1
|
Chen MT, Xu QF, Long LS, Zheng LS. pH-Driven Rotational Configuration of Keggin-Fe 13 Clusters and Their Transformations. Inorg Chem 2024; 63:12880-12885. [PMID: 38935512 DOI: 10.1021/acs.inorgchem.4c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Keggin-Fe13 clusters are considered foundational building blocks or prenucleation precursors of ferrihydrite. Understanding the factors that influence the rotational configuration of these clusters, and their transformations in water, is vital for comprehending the formation mechanism of ferrihydrite. Here, we report syntheses and crystal structures of four lanthanide-iron-oxo clusters, namely, [Dy6Fe13(Gly)12(μ2-OH)6(μ3-OH)18(μ4-O)4(H2O)17]·13ClO4·19H2O (1), [Dy6Fe13(Gly)12(μ3-OH)24(μ4-O)4(H2O)18]·13ClO4·14H2O (2), [Pr8Fe34(Gly)24(μ3-OH)28(μ3-O)30(μ4-O)4(H2O)30]·6ClO4·20H2O (3), and [Pr6Fe13(Gly)12(μ3-OH)24(μ4-O)4(H2O)18]·13ClO4·22H2O (4, Gly = glycine). Single-crystal analyses reveal that 1 has a β-Keggin-Fe13 cluster, marking the first documented instance of such a cluster to date. Conversely, both 2 and 4 contain an α-Keggin-Fe13 cluster, while 3 is characterized by four hexavacant ε-Keggin-Fe13 clusters. Magnetic property investigations of 1 and 2 show that 2 exhibits ferromagnetic interactions, while 1 exhibits antiferromagnetic interactions. An exploration of the synthetic conditions for 1 and 2 indicates that a higher pH promotes the formation of α-Keggin-Fe13 clusters, while a lower pH favors β-Keggin-Fe13 clusters. A detailed analysis of the transition from 3 to 4 emphasizes that lacunary Keggin-Fe13 clusters can morph into Keggin-Fe13 clusters with a decrease in pH, accompanied by a significant change in their rotational configuration.
Collapse
Affiliation(s)
- Man-Ting Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiao-Fei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - La-Sheng Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Kapurwan S, Sahu PK, Konar S. Single-Molecule Magnet Behavior of Confined Dy(III) in a Mixed Heteroatom-Substituted Polyoxotungstate. Inorg Chem 2024; 63:4492-4501. [PMID: 38416533 DOI: 10.1021/acs.inorgchem.3c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Two heteroatom-templated Dy(III)-confined polyoxotungstates [H2N(CH3)2]7Na7[Dy2(H2O)7(W4O9)(HPSeW15O54)(α-SeW9O33)2]·31H2O (1) and [H2N(CH3)2]14K2Na18{[Dy2(H2O)13W14O40]2[α-SeW9O33]4[HPSeW15O54]2}·44H2O (2) were synthesized by a one-pot aqueous reaction and structurally characterized. The most distinctive structural feature of complexes 1 & 2 is the simultaneous presence of both trivacant Keggin [α-SeW9O33]8- and Dawson [HPSeW15O54]10- building blocks containing P(III)-Se(IV) heteroatoms. The trimeric polyanion of 1 can be represented as a fusion of two trivacant Keggin [α-SeW9O33]8- and Dawson [HPSeW15O54]10- building units encapsulating the [Dy2(H2O)7(W4O9)]12+ cluster. On the other hand, hexameric polyoxoanions of 2 are described as four trivacant Keggin [α-SeW9O33]8- and two Dawson [HPSeW15O54]10-, building units anchoring a [Dy4(H2O)26W28O80]20+ cluster. The magnetic investigation revealed the presence of significant magnetic anisotropy and slow relaxation of magnetization behavior for complex 1 with a phenomenological energy barrier, Ueff = 13.58 K in the absence of an external magnetic field, and Ueff = 24.57 K in the presence of a 500 Oe external dc magnetic field. On the other hand, complex 2 favors the QTM relaxation process in the absence of an external magnetic field and shows field-induced slow relaxation of magnetization with Ueff = 11.11 K at 1500 Oe applied dc field. The in-depth analysis of magnetic relaxation dynamics shows that the relaxation process follows the Orbach as well as Raman relaxation pathways. Further, the ab initio calculation of the studied complexes confirms that the highly axial ground and first excited energy states (containing pure highest mJ states) are responsible for the observed single-molecule magnet (SMM) behavior. Remarkably, this is the first example of a mixed heteroatom-based Dy(III)-substituted polyoxotungstate with both trimeric Keggin [α-SeW9O33]8- and Dawson [HPSeW15O54]10- building units showing SMM behavior.
