1
|
Liu C, Li T, Dai X, Zhao J, Zhang L, Cui X. Mechanism regulation over dual-atom catalyst enables high-performance oxidative alcohol esterification. Sci Bull (Beijing) 2025; 70:78-89. [PMID: 39277521 DOI: 10.1016/j.scib.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The development of heterogeneous catalysts with well-defined uniform isolated or multiple active sites is of great importance for understanding catalytic performances and studying reaction mechanisms. Herein, we present a CoCu dual-atom catalyst (CoCu-DAC) where bonded Co-Cu dual-atom sites are embedded in N-doped carbon matrix with a well-defined Co(OH)CuN6 structure. The CoCu-DAC exhibits higher catalytic activity and selectivity than the Co single-atom catalyst (Co-SAC) and Cu single-atom catalyst (Cu-SAC) counterparts in the catalytic oxidative esterification of alcohols and a variety of methyl and alkyl esters have been successfully synthesized. Kinetic studies reveal that the activation energy (29.7 kJ mol-1) over CoCu-DAC is much lower than that over Co-SAC (38.4 kJ mol-1) and density functional theory (DFT) studies disclose that two different mechanisms are regulated over CoCu-DAC and Co-SAC/Cu-SAC in three-step esterification of alcohols. The bonded Co-Cu and adjacent N species efficiently catalyze the elementary reactions of alcohol dehydrogenation, O2 activation and ester formation, respectively. The stepwise alkoxy pathway (O-H and C-H scissions) is preferred for both alcohol dehydrogenation and ester formation over CoCu-DAC, while the progressive hydroxylalkyl pathway (C-H and O-H scissions) for alcohol dehydrogenation and simultaneous hemiacetal dehydrogenation are favored over Co-SAC and Cu-SAC. Characteristic peaks in the Fourier transform infrared spectroscopy analysis may confirm the formation of the metal-C intermediate and the hydroxylalkyl pathway over Co-SAC.
Collapse
Affiliation(s)
- Ce Liu
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Teng Li
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xingchao Dai
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jian Zhao
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Liping Zhang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjiang Cui
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
2
|
Xie D, Xue R, Dou K, Song Y, Fu Y, Zhang F, Chen DL, Zhu W. Anchoring Pt Single-Atom Sites on Vacancies of MgO(Al) Nanosheets as Bifunctional Catalysts to Accelerate Hydrogenation-Cyclization Cascade Reactions. Chemistry 2024; 30:e202402757. [PMID: 39242340 DOI: 10.1002/chem.202402757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
The direct hydrogenation of 2-nitroacylbenzene to 2,1-benzisoxazole presents a significant challenge in the pharmaceutical and fine chemicals industries. In this study, a defect engineering strategy is employed to create bifunctional single-atom catalysts (SACs) by anchoring Pt single atoms onto metal vacancies within MgO(Al) nanosheets. The resultant Pt1/MgO(Al) SAC displays an exceptional catalytic activity and selectivity in the hydrogenation-cyclization of 2-nitroacylbenzene, achieving a 97.5 % yield at complete conversion and a record-breaking turnover frequency of 458.8 h-1 under the mild conditions. The synergistic catalysis between the fully exposed single-atom Pt sites within a unique Pt-O-Mg/Al moiety and the abundant basic sites of the MgO(Al) support is responsible for this outstanding catalytic performance. The current work, therefore, paves the way for developing bifunctional or multifunctional SACs that can enhance efficient organocatalytic conversions.
Collapse
Affiliation(s)
- Deqiong Xie
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Ruifang Xue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Kecan Dou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Yaping Song
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Yanghe Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Fumin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Weidong Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| |
Collapse
|
3
|
Sharma D, Sajwan D, Mishra S, Gouda A, Mittal P, Choudhary P, Mishra BP, Kumar S, Krishnan V. Tailoring catalysis at the atomic level: trends and breakthroughs in single atom catalysts for organic transformation reactions. NANOSCALE HORIZONS 2024. [PMID: 39635733 DOI: 10.1039/d4nh00479e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The utilization of precise materials in heterogeneous catalysis will provide various new possibilities for developing superior catalysts to tackle worldwide energy and environmental issues. In recent years, single atom catalysts (SACs) with excellent atom utilization and isolated active sites have progressed dramatically as a thriving sector of catalysis research. Additionally, SACs bridge the gap between homogeneous and heterogeneous catalysts and overcome the limitations of both categories. Current research on SACs is highly oriented towards the organic synthesis of high-significance molecules with promising potential for large-scale applicability and industrialization. In this context, this review aims to comprehensively analyze the state-of-the-art research in the synthesis of SACs and analyze their structural, electronic, and geometric properties. Moreover, the unprecedented catalytic performance of the SACs towards various organic transformation reactions is succinctly summarized with recent reports. Further, a detailed summary of the current state of the research field of SACs in organic transformation is discussed. Finally, a critical analysis of the existing challenges in this emerging field of SACs and the possible countermeasures are provided. We believe that SACs have the potential to profoundly alter the chemical industry, pushing the boundaries of catalysis in new and undiscovered territory.
Collapse
Affiliation(s)
- Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Shubhankar Mishra
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Ashrumochan Gouda
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Prerna Mittal
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Bhagyashree Priyadarshini Mishra
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| |
Collapse
|
4
|
Nakayama A, Yoshida A, Aono C, Honma T, Sakaguchi N, Taketoshi A, Fujita T, Murayama T, Shimada T, Takagi S, Ishida T. Preparation and Catalytic Properties of Gold Single-Atom and Cluster Catalysts Utilizing Nanoparticulate Mg-Al Layered Double Hydroxides. Chempluschem 2024:e202400465. [PMID: 39392064 DOI: 10.1002/cplu.202400465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/12/2024]
Abstract
Au single atoms and clusters were stabilized on Mg-Al layered double hydroxide nanoparticles (LDH NPs), and the obtained Au@LDH NPs were supported on SiO2 and CeO2. After hydrogen reduction, Au single atoms were found together with Au clusters on LDH/SiO2. In contrast to Au single-atom catalysts which are deposited in metal vacancies of oxide supports, the LDH NPs stabilize very small Au species despite the absence of metal vacancies. The obtained Au(0)@LDH/SiO2 catalyzed aerobic oxidation of alcohols, and Au single atoms maintained after the reaction. Given that only Au NPs were observed on bulk LDH, the abundant surface OH group of LDH NPs would contribute to stabilize Au, resulting in higher activity than Au/LDH-bulk. After calcination to transform LDH to mixed metal oxide (MMO), the obtained Au(0)@MMO/SiO2 also exhibited high catalytic activity. Moreover, Au(0)@LDH/CeO2 exhibited higher activity and excellent selectivity for hydrogenation of 4-nitrostyrene to 4-aminostyrene than conventional Au catalysts such as Au/CeO2 and Au/TiO2. We demonstrated that Au size can be minimized using LDH NPs, exhibiting high catalytic performance. The basic surface OH groups of LDH would be also beneficial for deprotonation of alcohols and heterolytic dissociation of H2 in the catalytic reactions.
