1
|
Zhang M, Zhang C, Zhang P, Liang Z. Study of Preparation and Properties of Stereoregular Poly(cyclohexenylene carbonate). Molecules 2023; 28:5235. [PMID: 37446895 DOI: 10.3390/molecules28135235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Fixing carbon dioxide as a polymer material is an effective and environmentally beneficial approach for reducing the harm of CO2 greenhouse gas. In this paper, carbon dioxide and cyclohexene oxide were used as co-monomers, and a chiral binuclear cobalt complex with a biphenyl linker was employed as the catalyst to successfully prepare a poly(cyclohexenylene carbonate) with high stereoregularity. The influence of catalyst structure, CO2 pressure, and operating temperature on the copolymerization rate and polymer structure were systematically investigated. Optimal catalyst structure and operating conditions were determined, resulting in an excellent poly(cyclohexenylene carbonate) with a stereoregularity as high as 93.5%. Performance testing revealed that the polyester had a molecular weight of approximately 20 kg/mol, a glass transition temperature of 129.7 °C, an onset decomposition temperature of 290 °C, and a tensile strength of 42.8 MPa. These results demonstrate high thermal stability and mechanical strength, indicating the potential for expanding the applications of aliphatic polycarbonate materials.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Coking Coal Resources Development and Comprehensive Utilization, Pingdingshan 467002, China
| | - Chengqian Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Pengyuan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengyong Liang
- State Key Laboratory of Coking Coal Resources Development and Comprehensive Utilization, Pingdingshan 467002, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Huerfano IJ, Laskowski CA, Pink M, Carta V, Hillhouse GL, Caulton KG, Smith JM. Redox-Neutral Transformations of Carbon Dioxide Using Coordinatively Unsaturated Late Metal Silyl Amide Complexes. Inorg Chem 2022; 61:20986-20993. [PMID: 36516978 DOI: 10.1021/acs.inorgchem.2c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two-coordinate silylamido complexes of nickel and copper rapidly react with CO2 to selectively form a new cyanate ligand along with hexamethyldisiloxane byproducts. Mechanistic insight into these reactions was obtained from the synthesis of proposed intermediates, several silyl- and phenyl- substituted amido analogues, and their subsequent reactivity with CO2. These studies suggest that a unique intramolecular double silyl transfer step facilitates CO2 deoxygenation, which likely contributes to the rapid rates of reaction. The deoxygenation reactions create a platform for a synthetic cycle in which copper amido complexes convert CO2 to organic silylcarbamates.
Collapse
Affiliation(s)
- I J Huerfano
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Carl A Laskowski
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Veronica Carta
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Gregory L Hillhouse
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Kenneth G Caulton
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Qiu LQ, Yao X, Zhang YK, Li HR, He LN. Advancements and Challenges in Reductive Conversion of Carbon Dioxide via Thermo-/Photocatalysis. J Org Chem 2022; 88:4942-4964. [PMID: 36342846 DOI: 10.1021/acs.joc.2c02179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carbon dioxide (CO2) is the major greenhouse gas and also an abundant and renewable carbon resource. Therefore, its chemical conversion and utilization are of great attraction for sustainable development. Especially, reductive conversion of CO2 with energy input has become a current hotspot due to its ability to access fuels and various important chemicals. Nowadays, the controllable CO2 hydrogenation to formic acid and alcohols using sustainable H2 resources has been regarded as an appealing solution to hydrogen storage and CO2 accumulation. In addition, photocatalytic CO2 reduction to CO also provides a potential way to utilize this greenhouse gas efficiently. Besides direct CO2 hydrogenation, CO2 reductive functionalization integrates CO2 reduction with subsequent C-X (X = N, S, C, O) bond formation and indirect transformation strategies, enlarging the diverse products derived from CO2 and promoting CO2 reductive conversion into a new stage. In this Perspective, the progress and challenges of CO2 reductive conversion, including hydrogenation, reductive functionalization, photocatalytic reduction, and photocatalytic reductive functionalization are summarized and discussed along with the key issues and future trends/directions in this field. We hope this Perspective can evoke intense interest and inspire much innovation in the promise of CO2 valorization.