Collapse
Affiliation(s)
- Sandhya Kapurwan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
3
|
Luo XM, Li YK, Dong XY, Zang SQ. Platonic and Archimedean solids in discrete metal-containing clusters. Chem Soc Rev 2023; 52:383-444. [PMID: 36533405 DOI: 10.1039/d2cs00582d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-containing clusters have attracted increasing attention over the past 2-3 decades. This intense interest can be attributed to the fact that these discrete metal aggregates, whose atomically precise structures are resolved by single-crystal X-ray diffraction (SCXRD), often possess intriguing geometrical features (high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties, providing invaluable opportunities for the intersection of different disciplines including chemistry, physics, mathematical geometry and materials science. In this review, we attempt to reinterpret and connect these fascinating clusters from the perspective of Platonic and Archimedean solid characteristics, focusing on highly symmetrical and complex metal-containing (metal = Al, Ti, V, Mo, W, U, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, lanthanoids (Ln), and actinoids) high-nuclearity clusters, including metal-oxo/hydroxide/chalcogenide clusters and metal clusters (with metal-metal binding) protected by surface organic ligands, such as thiolate, phosphine, alkynyl, carbonyl and nitrogen/oxygen donor ligands. Furthermore, we present the symmetrical beauty of metal cluster structures and the geometrical similarity of different types of clusters and provide a large number of examples to show how to accurately describe the metal clusters from the perspective of highly symmetrical polyhedra. Finally, knowledge and further insights into the design and synthesis of unknown metal clusters are put forward by summarizing these "star" molecules.
Collapse
Affiliation(s)
- Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ke Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Lv J, Lang Z, Fu J, Lan Q, Liu R, Zang H, Li Y, Ye D, Streb C. Molecular Iron Oxide Clusters Boost the Oxygen Reduction Reaction of Platinum Electrocatalysts at Near‐Neutral pH. Angew Chem Int Ed Engl 2022; 61:e202202650. [PMID: 35381106 PMCID: PMC9546390 DOI: 10.1002/anie.202202650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/10/2022]
Abstract
The oxygen reduction reaction (ORR) is a key energy conversion process, which is critical for the efficient operation of fuel cells and metal–air batteries. Here, we report the significant enhancement of the ORR‐performance of commercial platinum‐on‐carbon electrocatalysts when operated in aqueous electrolyte solutions (pH 5.6), containing the polyoxoanion [Fe28(μ3‐O)8(L‐(−)‐tart)16(CH3COO)24]20−. Mechanistic studies provide initial insights into the performance‐improving role of the iron oxide cluster during ORR. Technological deployment of the system is demonstrated by incorporation into a direct formate microfluidic fuel cell (DFMFC), where major performance increases are observed when compared with reference electrolytes. The study provides the first examples of iron oxide clusters in electrochemical energy conversion and storage.