Collapse
Affiliation(s)
- Akihiro Nakayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Ayano Yoshida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Chika Aono
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Norihito Sakaguchi
- Laboratory of Integrated Function Materials, Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Kita13 Nishi8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Ayako Taketoshi
- Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Takashi Fujita
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| | - Toru Murayama
- Institute for Catalysis, Hokkaido University, Kita21 Nishi10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Tetsuya Shimada
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Shinsuke Takagi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
5
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
6
|
Lei L, Cao Q, Ma J, Hou F. One-Step Hydrothermal/Solvothermal Preparation of Pt/TiO 2: An Efficient Catalyst for Biobutanol Oxidation at Room Temperature. Molecules 2024; 29:1450. [PMID: 38611730 PMCID: PMC11013154 DOI: 10.3390/molecules29071450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The selective oxidation of biobutanol to prepare butyric acid is an important conversion process, but the preparation of low-temperature and efficient catalysts for butanol oxidation is currently a bottleneck problem. In this work, we prepared Pt-TiO2 catalysts with different Pt particle sizes using a simple one-step hydrothermal/solvothermal method. Transmission electron microscopy and X-ray diffraction results showed that the average size of the Pt particles ranged from 1.1 nm to 8.7 nm. Among them, Pt-TiO2 with an average particle size of 3.6 nm exhibited the best catalytic performance for biobutanol. It was capable of almost completely converting butanol, even at room temperature (30 °C), with a 98.9% biobutanol conversion, 98.4% butyric acid selectivity, and a turnover frequency (TOF) of 36 h-1. Increasing the reaction temperature to 80 and 90 °C, the corresponding TOFs increased rapidly to 355 and 619 h-1. The relationship between the electronic structure of Pt and its oxidative performance suggests that the synergistic effect of the dual sites, Pt0 and Pt2+, could be the primary factor contributing to its elevated reactivity.
Collapse
Affiliation(s)
- Lijun Lei
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; (J.M.); (F.H.)
| | - Qianyue Cao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China;
| | - Jiachen Ma
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; (J.M.); (F.H.)
| | - Fengxiao Hou
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; (J.M.); (F.H.)
| |
Collapse
|
7
|
Zhang L, Li T, Dai X, Zhao J, Liu C, He D, Zhao K, Zhao P, Cui X. Water Activation Triggered by Cu-Co Double-Atom Catalyst for Silane Oxidation. Angew Chem Int Ed Engl 2023; 62:e202313343. [PMID: 37798814 DOI: 10.1002/anie.202313343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
High-performance catalysts sufficient to significantly reduce the energy barrier of water activation are crucial in facilitating reactions that are restricted by water dissociation. Herein we present a Cu-Co double-atom catalyst (CuCo-DAC), which possesses a uniform and well-defined CuCoN6 (OH) structure, and works together to promote water activation in silane oxidation. The catalyst achieves superior catalytic performance far exceeding that of single-atom catalysts (SACs). Various functional silanes are converted into silanols with up to 98 % yield and 99 % selectivity. Kinetic studies show that the activation energy of silane oxidation by CuCo-DAC is significantly lower than that of Cu single-atom catalyst (Cu-SAC) and Co single-atom catalyst (Co-SAC). Theoretical calculations demonstrate two different reaction pathways where water splitting is the rate-determining step and it is accelerated by CuCo-DAC, whereas H2 formation is key for its single-atom counterpart.
Collapse
Affiliation(s)
- Liping Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Teng Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Xingchao Dai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Jian Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Ce Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Dongcheng He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Kang Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| |
Collapse
|
8
|
Li J, Zhao S, Li C, Kawi S, Wang K, Huang J, Liu S. Single atom manganese catalyst boosting selective oxidation of alcohols with activated peroxymonosulfate. J Colloid Interface Sci 2023; 656:58-67. [PMID: 37984171 DOI: 10.1016/j.jcis.2023.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
Selective oxidations are important reactions in organic synthesis for fine chemical industry and conventional methods are expensive and produce a lot of toxic wastes. Herein, we demonstrate a facile and environmentally benign technique for liquid phase selective oxidation based on graphene-supported Mn single-atom-catalyst (SAMn-G) for efficient peroxymonosulfate (PMS) activation. The active Mn component in the developed SAMn-G catalyst reached single-atomic dispersion on graphene substrate via the coordination of individual Mn atoms with the doped N from the graphene framework. SAMn-G activated PMS via a nonradical-dominated pathway, which could convert aromatic alcohols into aldehydes or ketones at a mild temperature. The SAMn-G catalyst exhibited superior conversion and aldehyde selectivity in alcohol oxidation in comparison with their counterpart catalysts possessing either homogeneous Mn ions or oxide particles. The high activation efficiency of SAMn-G is due to the synergistic effect between Mn atoms and graphene substrate, as well as the dominated reaction pathway from nonradical oxidation, which is more selective than these free radicals to oxidize the alcohols. Concerted experimental evidence indicates that the non-radical oxidation process was highly possible to follow the electron transfer mechanism by PMS/organic adsorption on the surface of the catalyst. This study provides a fundamental understanding of PMS activation mediated by single atom catalyst for organic synthesis and the achieved insights can also help the catalyst design for other liquid phase selective oxidation processes.
Collapse
Affiliation(s)
- Jiaquan Li
- School of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, Sydney, NSW 2037, Australia
| | - Shiyong Zhao
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Claudia Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 119260, Singapore
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 119260, Singapore.
| | - Kai Wang
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, WA 6102, Australia
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, Sydney, NSW 2037, Australia.