Collapse
Affiliation(s)
- Li-Qi Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangyang Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong-Kang Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Ru Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Matsutani T, Aoyama K, Moriuchi T. Oxovanadium(V)-Catalyzed Synthesis of Ureas from Disilylamines and Carbon Dioxide under Ambient Pressure. ACS OMEGA 2022; 7:10476-10482. [PMID: 35382277 PMCID: PMC8973124 DOI: 10.1021/acsomega.1c07367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Here, a commercially available easy-to-handle oxovanadium(V) compound is demonstrated to serve as an efficient catalyst for the synthesis of ureas from disilylamines and carbon dioxide under ambient pressure. The catalytic activation of carbon dioxide proceeds without any additives, demonstrating a broad substrate scope and easy scalability to validate this catalytic activation of carbon dioxide. This catalytic system can be applied to the synthesis of unsymmetric ureas and chiral urea with retention of chirality.
Collapse
Affiliation(s)
- Takanari Matsutani
- Division of Molecular Materials Science,
Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kotaro Aoyama
- Division of Molecular Materials Science,
Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Toshiyuki Moriuchi
- Division of Molecular Materials Science,
Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
5
|
Korona K, Kornowicz A, Justyniak I, Terlecki M, Błachowski A, Lewiński J. Non-redox reactivity of V( ii) and Fe( ii) formamidinates towards CO 2 resulting in the formation of novel M( ii) carbamates. Dalton Trans 2022; 51:16557-16564. [DOI: 10.1039/d2dt02274e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple CO2 insertions into the M–N bonds of V(ii) and Fe(ii) bis(formamidinates) led to the isolation of three novel carbamates. The CO2 insertion effectivity depended on the solvent used and the metal centre's coordination sphere geometry.
Collapse
Affiliation(s)
- Krzesimir Korona
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Arkadiusz Kornowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Michał Terlecki
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Artur Błachowski
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Janusz Lewiński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
6
|
Schneider C, Demeshko S, Meyer F, Werncke CG. A Molecular Low-Coordinate [Fe-S-Fe] Unit in Three Oxidation States. Chemistry 2021; 27:6348-6353. [PMID: 33512018 PMCID: PMC8048577 DOI: 10.1002/chem.202100336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 11/10/2022]
Abstract
A [Fe-S-Fe] subunit with a single sulfide bridging two low-coordinate iron ions is the supposed active site of the iron-molybdenum co-factor (FeMoco) of nitrogenase. Here we report a dinuclear monosulfido bridged diiron(II) complex with a similar complex geometry that can be oxidized stepwise to diiron(II/III) and diiron(III/III) complexes while retaining the [Fe-S-Fe] core. The series of complexes has been characterized crystallographically, and electronic structures have been studied using, inter alia, 57 Fe Mössbauer spectroscopy and SQUID magnetometry. Further, cleavage of the [Fe-S-Fe] unit by CS2 is presented.
Collapse
Affiliation(s)
- Christian Schneider
- Fachbereich ChemiePhilipps-UniversitätHans-Meerwein-Str. 435043MarburgGermany
| | - Serhiy Demeshko
- Institut für Anorganische ChemieUniversität GöttingenTammannstr. 437077GöttingenGermany
| | - Franc Meyer
- Institut für Anorganische ChemieUniversität GöttingenTammannstr. 437077GöttingenGermany
| | - C. Gunnar Werncke
- Fachbereich ChemiePhilipps-UniversitätHans-Meerwein-Str. 435043MarburgGermany
| |
Collapse
|
7
|
Maar RR, Katzman BD, Boyle PD, Staroverov VN, Gilroy JB. Cationic Boron Formazanate Dyes**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ryan R. Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Benjamin D. Katzman
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Paul D. Boyle
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Viktor N. Staroverov
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| |
Collapse
|
8
|
Maar RR, Katzman BD, Boyle PD, Staroverov VN, Gilroy JB. Cationic Boron Formazanate Dyes*. Angew Chem Int Ed Engl 2021; 60:5152-5156. [PMID: 33217138 DOI: 10.1002/anie.202015036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Incorporation of cationic boron atoms into molecular frameworks is an established strategy for creating chemical species with unusual bonding and reactivity but is rarely thought of as a way of enhancing molecular optoelectronic properties. Using boron formazanate dyes as examples, we demonstrate that the wavelengths, intensities, and type of the first electronic transitions in BN heterocycles can be modulated by varying the charge, coordination number, and supporting ligands at the cationic boron atom. UV-vis absorption spectroscopy measurements and density-functional (DFT) calculations show that these modulations are caused by changes in the geometry and extent of π-conjugation of the boron formazanate ring. These findings suggest a new strategy for designing optoelectronic materials based on π-conjugated heterocycles containing boron and other main-group elements.