Collapse
Affiliation(s)
- Jia‐Qi Lv
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Zhong‐Ling Lang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Jia‐Qi Fu
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Qiao Lan
- Institute of Engineering Thermophysics School of Energy and Power Engineering Chongqing University No. 174 Shazheng Street, Shapingba District Chongqing 400030 China
| | - Rongji Liu
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
- Helmholtz-Institute Ulm (HIU) Helmholtzstr. 11 89081 Ulm Germany
| | - Hong‐Ying Zang
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Yang‐Guang Li
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Ding‐Ding Ye
- Institute of Engineering Thermophysics School of Energy and Power Engineering Chongqing University No. 174 Shazheng Street, Shapingba District Chongqing 400030 China
| | - Carsten Streb
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
- Helmholtz-Institute Ulm (HIU) Helmholtzstr. 11 89081 Ulm Germany
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55131 Mainz Germany
| |
Collapse
|
5
|
Lv J, Lang Z, Fu J, Lan Q, Liu R, Zang H, Li Y, Ye D, Streb C. Molecular Iron Oxide Clusters Boost the Oxygen Reduction Reaction of Platinum Electrocatalysts at Near‐Neutral pH. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia‐Qi Lv
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Zhong‐Ling Lang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Jia‐Qi Fu
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Qiao Lan
- Institute of Engineering Thermophysics School of Energy and Power Engineering Chongqing University No. 174 Shazheng Street, Shapingba District Chongqing 400030 China
| | - Rongji Liu
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
- Helmholtz-Institute Ulm (HIU) Helmholtzstr. 11 89081 Ulm Germany
| | - Hong‐Ying Zang
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Yang‐Guang Li
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Ding‐Ding Ye
- Institute of Engineering Thermophysics School of Energy and Power Engineering Chongqing University No. 174 Shazheng Street, Shapingba District Chongqing 400030 China
| | - Carsten Streb
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
- Helmholtz-Institute Ulm (HIU) Helmholtzstr. 11 89081 Ulm Germany
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55131 Mainz Germany
| |
Collapse
|
6
|
Du MH, Chen LQ, Jiang LP, Liu WD, Long LS, Zheng L, Kong XJ. Counterintuitive Lanthanide Hydrolysis-Induced Assembly Mechanism. J Am Chem Soc 2022; 144:5653-5660. [PMID: 35315276 DOI: 10.1021/jacs.2c01502] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The understanding of the hydrolysis mechanism of lanthanide ions is limited by their elusive coordination configuration and undeveloped technology. A potential solution by high-resolution mass spectroscopy studies is hindered by the lack of a stable model under electrospray ionization (ESI) conditions and the complexity of the spectra. Herein, it is demonstrated that diketonate ligands can efficiently stabilize the hydrolyzed intermediate cluster of Ln3+ under ESI conditions, and an effective mass difference fingerprint of isomorphism (MDFI) method is proposed, which can allow the determination of the nuclearity-number of the species without depth resolution. Thus, the hydrolysis of Ln3+ into an atomically precise hydroxide cluster is observed at the level of precise formulae. The species evolution upon hydrolysis is along the dominant path of {Eu3}-{Eu4}-{Eu9}-{Eu10}-{Eu11}-{Eu15}-{Eu16} and a nondominant path of {Eu3}-{Eu4}-{Eu8-1}-{Eu8-2} under the investigated conditions. The crystal of the {Eu16} species was obtained via low-temperature crystallization, and single-crystal X-ray diffraction studies show that its structure contains three octahedral {o-Ln6} units. The contradiction between multiple {o-Ln6} units in the structure and the absence in the formation process indicates that the repetitive subunit observed in the structure does not necessarily correspond to the construction units of high-nuclearity clusters. Photophysical measurements indicate that Eu16 cluster has a high total emission quantum efficacy of 12.8% in the solid state. This study provides fundamental insights into the formation, evolution, and assembly of small lanthanide hydroxide units upon hydrolysis, which is vital for the goal of directional synthesis of lanthanide hydroxide clusters.