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, WA 6102, Australia
| |
Collapse
|
9
|
Yan J, Xiao W, Zeng R, Zhao Z, Li X, Wang L. Local environmental engineering for highly stable single-atom Pt 1/CeO 2catalysts: first-principles insights. NANOTECHNOLOGY 2023; 34:505403. [PMID: 37789667 DOI: 10.1088/1361-6528/acf3f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023]
Abstract
Single-atom Pt1/CeO2catalysts may cope with the high cost and durability issues of fuel cell electrocatalysts. In the present study, the stability and underlying interaction mechanisms of the Pt1/CeO2system are systematically investigated using first-principles calculations. The Pt adsorption energy on CeO2surfaces can be divided into chemical interaction and surface deformation parts. The interaction energy, mainly associated with the local chemical environment, i.e. the number of Pt-O bonds, plays a major role in Pt1/CeO2stability. When forming a Pt-4O configuration, the catalytic system has the highest stability and Pt is oxidized to Pt2+. An electronic metal-support interaction mechanism is proposed for understanding Pt1/CeO2stability. In addition, our calculations show that the Pt1/CeO2(100) system is dynamically stable, and the external O environment can promote the further oxidation of Pt to Ptn+(2 ≤n< 4). The present study provides useful guidance for the experimental development of highly stable and efficient electrocatalysts for fuel cell applications.
Collapse
Affiliation(s)
- Jiasi Yan
- State Key Laboratory of Nonferrous Metals and Processes & National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, China GRINM Group Co., Ltd, Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd, Beijing 101407, People's Republic of China
- General Research Institute for Nonferrous Metals, Beijing 100088, People's Republic of China
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Wei Xiao
- State Key Laboratory of Nonferrous Metals and Processes & National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, China GRINM Group Co., Ltd, Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd, Beijing 101407, People's Republic of China
- General Research Institute for Nonferrous Metals, Beijing 100088, People's Republic of China
| | - Rong Zeng
- State Key Laboratory of Nonferrous Metals and Processes & National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, China GRINM Group Co., Ltd, Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd, Beijing 101407, People's Republic of China
- General Research Institute for Nonferrous Metals, Beijing 100088, People's Republic of China
| | - Zheng Zhao
- National Engineering Research Center for Rare Earth, GRINM Group Corporation Limited, Beijing 100088, People's Republic of China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Ligen Wang
- State Key Laboratory of Nonferrous Metals and Processes & National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, China GRINM Group Co., Ltd, Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd, Beijing 101407, People's Republic of China
- General Research Institute for Nonferrous Metals, Beijing 100088, People's Republic of China
| |
Collapse
|
10
|
Peng B, Zhang K, He MY. P-Band Intermediate States Mediate Electron Transfer at Confined Nanoscale. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13409-13419. [PMID: 37703076 DOI: 10.1021/acs.langmuir.3c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
In this Perspective, mainly based on the model of structural water molecules (SWs) as bright color emitters, we briefly summarize the development and theoretical elaboration of P-band intermediate state (PBIS) theory as well as its application in several typical catalytic redox reactions. In addition, with a simple equation (2∫ψ2σ1' + ∫ψ2σ2 + ∫ψ2π = 1), we clearly define how the interface states correlate with the three basic parameters of heterogeneous catalysis (conversion, selectivity, and stability), and what is the dynamic nature of catalytic active sites. Overall, the proposal of SW-dominated PBIS theory establishes an internal physical connection between the decay kinetics of excited electrons and the catalytic reaction kinetics and provides new insights into the physical origin of photoluminescence emission of low-dimensional quantum nanodots and the physical nature of nanoconfinement and nanoconfined catalysis.
Collapse
Affiliation(s)
- Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai 200062, China
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, Lyon 69364, CEDEX 07, France
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Ming-Yuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai 200062, China
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, Lyon 69364, CEDEX 07, France
| |
Collapse
|
11
|
He Y, Huang D. Single-Atom Platinum Catalyst for Efficient CO 2 Conversion via Reverse Water Gas Shift Reaction. Molecules 2023; 28:6630. [PMID: 37764406 PMCID: PMC10534439 DOI: 10.3390/molecules28186630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The need to tackle CO2 emissions arising from the continuously rising combustion of fossil fuels has sparked considerable interest in investigating the reverse water gas shift (RWGS) reaction. This reaction holds great promise as an alternative technique for the conversion and utilization of CO2. In this study, a scalable method was employed to synthesize a single-atom Pt catalyst, uniformly dispersed on SiC, where up to 6.4 wt% Pt1 was loaded onto a support based on ligand modification and UV photoreduction. This Pt1/SiC catalyst exhibited a high selectivity (100%) towards the RWGS reaction; 54% CO2 conversion was observed at 900 °C with a H2/CO2 feed-in ratio of 1:1, significantly higher than the conventional Pt nanoparticle counterparts. Moreover, Pt1/SiC displayed a robust stability during the long-term test. The activation energy with as-synthesized Pt1/SiC was further calculated to be 61.6 ± 6.4 kJ/mol, which is much lower than the 91.6 ± 15.9 kJ/mol of the Pt nanoparticle counterpart and other Pt-based catalysts reported so far. This work offers new insights into the utilization of diverse single-atom catalysts for the RWGS reaction and other crucial catalytic processes, paving the way for the further exploration and application of SACs in various industrial endeavors.
Collapse
Affiliation(s)
- Yulian He
- University of Michigan and Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Dahong Huang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Liu L, Zhou X, Xin C, Zhang B, Zhang G, Li S, Liu L, Tai X. Efficient oxidation of benzyl alcohol into benzaldehyde catalyzed by graphene oxide and reduced graphene oxide supported bimetallic Au-Sn catalysts. RSC Adv 2023; 13:23648-23658. [PMID: 37555092 PMCID: PMC10404934 DOI: 10.1039/d3ra03496h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
A series of bimetallic and monometallic catalysts comprising Au and Sn nanoparticles loaded on graphene oxide (GO) and reduced graphene oxide (rGO) were prepared using three distinct techniques: two-step immobilization, co-immobilization, and immobilization. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), and Inductively-coupled plasma optical emission spectroscopy (ICP-OES) were used to characterize the chemical and physical properties of prepared Au-Sn bimetallic and Au or Sn monometallic nanocatalysts. The catalytic performance of the prepared nanocatalysts was evaluated in the selective oxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH) using O2 as an oxidizing agent under moderate conditions. To obtain the optimal BzH yield, the experimental conditions and parameters, including the effects of the reaction time, temperature, pressure, and solvent type on BzOH oxidation, were optimized. Under optimal reaction conditions, bimetallic Au-Sn nanoparticles supported on GO (AuSn/GO-TS, 49.3%) produced a greater yield of BzH than the AuSn/rGO-TS catalysts (35.5%). The Au-Sn bimetallic catalysts were more active than the monometallic catalysts. AuSn/GO-TS and AuSn/rGO-TS prepared by the two-step immobilization method were more active than AuSn/GO-CoIM and AuSn/rGO-CoIM prepared by co-immobilization. In addition, the AuSn/GO-TS and AuSn/rGO-TS catalysts were easily separated from the mixture by centrifugation and reused at least four times without reducing the yield of BzH. These properties make Au-Sn bimetallic nanoparticles supported on GO and rGO particularly attractive for the environmentally friendly synthesis of benzaldehyde.