Collapse
Affiliation(s)
- Ryan R Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Benjamin D Katzman
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Paul D Boyle
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Viktor N Staroverov
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Joe B Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
9
|
Matveeva R, Blasius CK, Wadepohl H, Gade LH. Reactivity of a T-shaped cobalt(I) pincer-complex. Dalton Trans 2021; 50:6802-6810. [PMID: 34032245 DOI: 10.1039/d1dt00277e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of a paramagnetic T-shaped cobalt(i) complex, [(iPrboxmi)Co], stabilised by a monoanionic bis(oxazolinylmethylidene)-isoindolate (boxmi) NNN pincer ligand is described. The exposure to carbon monoxide as an additional neutral ligand resulted in the square-planar species [(iPrboxmi)Co(CO)], accompanied by a change in the electronic spin state from S = 1 to S = 0. In contrast, upon treatment with trimethylphosphine the formation of the distorted tetrahedral complex [(iPrboxmi)Co(PMe3)] was observed (S = 1). Reacting [(iPrboxmi)Co] with iodine (I2), organic peroxides (tBu2O2, (SiMe3)2O2) and diphenyldisulphide (Ph2S2) yielded the tetracoordinated complexes [(iPrboxmi)CoI], [(iPrboxmi)Co(OtBu)], [(iPrboxmi)Co(OSiMe3)] and [(iPrboxmi)Co(SPh)], respectively, demonstrating the capability of the boxmi-supported cobalt(i) complex to homolytically cleave bonds and thus its distinct one-electron reactivity. Furthermore, a square-planar cobalt(ii) alkynyl complex [(iPrboxmi)Co(CCArF)] was identified as the main product in the reaction between [(iPrboxmi)Co] and a terminal alkyne, 4-fluoro-1-ethynylbenzene. Putting such species in the context of the previously investigated hydroboration catalysis, its stoichiometric reaction with pinacolborane revealed its potential conversion into a cobalt(ii) hydride complex, thus confirming its original attribution as off-cycle species.
Collapse
Affiliation(s)
- Regina Matveeva
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Clemens K Blasius
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Sattler W, Shlian DG, Sambade D, Parkin G. Synthesis and structural characterization of bis(2-pyridylthio)(p-tolylthio)methyl zinc complexes and the catalytic hydrosilylation of CO2. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Gilroy JB, Otten E. Formazanate coordination compounds: synthesis, reactivity, and applications. Chem Soc Rev 2020; 49:85-113. [DOI: 10.1039/c9cs00676a] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inorganic complexes of an emerging class of chelating N-donor ligands, formazanates, offer a unique combination of structurally tunable coordination modes, redox activity, and optoelectronic properties.
Collapse
Affiliation(s)
- Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario
- London
- Canada
| | - Edwin Otten
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
12
|
Liang Q, Lin JH, DeMuth JC, Neidig ML, Song D. Syntheses and characterizations of iron complexes of bulky o-phenylenediamide ligand. Dalton Trans 2020; 49:12287-12297. [DOI: 10.1039/d0dt02087g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the reactivity of the iron complexes of a bulky phenylenediamide ligand.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Jack H. Lin
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | | | | | - Datong Song
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| |
Collapse
|
13
|
Dhindsa JS, Melenbacher A, Barbon SM, Stillman MJ, Gilroy JB. Altering the optoelectronic properties of boron difluoride formazanate dyes via conjugation with platinum(ii)-acetylides. Dalton Trans 2020; 49:16133-16142. [DOI: 10.1039/c9dt03417j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The absorption, emission, and electrochemical properties of conjugates of boron difluoride formazanate dyes and Pt(ii)-acetylides are systematically studied.