Collapse
Affiliation(s)
- Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liu-Qing Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lin-Peng Jiang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei-Dong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lansun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Cheng M, Wang H, Liu Y, Shi J, Zhou M, Du W, Zhang D, Yang G. Bouquet-like uranium-containing selenotungstate consisting of two different Keggin-/Anderson-type units with excellent photoluminescence quantum yield. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Chen SS, Su HF, Long LS, Zheng LS, Kong XJ. Hydrolysis-Promoted Building Block Assembly: Structure Transformation from Y12 Wheel and Y34 Ship to Y60 Cage. Inorg Chem 2021; 60:16922-16926. [PMID: 34709786 DOI: 10.1021/acs.inorgchem.1c03019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurately controlling the hydrolysis of metal ions can not only yield the desired structure of metal hydroxide clusters but also provide a deeper understanding of the formation process of natural hydroxide minerals. However, the capture of hydrolysis intermediates remains a significant challenge, and metal hydroxide clusters are mainly obtained by employing adventitious hydrolysis. In this study, we realized a hierarchical building block assembly from Y3+ ions to large Y12, Y34, and Y60 clusters by controlling the hydrolysis process of lanthanide ions under different pH conditions. Single-crystal structural analysis showed that the Y12 wheel, Y34 ship, and Y60 sodalite cage contain 4, 12, and 24 cubane-like [Y4(μ3-OH)4]8+ units, respectively. The structure of the Y60 cluster can be attributed to two Y34 clusters or six Y12 clusters linked by vertices. These clusters can be synthesized through the hydrolysis of Y3+ under different pH conditions, and Y60 can be prepared from the obtained Y12 or Y34 crystals by the simple addition of Y3+ ions. The capture and conversion of the intermediates of lanthanide series hydroxide clusters, Y12 or Y34, during the assembly from Y3+ ions to Y60 can facilitate an understanding of the formation process of high-nuclearity lanthanide clusters.
Collapse
Affiliation(s)
- Shan-Shan Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Hai-Feng Su
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| |
Collapse
|
9
|
Stern RD, Kingsbury RS, Persson KA. Aqueous Stability of Zirconium Clusters, Including the Zr(IV) Hexanuclear Hydrolysis Complex [Zr 6O 4(OH) 4(H 2O) 24] 12+, from Density Functional Theory. Inorg Chem 2021; 60:15456-15466. [PMID: 34619971 DOI: 10.1021/acs.inorgchem.1c02078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Framework materials constitute a broad family of solids that range from zeolites and metal-organic frameworks (MOFs) to coordination polymers. The synthesis of such network structures typically rely on precursor molecular building blocks. As an example, the UiO-66 MOF series is constructed of hexanuclear [Zr6O4(OH)4(CO2)12] cluster nodes and linear carboxylate linkers. Unfortunately, these Zr MOF cluster nodes cannot currently be manufactured in a sustainable way, motivating a search for "green" alternative synthesis methods. Stabilizing the hexanuclear Zr(IV) cluster (i.e., the hexamer, {Zr612+}) without the use of organic ligation would enable the use of environmentally friendly solvents such as water. The Zr(IV) tetranuclear cluster (i.e., the tetramer, {Zr48+}) can be stabilized in solution with or without organic ligands, yet the hexamer has yet to be synthesized without supporting ligands. The reasons why certain zirconium clusters are favored in aqueous solution over others are not well understood. This study reports the relative thermodynamic instability of the hypothetical hexamer {Zr612+} compared to the ubiquitous {Zr48+} tetramer. Density functional theory calculations were performed to obtain the hydrolysis Gibbs free energy of these species and used to construct Zr Pourbaix diagrams that illustrate the effects of electrochemical potential, pH, and Zr(IV) concentration. It was found that the aqueous {Zr612+} hexamer is ∼17.8 kcal/mol less stable than the aqueous {Zr48+} tetramer at pH = 0, V = 0, and [Zr(IV)] = 1 M, which is an energy difference on the order of counterion interactions. Electronic structure analyses were used to explore trends in the highest occupied molecular orbital-lowest unoccupied molecular orbital gap, frontier molecular orbitals, and electrostatic potential distribution of these clusters. The evidence suggests that the aqueous {Zr612+} hexamer may be promoted with more strategic syntheses incorporating minimal ligands and counterions.