Collapse
Affiliation(s)
- Lili Liu
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University Weifang 261061 China
| | - Xiaojing Zhou
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University Weifang 261061 China
| | - Chunling Xin
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University Weifang 261061 China
| | - Baoli Zhang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University Weifang 261061 China
| | - Guangman Zhang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University Weifang 261061 China
| | - Shanshan Li
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University Weifang 261061 China
| | - Li Liu
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University Weifang 261061 China
| | - Xishi Tai
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University Weifang 261061 China
| |
Collapse
|
13
|
Guo Z, Zhang J, Luo Y, Li D, Zhao R, Huang Y, Ren H, Yao X. Atomically dispersed Au anchored on CeO 2to enhancing the antioxidant activity. NANOTECHNOLOGY 2023; 34:285101. [PMID: 37114843 DOI: 10.1088/1361-6528/acc9ca] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
The modification of Au nanoparticles can improve the antioxidant activity of CeO2, however, nano Au/CeO2has also met some problems such as low atomic utilization, the limit of reaction conditions, and high cost. Au single atom catalysts can well solve the above-mentioned problems, but there are some contradictory results about the activity of single atom Au1/CeO2and nano Au/CeO2. Here, we synthesized rod-like Au single atom Au/CeO2(0.4% Au1/CeO2) and nano Au/CeO2(1% Au/CeO2, 2% Au/CeO2and 4% Au/CeO2), and their antioxidant activity from strong to weak is 0.4% Au1/CeO2, 1% Au/CeO2, 2% Au/CeO2and 4% Au/CeO2, respectively. The higher antioxidant activity of 0.4% Au1/CeO2is mainly due to the high Au atomic utilization ratio and the stronger charge transfer between Au single atoms and CeO2, resulting in the higher content of Ce3+. Due to the coexistence of Au single atoms and Au NPs in 2% Au/CeO2, the antioxidant activity 2% Au/CeO2is higher than that of 4% Au/CeO2. And the enhancement effect of Au single atoms was not affected by the concentration of ·OH and material concentration. These results can promote the understanding of the antioxidant activity of 0.4% Au1/CeO2and promote its application.
Collapse
Affiliation(s)
- Zhimin Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jie Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yangkai Luo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dongxiao Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruihuan Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yubiao Huang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hao Ren
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
14
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
15
|
Aneggi E, Campagnolo F, Segato J, Zuccaccia D, Baratta W, Llorca J, Trovarelli A. Solvent-free selective oxidation of benzyl alcohol using Ru loaded ceria-zirconia catalysts. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
16
|
Qin J, Han B, Lu X, Nie J, Xian C, Zhang Z. Biomass-Derived Single Zn Atom Catalysts: The Multiple Roles of Single Zn Atoms in the Oxidative Cleavage of C-N Bonds. JACS AU 2023; 3:801-812. [PMID: 37006771 PMCID: PMC10052240 DOI: 10.1021/jacsau.2c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/19/2023]
Abstract
The C-N bond cleavage represents one kind of important organic and biochemical transformation, which has attracted great interest in recent years. The oxidative cleavage of C-N bonds in N,N-dialkylamines into N-alkylamines has been well documented, but it is challenging in the further oxidative cleavage of C-N bonds in N-alkylamines into primary amines due to the thermally unfavorable release of α-position H from N-Cα-H and the paralleling side reactions. Herein, a biomass-derived single Zn atom catalyst (ZnN4-SAC) was discovered to be a robust heterogeneous non-noble catalyst for the oxidative cleavage of C-N bonds in N-alkylamines with O2 molecules. Experimental results and DFT calculation revealed that ZnN4-SAC not only activates O2 to generate superoxide radicals (·O2 -) for the oxidation of N-alkylamines to generate imine intermediates (C=N), but the single Zn atoms also served as the Lewis acid sites to promote the cleavage of C=N bonds in imine intermediates, including the first addition of H2O to generate α-hydroxylamine intermediates and the following C-N bond cleavage via a H atom transfer process.
Collapse
Affiliation(s)
- Jingzhong Qin
- School
of Chemistry and Materials Science, South-Central
Minzu University, Wuhan, Hubei 430074, P. R. China
| | - Bo Han
- Sustainable
Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
| | - Xiaomei Lu
- School
of Chemistry and Materials Science, South-Central
Minzu University, Wuhan, Hubei 430074, P. R. China
| | - Jiabao Nie
- School
of Chemistry and Materials Science, South-Central
Minzu University, Wuhan, Hubei 430074, P. R. China
| | - Chensheng Xian
- School
of Chemistry and Materials Science, South-Central
Minzu University, Wuhan, Hubei 430074, P. R. China
| | - Zehui Zhang
- School
of Chemistry and Materials Science, South-Central
Minzu University, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
17
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
18
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
19
|
Yang M, Wu K, Sun S, Duan J, Liu X, Cui J, Liang S, Ren Y. Unprecedented Relay Catalysis of Curved Fe 1–N 4 Single-Atom Site for Remarkably Efficient 1O 2 Generation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Man Yang
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Keying Wu
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Shaodong Sun
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Jianglin Duan
- Interdisciplinary Research Center of Biology & Catalysis; School of Life Sciences, Northwestern Polytechnical University, Xi’an710072, Shaanxi, People’s Republic of China
| | - Xin Liu
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao066004, Hebei, People’s Republic of China
| | - Jie Cui
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Shuhua Liang
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Yujing Ren
- Interdisciplinary Research Center of Biology & Catalysis; School of Life Sciences, Northwestern Polytechnical University, Xi’an710072, Shaanxi, People’s Republic of China
| |
Collapse
|
20
|
Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration. Nat Commun 2022; 13:4244. [PMID: 35869061 PMCID: PMC9307766 DOI: 10.1038/s41467-022-31966-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/06/2022] [Indexed: 01/19/2023] Open
Abstract
AbstractMetal-support interaction predominately determines the electronic structure of metal atoms in single-atom catalysts (SACs), largely affecting their catalytic performance. However, directly tuning the metal-support interaction in oxide supported SACs remains challenging. Here, we report a new strategy to subtly regulate the strong covalent metal-support interaction (CMSI) of Pt/CoFe2O4 SACs by a simple water soaking treatment. Detailed studies reveal that the CMSI is weakened by the bonding of H+, generated from water dissociation, onto the interface of Pt-O-Fe, resulting in reduced charge transfer from metal to support and leading to an increase of C-H bond activation in CH4 combustion by more than 50 folds. This strategy is general and can be extended to other CMSI-existed metal-supported catalysts, providing a powerful tool to modulating the catalytic performance of SACs.