Collapse
Affiliation(s)
- Jasveer S. Dhindsa
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
- The Centre for Advanced Materials and Biomaterials Research (CAMBR)
| | - Adyn Melenbacher
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Stephanie M. Barbon
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
- The Centre for Advanced Materials and Biomaterials Research (CAMBR)
| | | | - Joe B. Gilroy
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
- The Centre for Advanced Materials and Biomaterials Research (CAMBR)
| |
Collapse
|
14
|
Wong A, Guevara K, Wu G, Ménard G. Unusual C–H Bond Activation and C(sp3)–C(sp3) Bond Formation at an Fe(II) Bis(amide) Carbene Complex. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Anthony Wong
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Kevin Guevara
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Gabriel Ménard
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
15
|
Kamphuis AJ, Milocco F, Koiter L, Pescarmona PP, Otten E. Highly Selective Single-Component Formazanate Ferrate(II) Catalysts for the Conversion of CO 2 into Cyclic Carbonates. CHEMSUSCHEM 2019; 12:3635-3641. [PMID: 31038791 DOI: 10.1002/cssc.201900740] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The development of new families of active and selective single-component catalysts based on earth-abundant metal is of interest from a sustainable chemistry perspective. In this context, anionic mono(formazanate) iron(II) complexes bearing labile halide ligands, which possess both Lewis acidic and nucleophilic functionalities, have been developed as novel single-component homogeneous catalysts for the reaction of CO2 with epoxides to produce cyclic carbonates. The influence of the halide ligand and the electronic properties of the formazanate ligand backbone on the catalytic activity are investigated by employing the iron(II) complexes with and without an additional nucleophile. Very high selectivity is achieved towards the formation of the cyclic carbonate products from various terminal and internal epoxides without the need of a cocatalyst.
Collapse
Affiliation(s)
- Aeilke J Kamphuis
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Francesca Milocco
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Luuk Koiter
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Paolo P Pescarmona
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
16
|
Wang M, Sun C, Cui J, Zhang Y, Ma J. Clean and Efficient Transformation of CO2 to Isocyanic Acid: The Important Role of Triatomic Cation ScNH+. J Phys Chem A 2019; 123:5762-5767. [DOI: 10.1021/acs.jpca.9b02133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| | - Chuanxin Sun
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| | - Jiatong Cui
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| | - Yunhong Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| | - Jiabi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| |
Collapse
|
17
|
Taylor LJ, Kays DL. Low-coordinate first-row transition metal complexes in catalysis and small molecule activation. Dalton Trans 2019; 48:12365-12381. [DOI: 10.1039/c9dt02402f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this Perspective, we will highlight selected examples of transition metal complexes with low coordination numbers whose high reactivity has been exploited in catalysis and the activation of small molecules featuring strong bonds (N2, CO2, and CO).
Collapse
Affiliation(s)
| | - Deborah L. Kays
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| |
Collapse
|
18
|
Van Belois A, Maar RR, Workentin MS, Gilroy JB. Dialkynylborane Complexes of Formazanate Ligands: Synthesis, Electronic Properties, and Reactivity. Inorg Chem 2018; 58:834-843. [DOI: 10.1021/acs.inorgchem.8b02966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alex Van Belois
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Ryan R. Maar
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Mark S. Workentin
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Joe B. Gilroy
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
19
|
Broere DLJ, Mercado BQ, Lukens JT, Vilbert AC, Banerjee G, Lant HMC, Lee SH, Bill E, Sproules S, Lancaster KM, Holland PL. Reversible Ligand-Centered Reduction in Low-Coordinate Iron Formazanate Complexes. Chemistry 2018; 24:9417-9425. [PMID: 29663542 PMCID: PMC6115202 DOI: 10.1002/chem.201801298] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 02/01/2023]
Abstract
Coordination of redox-active ligands to metals is a compelling strategy for making reduced complexes more accessible. In this work, we explore the use of redox-active formazanate ligands in low-coordinate iron chemistry. Reduction of an iron(II) precursor occurs at milder potentials than analogous non-redox-active β-diketiminate complexes, and the reduced three-coordinate formazanate-iron compound is characterized in detail. Structural, spectroscopic, and computational analysis show that the formazanate ligand undergoes reversible ligand-centered reduction to form a formazanate radical dianion in the reduced species. The less negative reduction potential of the reduced low-coordinate iron formazanate complex leads to distinctive reactivity with formation of a new N-I bond that is not seen with the β-diketiminate analogue. Thus, the storage of an electron on the supporting ligand changes the redox potential and enhances certain reactivity.
Collapse
Affiliation(s)
- Daniel L. J. Broere
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States, /
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States, /
| | - James T. Lukens
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca New York 14853
| | - Avery C. Vilbert
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca New York 14853
| | - Gourab Banerjee
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States, /
| | - Hannah M. C. Lant
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States, /
| | - Shin Hee Lee
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States, /
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca New York 14853
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States, /
| |
Collapse
|