Collapse
Affiliation(s)
- Rebecca D Stern
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Ryan S Kingsbury
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Kristin A Persson
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States.,Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Zheng XY, Chen MT, Du MH, Wei RJ, Kong XJ, Long LS, Zheng LS. Capturing Lacunary Iron-Oxo Keggin Clusters and Insight Into the Keggin-Fe 13 Cluster Rotational Isomerization. Chemistry 2020; 26:11985-11988. [PMID: 32614459 DOI: 10.1002/chem.202002833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/28/2020] [Indexed: 01/28/2023]
Abstract
The formation mechanism of ferrihydrite is the key to understand its treatment of pollutants in waste water and purification of surface water and groundwater. Although emerging evidence suggests that formation of the ferrihydrite occurs through the aggregation of prenucleation clusters, rather than classical atom-by-atom growth, its formation mechanism remains unclear. Herein, an iron-oxo anionic cluster of [Fe22 (μ4 -O)8 (μ3 -OH)20 (μ2 -OH)18 (CH3 COO)16 (H2 O)2 ]4- viewed as a dimer of bivacant β-Keggin-Fe13 clusters was for the first time obtained by using lanthanide ions as stabilizers. Upon dissolution in a mixed solution of isopropanol and water, the lacunary β-Keggin-Fe13 cluster can transform into an α-Keggin-Fe13 cluster, distinctly demonstrating that the Keggin-Fe13 cluster rotational isomerization can be realized through the vacant Keggin-Fe13 cluster.
Collapse
Affiliation(s)
- Xiu-Ying Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Man-Ting Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Rong-Jia Wei
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
11
|
Amiri M, Martin NP, Sadeghi O, Nyman M. Bismuth for Controlled Assembly/Disassembly of Transition-Metal Oxo Clusters, Defining Reaction Pathways in Inorganic Synthesis and Nature. Inorg Chem 2020; 59:3471-3481. [PMID: 32078309 DOI: 10.1021/acs.inorgchem.9b03646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Trivalent bismuth is a unique heavy p-block ion. It is highly insoluble in water, due to strong hydrolysis tendencies, and known for low toxicity. Its lone pair is structure-directing, providing framework materials with structural flexibility, leading to piezoelectric and multiferroic function. The flexibility it provides is also advantageous for dopants and vacancies, giving rise to conductivity, luminescence, color, and catalytic properties. We are exploiting Bi3+ in a completely different way, as a knob to "tune" the solubility and stability of transition-metal oxo clusters. The lone pair allows capping and isolation of metastable cluster forms for solid-state and solution characterization. With controlled release of the bismuth (via bismuth oxyhalide metathesis), the metal oxo clusters can be retained in aqueous solution, and we can track their reaction pathways and conversion to related metal oxyhydroxides. Here we present isolation of a bismuth-stabilized MnIV cluster, fully formulated [MnIV6Bi2KO9(CH3COO)10(H2O)3(NO3)2] (Mn6Bi2). In addition to characterization by single-crystal X-ray diffraction, solution characterization in acetonitrile and acetonitrile-acetic acid by small-angle X-ray scattering (SAXS) and electrospray ionization mass spectrometry shows high stability and the tendency of Mn6Bi2 to link into chains by bridging the bismuth (and potassium) caps with nitrate and acetate ligands. On the other hand, the dissolution of Mn6Bi2 in water, with and without metathesis of the bismuth, leads to the precipitation of related oxyhydroxide phases, which we characterized by transmission electron microscopy (TEM), electron diffraction, and energy-dispersive spectroscopy, and the conversion pathway by SAXS. Without removal of bismuth, amorphous manganese/bismuth oxyhydroxides precipitate within a day. On the other hand, metathesis of BiOBr yields a solution containing soluble manganese oxyhydroxide prenucleation clusters that assemble and precipitate over 10 days. This allows tracking of the reaction pathway via SAXS. We observe one-dimensional growth of species, followed by the precipitation of nanocrystalline hollandite (identified by TEM). The hollandite is presumably templated by the K+, originally in the crystalline lattice of Mn6Bi2. In this Forum Article that combines new results and prospective, we compare these results to prior studies in which we first introduced the use of capping Bi3+ to stabilize reactive clusters, followed by destabilization to understand reaction pathways in synthesis and low-temperature geochemistry.