Collapse
|
21
|
Kang E, Choi J, Choi H, Yun J, Lee JH, Yoo M, Kim C, Lee HM, Kim HY. Gold single-atoms confined at the CeO x-TiO 2interfaces with enhanced low-temperature activity toward CO oxidation. NANOTECHNOLOGY 2022; 34:045703. [PMID: 36260974 DOI: 10.1088/1361-6528/ac9b61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
We use CeOx-TiO2hetero-interfaces generated on the surface of CeOx-TiO2hybrid oxide supporting powders to stabilize Au single-atoms (SAs) with excellent low-temperature activity toward CO oxidation. Based on intriguing density functional theory calculation results on the preferential formation of Au-SAs at the CeOx-TiO2interfaces and the high activity of Au-SAs toward the Mars-van Krevelen type CO oxidation, we synthesized a Au/CeOx-TiO2(ACT) catalyst with 0.05 wt.% of Au content. The Au-SAs stabilized at the CeOx-TiO2interfaces by electronic coupling between Au and Ce showed improved low-temperature CO oxidation activity than the conventional Au/TiO2control group catalyst. However, the light-off profile of ACT showed that the early activated Au-SAs are not vigorously participating in CO oxidation. The large portion of the positive effect on the overall catalytic activity from the low activation energy barrier of ACT was retarded by the negative impact from the decreasing active site density at high temperatures. We anticipate that the low-temperature activity and high-temperature stability of Au-SAs that stand against each other can be optimized by controlling the electronic coupling strength between Au-SAs and oxide clusters at the Au-oxide-TiO2interfaces. Our results show that atomic-precision interface modulation could fine-tune the catalytic activity and stability of Au-SAs.
Collapse
Affiliation(s)
- Eunji Kang
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jungwoo Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jieun Yun
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ju Hyeok Lee
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mi Yoo
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chunjoong Kim
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyuck Mo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
22
|
Chen Z, Zou M, Li G, Liu X, Zhou Y, Wang J. Enhancing efficiency of solvent-free oxidation of aromatic alcohols with atmospheric oxygen by POSS-based cationic polymer backbone paired heteropolyanions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Zhao E, Li M, Xu B, Wang X, Jing Y, Ma D, Mitchell S, Pérez‐Ramírez J, Chen Z. Transfer Hydrogenation with a Carbon‐Nitride‐Supported Palladium Single‐Atom Photocatalyst and Water as a Proton Source. Angew Chem Int Ed Engl 2022; 61:e202207410. [DOI: 10.1002/anie.202207410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
- En Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Longpan Road 159 Nanjing 210037 China
| | - Manman Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Longpan Road 159 Nanjing 210037 China
| | - Beibei Xu
- Physics Department Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai 200062 China
| | - Xue‐Lu Wang
- Physics Department Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai 200062 China
| | - Yu Jing
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Longpan Road 159 Nanjing 210037 China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT Peking University Beijing 100871 China
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| | - Javier Pérez‐Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Longpan Road 159 Nanjing 210037 China
| |
Collapse
|
24
|
Hu H, Xi J. Single-atom catalysis for organic reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Zhao E, Li M, Xu B, Wang XL, Jing Y, Ma D, Mitchell S, Pérez-Ramírez J, Chen Z. Transfer Hydrogenation with a Carbon‐Nitride‐Supported Palladium Single‐Atom Photocatalyst and Water as a Proton Source. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- En Zhao
- Nanjing Forestry University Colleague of Chemical Engineering CHINA
| | - Manman Li
- Nanjing Forestry University Colleague of Chemical Engineering CHINA
| | - Beibei Xu
- East China Normal University Physics Department CHINA
| | - Xue-Lu Wang
- East China Normal University Physics Department CHINA
| | - Yu Jing
- Nanjing Forestry University Colleague of Chemical Engineering CHINA
| | - Ding Ma
- Peking University College of Chemistry and Molecular Engineering and College of Engineering CHINA
| | - Sharon Mitchell
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Department of Chemistry and Applied Biosciences SWITZERLAND
| | - Javier Pérez-Ramírez
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Department of Chemistry and Applied Biosciences SWITZERLAND
| | - Zupeng Chen
- Nanjing Forestry University College of Chemical Engineering 159 Longpan Road Nanjing CHINA
| |
Collapse
|
26
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
27
|
A Tiny Pore-Confined Solid-Liquid Interface for In-situ ToF-SIMS Electrochemistry of Nitrobenzoic Acid. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Guo M, Ma P, Wang J, Xu H, Zheng K, Cheng D, Liu Y, Guo G, Dai H, Duan E, Deng J. Synergy in Au-CuO Janus Structure for Catalytic Isopropanol Oxidative Dehydrogenation to Acetone. Angew Chem Int Ed Engl 2022; 61:e202203827. [PMID: 35419926 DOI: 10.1002/anie.202203827] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/09/2022]
Abstract
The controlled oxidation of alcohols to the corresponding ketones or aldehydes via selective cleavage of the β-C-H bond of alcohols under mild conditions still remains a significant challenge. Although the metal/oxide interface is highly active and selective, the interfacial sites fall far behind the demand, due to the large and thick support. Herein, we successfully develop a unique Au-CuO Janus structure (average particle size=3.8 nm) with an ultrathin CuO layer (0.5 nm thickness) via a bimetal in situ activation and separation strategy. The resulting Au-CuO interfacial sites prominently enhance isopropanol adsorption and decrease the energy barrier of β-C-H bond scission from 1.44 to 0.01 eV due to the strong affinity between the O atom of CuO and the H atom of isopropanol, compared with Au sites alone, thereby achieving ultrahigh acetone selectivity (99.3 %) over 1.1 wt % AuCu0.75 /Al2 O3 at 100 °C and atmospheric pressure with 97.5 % isopropanol conversion. Furthermore, Au-CuO Janus structures supported on SiO2 , TiO2 or CeO2 exhibit remarkable catalytic performance, and great promotion in activity and acetone selectivity is achieved as well for other reducible oxides derived from Fe, Co, Ni and Mn. This study should help to develop strategies for maximized interfacial site construction and structure optimization for efficient β-C-H bond activation.
