1
|
Ahmadi M, Ehrmann K, Koch T, Liska R, Stampfl J. From Unregulated Networks to Designed Microstructures: Introducing Heterogeneity at Different Length Scales in Photopolymers for Additive Manufacturing. Chem Rev 2024; 124:3978-4020. [PMID: 38546847 PMCID: PMC11009961 DOI: 10.1021/acs.chemrev.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 04/11/2024]
Abstract
Photopolymers have been optimized as protective and decorative coating materials for decades. However, with the rise of additive manufacturing technologies, vat photopolymerization has unlocked the use of photopolymers for three-dimensional objects with new material requirements. Thus, the originally highly cross-linked, amorphous architecture of photopolymers cannot match the expectations for modern materials anymore, revealing the largely unanswered question of how diverse properties can be achieved in photopolymers. Herein, we review how microstructural features in soft matter materials should be designed and implemented to obtain high performance materials. We then translate these findings into chemical design suggestions for enhanced printable photopolymers. Based on this analysis, we have found microstructural heterogenization to be the most powerful tool to tune photopolymer performance. By combining the chemical toolbox for photopolymerization and the analytical toolbox for microstructural characterization, we examine current strategies for physical heterogenization (fillers, inkjet printing) and chemical heterogenization (semicrystalline polymers, block copolymers, interpenetrating networks, photopolymerization induced phase separation) of photopolymers and put them into a material scientific context to develop a roadmap for improving and diversifying photopolymers' performance.
Collapse
Affiliation(s)
- Mojtaba Ahmadi
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Katharina Ehrmann
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Thomas Koch
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Robert Liska
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Jürgen Stampfl
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| |
Collapse
|
2
|
Gencosman E, Kiliclar HC, Fiedor P, Yilmaz G, Ortyl J, Yagci Y, Kiskan B. Exploiting Visible-Light Induced Radical to Cation Transformation Pathway for Reactivity Enhanced Electrophilic Aromatic Substitution Polymerization of Heteroaromatics. Macromol Rapid Commun 2024; 45:e2300458. [PMID: 37955104 DOI: 10.1002/marc.202300458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/05/2023] [Indexed: 11/14/2023]
Abstract
A straightforward approach is employed to synthesize methylene-bridged poly(hetero aromatic)s based on furan, pyrrole, thiophene, and thiophene derivatives. The process involves an electrophilic aromatic substitution reaction facilitated by a visible light-initiated system consisting of manganese decacarbonyl and an iodonium salt. The approach mainly relies on the formation of halomethylium cation, the attack of this cation to heteroaromatic, regeneration of methylium cation on the heteroaromatic, and reactivity differences between halomethylium and heteroaromatic methylium cations for successful polymerizations. This innovative synthetic strategy lead to the formation of polymers with relatively high molecular weights as the stoichiometric imbalance between the comonomers increased. Accordingly, these newly obtained polymers exhibit remarkable fluorescence properties, even at excitation wavelengths as low as 330 nm. Moreover, by harnessing the halogens at chain ends of homopolymers, block copolymers are successfully synthesized, offering opportunities for tailored applications in diverse fields.