Collapse
Affiliation(s)
- Mehran Amiri
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Nicolas P Martin
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Omid Sadeghi
- Department of Physical Sciences, Linn-Benton Community College, Albany Oregon 97321, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
12
|
Jiang Z, Klyukin K, Miller K, Alexandrov V. Mechanistic Theoretical Investigation of Self-Discharge Reactions in a Vanadium Redox Flow Battery. J Phys Chem B 2019; 123:3976-3983. [DOI: 10.1021/acs.jpcb.8b10980] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Jiang
- Department of Chemical and Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Konstantin Klyukin
- Department of Chemical and Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Kaellen Miller
- Department of Chemical and Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Vitaly Alexandrov
- Department of Chemical and Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
13
|
Zhu Y, Olsen MR, Nyman M, Zhang L, Zhang J. Stabilizing γ-Alkyltin-Oxo Keggin Ions by Borate Functionalization. Inorg Chem 2019; 58:4534-4539. [PMID: 30883101 DOI: 10.1021/acs.inorgchem.9b00093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a hierarchical self-assembly engineering of tin-oxo clusters from nanosized hydrophobic clusters to a single-layer film of assembled clusters. These clusters are derivatives of the previously reported Na-centered butyltin Keggin ions, but they are bicapped with butyltin and with borate ligands. The formulas γ-[( n-BuSn)14(OCH3)10(OH)3O9(NaO4)(HBO3)2] and γ-[( n-BuSn)14(OCH3)10(OH)3O9(NaO4)(PhBO2)2] were determined from single-crystal X-ray diffraction and bulk solution characterization including small-angle X-ray scattering, electrospray ionization mass spectrometry, and multinuclear and multidimensional NMR (119Sn, 13C, and 1H). Solution characterization confirms that borate functionalization inhibits the solution-phase β-γ Keggin isomer interconversion that was recognized prior for uncapped butyltin clusters, and in this case, the γ isomer is favored. The assembly of the γ-NaSn14BO3 clusters into a homogeneous Langmuir-Blodgett monolayer is the first step toward creating nanopatterned films for microelectronic devices.
Collapse
Affiliation(s)
- Yu Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM) , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| | - Morgan Rose Olsen
- Department of Chemistry , Oregon State University (OSU) , Corvallis , Oregon 97331 , United States
| | - May Nyman
- Department of Chemistry , Oregon State University (OSU) , Corvallis , Oregon 97331 , United States
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM) , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM) , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| |
Collapse
|
14
|
Liu B, Cheng D, Zhu H, Du J, Li K, Zang HY, Tan H, Wang Y, Xing W, Li Y. A bismuth oxide/graphene oxide nanocomposite membrane showing super proton conductivity and low methanol permeability. Chem Sci 2019; 10:556-563. [PMID: 30713651 PMCID: PMC6334630 DOI: 10.1039/c8sc03726d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/15/2018] [Indexed: 11/21/2022] Open
Abstract
Proton exchange membrane fuel cells are still limited as state-of-art proton exchange membranes perform poorly at high and low temperature and are easily damaged by harsh electrochemical conditions such as reactive peroxide species. One effective solution to this issue is to develop new types of proton conductive materials that are capable of working in a broad temperature range. A simple vacuum-assisted filtration method is employed to obtain a well-ordered new proton-conducting membrane by immobilizing nanosized bismuth oxide clusters [H6Bi12O16] (NO3)10·6(H2O) {H6Bi12O16} onto graphene oxide (GO) supports (named as {H6Bi12O16}/GO). {H6Bi12O16}/GO is stable in acidic media and has high proton conductivity over the temperature range from -40 to 80 °C. The proton conductivity of the {H6Bi12O16}/GO membrane is 0.564 S cm-1 at 80 °C in aqueous solution (in plane), and 0.1 S cm-1 at 80 °C and 97% RH (out of plane), respectively. Without loss of high proton conductivity, the membrane also exhibited 100-fold lower methanol permeability than a Nafion 117 membrane. Moreover, {H6Bi12O16}/GO displayed good catalytic decomposition of hydrogen peroxide and superior humidity response and recovery properties. These advantages mean that {H6Bi12O16}/GO holds great promise as a solid-state electrolyte that can potentially be applied in energy conversion devices in the future.