Collapse
Affiliation(s)
- Meng Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Peijie Ma
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jiayi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haoxiang Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kun Zheng
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuxi Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Guangsheng Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Hongxing Dai
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, P. R. China
| | - Jiguang Deng
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
29
|
Zhu C, Liang JX, Wang YG, Li J. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Chen Z, Liu J, Koh MJ, Loh KP. Single-Atom Catalysis: From Simple Reactions to the Synthesis of Complex Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103882. [PMID: 34510576 DOI: 10.1002/adma.202103882] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/19/2021] [Indexed: 06/13/2023]
Abstract
To date, the scope of single-atom catalysts (SAC) in liquid-phase transformations is rather limited owing to stability issues and the inability to activate complex substances. This calls for a better design of the catalyst support that can provide a dynamic coordination environment needed for catalytic action, and yet retain robustness against leaching or aggregation. In addition, the chemical orthogonality of SAC is useful for designing tandem or multicomponent reactions, in which side reactions common to metal nanoparticles are suppressed. In this review, the intrinsic mechanism will be highlighted that controls reaction efficiency and selectivity in SAC-catalyzed pathways, as well as the structural dynamism of SAC under complex liquid-phase conditions. These mechanistic insights are helpful for the development of next-generation SAC systems for the synthesis of high-value pharmaceuticals through late-stage functionalization, sequential and multicomponent strategies.
Collapse
Affiliation(s)
- Zhongxin Chen
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jia Liu
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ming Joo Koh
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Kian Ping Loh
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
31
|
Li Z, Li H, Yang Z, Lu X, Ji S, Zhang M, Horton JH, Ding H, Xu Q, Zhu J, Yu J. Facile Synthesis of Single Iron Atoms over MoS 2 Nanosheets via Spontaneous Reduction for Highly Efficient Selective Oxidation of Alcohols. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201092. [PMID: 35398977 DOI: 10.1002/smll.202201092] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The facile creation of high-performance single-atom catalysts (SACs) is intriguing in heterogeneous catalysis, especially on 2D transition-metal dichalcogenides. An efficient spontaneous reduction approach to access atomically dispersed iron atoms supported over defect-containing MoS2 nanosheets is herein reported. Advanced characterization methods demonstrate that the isolated iron atoms situate atop of molybdenum atoms and coordinate with three neighboring sulfur atoms. This Fe SAC delivers exceptional catalytic efficiency (1 atm O2 @ 120 °C) in the selective oxidation of benzyl alcohol to benzaldehyde, with 99% selectivity under almost 100% conversion. The turnover frequency is calculated to be as high as 2105 h-1 . Moreover, it shows admirable recyclability, storage stability, and substrate tolerance. Density functional theory calculations reveal that the high catalytic activity stems from the optimized electronic structure of single iron atoms over the MoS2 support.
Collapse
Affiliation(s)
- Zhijun Li
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials and Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Honghong Li
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials and Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Zening Yang
- School of Materials Science and Engineering, Jiangsu Province Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing, 211189, P. R. China
| | - Xiaowen Lu
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials and Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Siqi Ji
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials and Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Mingyang Zhang
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials and Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - J Hugh Horton
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials and Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Jin Yu
- School of Materials Science and Engineering, Jiangsu Province Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
32
|
Synergy in Au‐CuO Janus Structure for Catalytic Isopropanol Oxidative Dehydrogenation to Acetone. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Liu C, Li T, Dai X, Zhao J, He D, Li G, Wang B, Cui X. Catalytic Activity Enhancement on Alcohol Dehydrogenation via Directing Reaction Pathways from Single- to Double-Atom Catalysis. J Am Chem Soc 2022; 144:4913-4924. [PMID: 35261231 DOI: 10.1021/jacs.1c12705] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To further improve the intrinsic reactivity of single-atom catalysts (SACs), the controllable modification of a single site by coordinating with a second neighboring metal atom, developing double-atom catalysts (DACs), affords new opportunities. Here we report a catalyst that features two bonded Fe-Co double atoms, which is well represented by an FeCoN6(OH) ensemble with 100% metal dispersion, that work together to switch the reaction mechanism in alcohol dehydrogenation under oxidant-free conditions. Compared with Fe-SAC and Co-SAC, FeCo-DAC displays higher activity performance, yielding the desired products in up to 98% yields. Moreover, a broad diversity of benzyl alcohols and aliphatic alcohols convert into the corresponding dehydrogenated products with excellent yields and high selectivity. The kinetic reaction results show that lower activation energy is obtained by FeCo-DAC than that by Fe-SAC and Co-SAC. Moreover, computational studies demonstrate that the reaction path by DACs is different from that by SACs, providing a rationale for the observed enhancements.
Collapse
Affiliation(s)
- Ce Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Teng Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Xingchao Dai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Jian Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Dongcheng He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China.,University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China
| | - Guomin Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China.,University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China
| | - Bin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| |
Collapse
|
34
|
Gawish MA, Drmosh QA, Onaizi SA. Single Atom Catalysts: An Overview of the Coordination and Interactions with Metallic Supports. CHEM REC 2022; 22:e202100328. [PMID: 35263021 DOI: 10.1002/tcr.202100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/10/2022]
Abstract
Catalyst utilization is a key economic factor in heterogeneous catalysis, particularly, when noble metals are used as the active phase. A huge saving on catalyst cost can be achieved with developing a single atomic layer of the active catalyst on a given cheap support. Besides the economic benefit, single atom catalysts (SACs) have also shown superior activity and selectivity relative to catalytic particles or nanoparticles; yet they are prone to aggregation and deactivation. The development of effective, stable, and commercially viable SACs is still a huge challenge. One of the remaining key obstacles is the ability to easily and effectively tune SACs-support interactions and coordination in a way that enables the production of robust, stable, and versatile SACs. Accordingly, the coordination and interactions between metallic supports and SACs and their impacts on SACs stability and activity are reviewed in this article.