Collapse
Affiliation(s)
- Emirhan Gencosman
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Huseyin Cem Kiliclar
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Pawel Fiedor
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków, 31-155, Poland
| | - Gorkem Yilmaz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków, 31-155, Poland
| | - Yusuf Yagci
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Baris Kiskan
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
3
|
Grob B, Simonis M, Liska R, Catel Y. Ethyl-2-(tosylmethyl)acrylate: A promising chain transfer agent for the development of low-shrinkage dental composites. Dent Mater 2023; 39:1013-1021. [PMID: 37734972 DOI: 10.1016/j.dental.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE To evaluate the potential of ethyl-2-(tosylmethyl)acrylate (ASEE) as chain transfer agent for the development of low-shrinkage photopolymerizable dental composites. METHODS Composites containing 10, 20 and 30 mol% of ASEE in their organic matrix were formulated. Camphorquinone (CQ)/ethyl 4-(dimethylamino)benzoate (EDAB) (0.33 wt%/0.60 wt%), CQ/EDAB/Ivocerin® (0.33 wt%/0.60 wt%/0.10, 0.25 or 0.50 wt%), CQ/EDAB/SpeedCure 938 (SC-938) (0.33 wt%/0.60 wt%/0.30, 0.50 or 1.00 wt%) and Ivocerin® (0.50 wt%) were used as photoinitiator systems. The glass transition temperature (Tg) and the crosslink density were determined by DMTA measurements. The flexural strength/modulus and ambient light working time were assessed according to ISO 4049. The shrinkage force was evaluated using a universal testing machine. The double bond conversion (DBC) was determined by NIR spectroscopy. DBC, flexural strength and modulus were measured after the storage of the specimens in deionized water at 37 °C for 24 h. The DBC, flexural strength and modulus data were analyzed by one-way ANOVA with p = 0.05 as significance level. RESULTS ASEE-based composites containing the classical initiator system CQ/EDAB exhibited low mechanical properties (flexural strength/modulus) and DBC. The screening of various photoinitiator systems showed that composites based on CQ/EDAB/Ivocerin® (0.33 wt%/0.60 wt%/0.50 wt%), Ivocerin® (0.50 wt%) or CQ/EDAB/SC-938 (0.33 wt%/0.60 wt%/1.00 wt%) were particularly attractive. Indeed, the use of these photoinitiator systems enabled the formulation of composites containing up to 30 mol% ASEE exhibiting excellent mechanical properties, high DBC, good network homogeneity and low shrinkage force values. Interestingly, the addition of SC-938 did not impair the ambient light working time of the uncured composites, whereas the incorporation of 0.50 wt% Ivocerin® resulted in a strong decrease of this value. SIGNIFICANCE The addition of the allyl sulfone ASEE in combination with the initiator system CQ/EDAB/SC-938 (0.33 wt%/ 0.60 wt%/ 1.00 wt%) is a promising strategy to develop low-shrinkage dental composites which exhibit excellent mechanical properties, low shrinkage force, high DBC and suitable ambient light working time.
Collapse
Affiliation(s)
- Benjamin Grob
- Ivoclar Vivadent AG, Bendererstrasse 2, FL-9494 Schaan, Liechtenstein
| | - Michael Simonis
- Ivoclar Vivadent AG, Bendererstrasse 2, FL-9494 Schaan, Liechtenstein
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163 MC, A-1060 Vienna, Austria
| | - Yohann Catel
- Ivoclar Vivadent AG, Bendererstrasse 2, FL-9494 Schaan, Liechtenstein.
| |
Collapse
|
4
|
Kaya K, Kiliclar HC, Yagci Y. Photochemically generated ionic species for cationic and step-growth polymerizations. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
5
|
Tomal W, Kiliclar HC, Fiedor P, Ortyl J, Yagci Y. Visible Light Induced High Resolution and Swift 3D Printing System by Halogen Atom Transfer. Macromol Rapid Commun 2023; 44:e2200661. [PMID: 36134541 DOI: 10.1002/marc.202200661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Indexed: 11/08/2022]
Abstract
3D printing technology offers solutions for numerous needs in industry and the daily life of individuals. In recent years, most research efforts have focused on this technology as the market share has grown and requirements have become specified in their related fields. In this work, a novel visible light induced 3D printing system with high resolution and short printing time using dimanganese decacarbonyl (Mn2 (CO)10 ) in combination with organic halides is reported. The radicals formed through halogen abstraction by photochemically generated manganese pentacarbonyl from organic halides with high quantum efficiency initiate the polymerization of acrylic resins. The kinetics of the process using various halide-containing molecules in the photoinitiaiting system are investigated with real-time fourrier transform infrared spectroscopy and photo-differential scanning calorimetry analyses, and the characteristics of 3D printouts are presented and compared with that of the commercial photoinitiator, 2,4,6-trimethylbenzoyl)phosphine oxide without Mn2 (CO)10 . The results obtained confirm that the combination of Mn2 (CO)10 and structurally diverse organic halides is a class of promising 3D system for various applications.
