, lipid digestion and β-carotene bioaccessibility of Pickering emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105738] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Sun Z, Yang C, Wang F, Wu B, Shao B, Li Z, Chen D, Yang Z, Liu K. Biocompatible and pH‐Responsive Colloidal Surfactants with Tunable Shape for Controlled Interfacial Curvature. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhu Sun
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang University Hangzhou 310027 China
| | - Chenjing Yang
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang University Hangzhou 310027 China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Baiheng Wu
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang University Hangzhou 310027 China
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang University Hangzhou 310027 China
| | - Baiqi Shao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Zhuocheng Li
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang University Hangzhou 310027 China
- Department of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Dong Chen
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang University Hangzhou 310027 China
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang University Hangzhou 310027 China
| | - Zhenzhong Yang
- Department of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| |
Collapse
|
49
|
Sun Z, Yang C, Wang F, Wu B, Shao B, Li Z, Chen D, Yang Z, Liu K. Biocompatible and pH‐Responsive Colloidal Surfactants with Tunable Shape for Controlled Interfacial Curvature. Angew Chem Int Ed Engl 2020; 59:9365-9369. [DOI: 10.1002/anie.202001588] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Zhu Sun
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang University Hangzhou 310027 China
| | - Chenjing Yang
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang University Hangzhou 310027 China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Baiheng Wu
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang University Hangzhou 310027 China
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang University Hangzhou 310027 China
| | - Baiqi Shao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Zhuocheng Li
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang University Hangzhou 310027 China
- Department of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Dong Chen
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang University Hangzhou 310027 China
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang University Hangzhou 310027 China
| | - Zhenzhong Yang
- Department of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| |
Collapse
|
50
|
Yu K, Li B, Wang Z, Zhang W, Wang D, Xu H, Wang J, Harbottle D. Synergy between Composite Nanoparticles and Saponin β-Escin to Produce Long-Lasting Foams. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kai Yu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Li
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhentao Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Zhang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongbao Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haojie Xu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Junfeng Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U. K
| |
Collapse
|