Collapse
Affiliation(s)
- Monaf Abdalmajid Gawish
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia
| | - Q A Drmosh
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia.,Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia
| |
Collapse
|
35
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
36
|
Li J, Yue MF, Wei YM, Li JF. Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Chen L, Verma P, Hou K, Qi Z, Zhang S, Liu YS, Guo J, Stavila V, Allendorf MD, Zheng L, Salmeron M, Prendergast D, Somorjai GA, Su J. Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single-site platinum catalyst. Nat Commun 2022; 13:1092. [PMID: 35232968 PMCID: PMC8888751 DOI: 10.1038/s41467-022-28607-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Developing highly efficient and reversible hydrogenation-dehydrogenation catalysts shows great promise for hydrogen storage technologies with highly desirable economic and ecological benefits. Herein, we show that reaction sites consisting of single Pt atoms and neighboring oxygen vacancies (VO) can be prepared on CeO2 (Pt1/CeO2) with unique catalytic properties for the reversible dehydrogenation and rehydrogenation of large molecules such as cyclohexane and methylcyclohexane. Specifically, we find that the dehydrogenation rate of cyclohexane and methylcyclohexane on such sites can reach values above 32,000 molH2 molPt-1 h-1, which is 309 times higher than that of conventional supported Pt nanoparticles. Combining of DRIFTS, AP-XPS, EXAFS, and DFT calculations, we show that the Pt1/CeO2 catalyst exhibits a super-synergistic effect between the catalytic Pt atom and its support, involving redox coupling between Pt and Ce ions, enabling adsorption, activation and reaction of large molecules with sufficient versatility to drive abstraction/addition of hydrogen without requiring multiple reaction sites.
Collapse
Affiliation(s)
- Luning Chen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Pragya Verma
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kaipeng Hou
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Zhiyuan Qi
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Shuchen Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | | | - Lansun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Miquel Salmeron
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Science and Engineering Department, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Gabor A Somorjai
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 94720, USA.
| | - Ji Su
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
38
|
Li Z, Fan T, Li H, Lu X, Ji S, Zhang J, Horton JH, Xu Q, Zhu J. Atomically Defined Undercoordinated Copper Active Sites over Nitrogen-Doped Carbon for Aerobic Oxidation of Alcohols. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106614. [PMID: 35060330 DOI: 10.1002/smll.202106614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Selective aerobic oxidation of alcohols offers an attractive means to address challenges in the modern chemical industry, but the development of non-noble metal catalysts with superior efficacy for this reaction remains a grand challenge. Here, this study reports on such a catalyst based on atomically defined undercoordinated copper atoms over nitrogen-doped carbon support as an efficient, durable, and scalable heterogeneous catalyst for selective aerobic oxidation of alcohols. This catalyst exhibits extremely high intrinsic catalytic activity (TOF of 7692 h-1 ) in the oxidation of cinnamyl alcohol to afford cinnamaldehyde, along with exceptional recyclability (at least eight cycles), scalability, and broad substrate scope. DFT calculations suggest that the high activity derives from the low oxidation state and the unique coordination environment of the copper sites in the catalyst. These findings pave the way for the design of highly active and stable single atom catalysts to potentially address challenges in synthetic chemistry.
Collapse
Affiliation(s)
- Zhijun Li
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Tingting Fan
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Honghong Li
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Xiaowen Lu
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Siqi Ji
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - J Hugh Horton
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| |
Collapse
|
39
|
Selective Hydrogenation of Nitroarenes by Single-Atom Pt Catalyst Through Hydrogen Transfer Reaction. Top Catal 2022. [DOI: 10.1007/s11244-022-01566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Li WH, Yang J, Wang D, Li Y. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Li Y, Zhang P, Xiong J, Wei Y, Chi H, Zhang Y, Lai K, Zhao Z, Deng J. Facilitating Catalytic Purification of Auto-Exhaust Carbon Particles via the Fe 2O 3{113} Facet-dependent Effect in Pt/Fe 2O 3 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16153-16162. [PMID: 34797981 DOI: 10.1021/acs.est.1c05908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The purification efficiency of auto-exhaust carbon particles in the catalytic aftertreatment system of vehicle exhaust is strongly dependent on the interface nanostructure between the noble metal component and oxide supports. Herein, we have elaborately synthesized the catalysts (Pt/Fe2O3-R) of Pt nanoparticles decorated on the hexagonal bipyramid α-Fe2O3 nanocrystals with co-exposed twelve {113} and six {104} facets. The area ratios (R) of co-exposed {113} to {104} facets in α-Fe2O3 nanocrystals were adjusted by the fluoride ion concentration in the hydrothermal method. The strong Pt-Fe2O3{113} facet interaction boosts the formation of coordination unsaturated ferric sites for enhancing adsorption/activation of O2 and NO. Pt/Fe2O3-R catalysts exhibited the Fe2O3{113} facet-dependent performance during catalytic purification of soot particles in the presence of H2O. Among the catalysts, the Pt/Fe2O3-19 catalyst exhibits the highest catalytic activities (T50 = 365 °C, TOF = 0.13 h-1), the lowest apparent activation energy (69 kJ mol-1), and excellent catalytic stability during soot purification. Combined with the results of characterizations and density functional theory calculations, the catalytic mechanism is proposed: the active sites located at the Pt-Fe2O3{113} interface can boost the key step of NO oxidation to NO2. The crystal facet engineering is an effective strategy to obtain efficient catalysts for soot purification in practical applications.
Collapse
Affiliation(s)
- Yuanfeng Li
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Jing Xiong
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Hongjie Chi
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Yilin Zhang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Kezhen Lai
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Jiguang Deng
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
42
|
Park K, Jiang J, Yamada T, Sajiki H. Ruthenium-on-Carbon-Catalyzed Facile Solvent-Free Oxidation of Alcohols: Efficient Progress under Solid-Solid (Liquid)-Gas Conditions. Chem Pharm Bull (Tokyo) 2021; 69:1200-1205. [PMID: 34853287 DOI: 10.1248/cpb.c21-00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A protocol for the ruthenium-on-carbon (Ru/C)-catalyzed solvent-free oxidation of alcohols, which proceeds efficiently under solid-solid (liquid)-gas conditions, was developed. Various primary and secondary alcohols were transformed to corresponding aldehydes and ketones in moderate to excellent isolated yields by simply stirring in the presence of 10% Ru/C under air or oxygen conditions. The solvent-free oxidation reactions proceeded efficiently regardless of the solid or liquid state of the substrates and reagents and could be applied to gram-scale synthesis without loss of the reaction efficiency. Furthermore, the catalytic activity of Ru/C was maintained after five reuse cycles.