Collapse
Affiliation(s)
- Wiktoria Tomal
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków, 31-155, Poland
| | - Huseyin Cem Kiliclar
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Pawel Fiedor
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków, 31-155, Poland
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków, 31-155, Poland
| | - Yusuf Yagci
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
6
|
Evaluation of allyl sulfides bearing methacrylate groups as addition-fragmentation chain transfer agents for low shrinkage dental composites. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Luu TG, Bui TT, Kim HK. Visible-light-induced one-pot synthesis of sulfonic esters via multicomponent reaction of arylazo sulfones and alcohols. RSC Adv 2022; 12:17499-17504. [PMID: 35765441 PMCID: PMC9190201 DOI: 10.1039/d2ra02656b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/06/2022] [Indexed: 01/16/2023] Open
Abstract
Sulfonic ester is a chemical structure common to many organic molecules, including biologically active compounds. Herein, a visible-light-induced synthetic method to prepare aryl sulfonic ester from arylazo sulfones was developed. In the present study, a one-pot reaction was carried out using arylazo sulfones, DABSO (DABCO·(SO2)2), and alcohols in the presence of CuI as a coupling catalyst and HCl as an additive to yield sulfonic esters via multicomponent reaction. This synthetic method afforded a wide range of sulfonic esters with high yields under mild conditions.
Collapse
Affiliation(s)
- Truong Giang Luu
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Tien Tan Bui
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital Jeonju 54907 Republic of Korea
| |
Collapse
|
8
|
Consolati G, Quasso F, Yaynik E, Briatico Vangosa F, Šauša O, Ehrmann K, Švajdlenková H. Thermal expansion of free volume in "classic" and regulated dimethacrylates: photocured directly and via a mask to study pillar formation. Phys Chem Chem Phys 2022; 24:14299-14309. [PMID: 35642648 DOI: 10.1039/d2cp00882c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The temperature dependence of free volume in dimethacrylates (poly2M), cured by direct irradiation (poly2M-A) or via a mask (poly2M-B), and in a thiol-based 2M sample (poly2M-co-EDDT), was investigated by positron annihilation lifetime spectroscopy (PALS) and dilatometry (DIL) to study the influence of thiol regulation on the microstructure via free volume characteristics. It was found that the free volume fraction as determined from experimental data by using the standard spherical approach for the hole shapes showed systematic differences from the analogous quantity as evaluated from the lattice-hole theory. Much better results were obtained for cylindrical holes, which expand 'anisotropically' in poly2M samples and 'isotropically' in the poly2M-co-EDDT resin. In addition, the hydrogen bond changes and the conversion of monomers in cured samples studied by near infra-red spectroscopy (NIR) revealed spectrum-structure correlations for the final cured thermosets.
Collapse
Affiliation(s)
- Giovanni Consolati
- Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa 34, 20156, Milano, Italy.
| | - Fiorenza Quasso
- Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa 34, 20156, Milano, Italy.
| | - Erkin Yaynik
- Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa 34, 20156, Milano, Italy.
| | - Francesco Briatico Vangosa
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Ondrej Šauša
- Department of Nuclear Physics, Institute of Physics of SAS, Dúbravská cesta 9, 845 11, Bratislava, Slovakia.,Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Katharina Ehrmann
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC, 1060, Vienna, Austria
| | - Helena Švajdlenková
- Department of Synthesis and Characterization of polymers, Polymer Institute of SAS, Dúbravská cesta 9, 845 41, Bratislava, Slovakia.