Collapse
Affiliation(s)
- Bailing Liu
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Dongming Cheng
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Haotian Zhu
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Jing Du
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Ke Li
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Hong-Ying Zang
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
- School of Chemistry and Environmental Engineering , Changchun University of Science and Technology , Changchun 130024 , P. R. China
| | - Huaqiao Tan
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Yonghui Wang
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , PR China .
| | - Yangguang Li
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| |
Collapse
|
15
|
Kozma K, Wang M, Molina PI, Martin NP, Feng Z, Nyman M. The role of titanium-oxo clusters in the sulfate process for TiO2 production. Dalton Trans 2019; 48:11086-11093. [DOI: 10.1039/c9dt01337g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titanium–sulphate solutions preceding TiO2-nanoparticle precipitation contain exclusively pentagon-shaped clusters with no apparent structural similarity, confounding our understanding of crystal growth.
Collapse
Affiliation(s)
- Karoly Kozma
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| | - Maoyu Wang
- School of Chemical
- Biological and Environmental Engineering
- Oregon State University
- Corvallis
- USA
| | | | | | - Zhenxing Feng
- School of Chemical
- Biological and Environmental Engineering
- Oregon State University
- Corvallis
- USA
| | - May Nyman
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| |
Collapse
|
16
|
Wang W, Amiri M, Kozma K, Lu J, Zakharov LN, Nyman M. Reaction Pathway to the Only Open‐Shell Transition‐Metal Keggin Ion without Organic Ligation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Wei Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West 350002 Fuzhou Fujian People's Republic of China
| | - Mehran Amiri
- Department of Chemistry Fujian Institute of Research on the Structure of Matter Oregon State University 97330 Corvallis OR USA
| | - Karoly Kozma
- Department of Chemistry Fujian Institute of Research on the Structure of Matter Oregon State University 97330 Corvallis OR USA
| | - Jian Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West 350002 Fuzhou Fujian People's Republic of China
| | - Lev N. Zakharov
- Department of Chemistry Fujian Institute of Research on the Structure of Matter Oregon State University 97330 Corvallis OR USA
| | - May Nyman
- Department of Chemistry Fujian Institute of Research on the Structure of Matter Oregon State University 97330 Corvallis OR USA
| |
Collapse
|
17
|
Iqbal MF, Tominaka S, Peng W, Takei T, Tsunoji N, Sano T, Ide Y. Iron Aquo Complex as an Efficient and Selective Homogeneous Photocatalyst for Organic Synthetic Reactions. ChemCatChem 2018. [DOI: 10.1002/cctc.201801360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Muhammad Faisal Iqbal
- International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba 305-0044 Japan
- Department of Physics; University of the Punjab; Lahore 54590 Pakistan
| | - Satoshi Tominaka
- International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba 305-0044 Japan
| | - Wenqin Peng
- International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba 305-0044 Japan
| | - Toshiaki Takei
- International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba 305-0044 Japan
| | - Nao Tsunoji
- Department of Applied Chemistry Graduate School of Engineering; Hiroshima University; Higashi-Hiroshima 739-8527 Japan
| | - Tsuneji Sano
- Department of Applied Chemistry Graduate School of Engineering; Hiroshima University; Higashi-Hiroshima 739-8527 Japan
| | - Yusuke Ide
- International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba 305-0044 Japan
| |
Collapse
|