Collapse
Affiliation(s)
- Kwihwan Park
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| | - Jing Jiang
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| | - Tsuyoshi Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| |
Collapse
|
43
|
|
44
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
45
|
Etim UJ, Bai P, Gazit OM, Zhong Z. Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1919044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ubong J. Etim
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| | - Peng Bai
- College of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Oz M. Gazit
- Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
- Technion Israel Institute of Technology (IIT), Haifa, Israel
| |
Collapse
|
46
|
Research Progress and Application of Single-Atom Catalysts: A Review. Molecules 2021; 26:molecules26216501. [PMID: 34770910 PMCID: PMC8587903 DOI: 10.3390/molecules26216501] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022] Open
Abstract
Due to excellent performance properties such as strong activity and high selectivity, single-atom catalysts have been widely used in various catalytic reactions. Exploring the application of single-atom catalysts and elucidating their reaction mechanism has become a hot area of research. This article first introduces the structure and characteristics of single-atom catalysts, and then reviews recent preparation methods, characterization techniques, and applications of single-atom catalysts, including their application potential in electrochemistry and photocatalytic reactions. Finally, application prospects and future development directions of single-atom catalysts are outlined.
Collapse
|
47
|
Mu Y, Wang T, Zhang J, Meng C, Zhang Y, Kou Z. Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00124-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Zhou Y, Xi W, Xie Z, You Z, Jiang X, Han B, Lang R, Wu C. High-Loading Pt Single-Atom Catalyst on CeO 2 -Modified Diatomite Support. Chem Asian J 2021; 16:2622-2625. [PMID: 34403212 DOI: 10.1002/asia.202100730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Indexed: 11/09/2022]
Abstract
Single-atom catalysis has become a new branch in heterogeneous catalysis. Although the naturally produced SiO2 -based materials are abundant and stable, fabrication of single-atom catalysts on such supports with high loading remains as a formidable challenge due to the lack of bonding sites to anchor the isolated metal species. Herein, modifying the diatomite, a kind of pure SiO2 mineral, with CeO2 nanoparticles is demonstrated to increase the defect sites on the support. The enhanced metal-support interaction maintains the atomic dispersion of Pt species with above 1 wt.% loading, exhibiting good performance in the selective hydrogenation of phenylacetylene to styrene.
Collapse
Affiliation(s)
- Yang Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wei Xi
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials, School of Materials, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zixin Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhixin You
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xunzhu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R.China
| | - Bing Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R.China
| | - Rui Lang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Chuande Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.,State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
49
|
Importance of Surface Topography in Both Biological Activity and Catalysis of Nanomaterials: Can Catalysis by Design Guide Safe by Design? Int J Mol Sci 2021; 22:ijms22158347. [PMID: 34361117 PMCID: PMC8348784 DOI: 10.3390/ijms22158347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
It is acknowledged that the physicochemical properties of nanomaterials (NMs) have an impact on their toxicity and, eventually, their pathogenicity. These properties may include the NMs’ surface chemical composition, size, shape, surface charge, surface area, and surface coating with ligands (which can carry different functional groups as well as proteins). Nanotopography, defined as the specific surface features at the nanoscopic scale, is not widely acknowledged as an important physicochemical property. It is known that the size and shape of NMs determine their nanotopography which, in turn, determines their surface area and their active sites. Nanotopography may also influence the extent of dissolution of NMs and their ability to adsorb atoms and molecules such as proteins. Consequently, the surface atoms (due to their nanotopography) can influence the orientation of proteins as well as their denaturation. However, although it is of great importance, the role of surface topography (nanotopography) in nanotoxicity is not much considered. Many of the issues that relate to nanotopography have much in common with the fundamental principles underlying classic catalysis. Although these were developed over many decades, there have been recent important and remarkable improvements in the development and study of catalysts. These have been brought about by new techniques that have allowed for study at the nanoscopic scale. Furthermore, the issue of quantum confinement by nanosized particles is now seen as an important issue in studying nanoparticles (NPs). In catalysis, the manipulation of a surface to create active surface sites that enhance interactions with external molecules and atoms has much in common with the interaction of NP surfaces with proteins, viruses, and bacteria with the same active surface sites of NMs. By reviewing the role that surface nanotopography plays in defining many of the NMs’ surface properties, it reveals the need for its consideration as an important physicochemical property in descriptive and predictive toxicology. Through the manipulation of surface topography, and by using principles developed in catalysis, it may also be possible to make safe-by-design NMs with a reduction of the surface properties which contribute to their toxicity.
Collapse
|
50
|
Chen L, Qi Z, Peng X, Chen JL, Pao CW, Zhang X, Dun C, Young M, Prendergast D, Urban JJ, Guo J, Somorjai GA, Su J. Insights into the Mechanism of Methanol Steam Reforming Tandem Reaction over CeO 2 Supported Single-Site Catalysts. J Am Chem Soc 2021; 143:12074-12081. [PMID: 34328729 DOI: 10.1021/jacs.1c03895] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrated how the special synergy between a noble metal single site and neighboring oxygen vacancies provides an "ensemble reaction pool" for high hydrogen generation efficiency and carbon dioxide (CO2) selectivity of a tandem reaction: methanol steam reforming. Specifically, the hydrogen generation rate over single site Ru1/CeO2 catalyst is up to 9360 mol H2 per mol Ru per hour (579 mLH2 gRu-1 s-1) with 99.5% CO2 selectivity. Reaction mechanism study showed that the integration of metal single site and O vacancies facilitated the tandem reaction, which consisted of methanol dehydrogenation, water dissociation, and the subsequent water gas shift (WGS) reaction. In addition, the strength of CO adsorption and the reaction activation energy difference between methanol dehydrogenation and WGS reaction play an important role in determining the activity and CO2 selectivity. Our study paves the way for the further rational design of single site catalysts at the atomic scale. Furthermore, the development of such highly efficient and selective hydrogen evolution systems promises to deliver highly desirable economic and ecological benefits.
Collapse
Affiliation(s)
- Luning Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | | | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Science-Based Industrial Park Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Science-Based Industrial Park Hsinchu 30076, Taiwan
| | - Xibo Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | - Melissa Young
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | | | | | | | - Gabor A Somorjai
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | | |
Collapse
|