| |
Collapse
|
9
|
Tan S, Wu Y, Hou Y, Deng H, Liu X, Wang S, Xiang H, Rong M, Zhang M. Waste nitrile rubber powders enabling tougher 3D printing photosensitive resin composite. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Fang H, Guymon CA. Recent advances to decrease shrinkage stress and enhance mechanical properties in free radical polymerization: a review. POLYM INT 2021. [DOI: 10.1002/pi.6341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huayang Fang
- Department of Chemical and Biochemical Engineering University of Iowa Iowa City IA USA
| | - C. Allan Guymon
- Department of Chemical and Biochemical Engineering University of Iowa Iowa City IA USA
| |
Collapse
|
11
|
Kiliclar HC, Gencosman E, Yagci Y. Visible Light Induced Conventional Step-Growth and Chain-Growth Condensation Polymerizations by Electrophilic Aromatic Substitution. Macromol Rapid Commun 2021; 43:e2100584. [PMID: 34610174 DOI: 10.1002/marc.202100584] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Indexed: 11/06/2022]
Abstract
A novel visible light induced step-growth polymerization by electrophilic aromatic substitution between photochemically generated carbocations and dimethoxybenzene nucleophile is described. Conventional step-growth polymerization and chain-growth condensation polymerization (CCP) mechanisms are presented. It is found that by changing the molar ratios of the monomers slightly, the CCP mechanism becomes operative and relatively higher molecular weight polymers are obtained because of the higher reactivity of the end groups of the intermediates and oligomers than that of the monomers. The possibility of grafting onto polymers containing epoxide at their side chains by photoinduced chain end activation of poly(dimethoxyphenylene methylene) is demonstrated. This study is expected to promote potential applications of the combination of photoinduced electron transfer reactions and CCP in macromolecular synthesis and material science.
Collapse
Affiliation(s)
- Huseyin Cem Kiliclar
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Emirhan Gencosman
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.,Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
12
|
Sandmeier M, Paunović N, Conti R, Hofmann L, Wang J, Luo Z, Masania K, Wu N, Kleger N, Coulter FB, Studart AR, Grützmacher H, Leroux JC, Bao Y. Solvent-Free Three-Dimensional Printing of Biodegradable Elastomers Using Liquid Macrophotoinitiators. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Matthias Sandmeier
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Nevena Paunović
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Riccardo Conti
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Leopold Hofmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jieping Wang
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Zhi Luo
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Kunal Masania
- Complex Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Na Wu
- Lab of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Nicole Kleger
- Complex Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Fergal Brian Coulter
- Complex Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - André R. Studart
- Complex Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Hansjörg Grützmacher
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Yinyin Bao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Kiliclar HC, Altinkok C, Yilmaz G, Yagci Y. Visible light induced step-growth polymerization by electrophilic aromatic substitution reactions. Chem Commun (Camb) 2021; 57:5398-5401. [PMID: 33942841 DOI: 10.1039/d1cc01444g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel visible light induced step-growth polymerization to form poly(phenylene methylene) by electrophilic aromatic substitution reactions is described. The effect of different nucleophilic aromatic molecules on polymerization has been investigated. The possibility of combining step-growth polymerization with conventional free radical and free radical promoted cationic polymerizations through photoinduced chain-end activation has been demonstrated. Highly fluorescent fibers of the resulting block copolymers were obtained using the electrospinning technique. The versatile photoinduced step-growth polymerization process reported herein paves the way for a new generation of polycondensates and their combination with chain polymers that cannot be obtained by conventional methods.
Collapse
Affiliation(s)
- Huseyin Cem Kiliclar
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul 34469, Turkey.
| | - Cagatay Altinkok
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul 34469, Turkey.
| | - Gorkem Yilmaz
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul 34469, Turkey.
| | - Yusuf Yagci
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul 34469, Turkey.
| |
Collapse
|
14
|
Zhao X, Zhao Y, Li MD, Li Z, Peng H, Xie T, Xie X. Efficient 3D printing via photooxidation of ketocoumarin based photopolymerization. Nat Commun 2021; 12:2873. [PMID: 34001898 PMCID: PMC8129151 DOI: 10.1038/s41467-021-23170-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/14/2021] [Indexed: 12/04/2022] Open
Abstract
Photopolymerization-based three-dimensional (3D) printing can enable customized manufacturing that is difficult to achieve through other traditional means. Nevertheless, it remains challenging to achieve efficient 3D printing due to the compromise between print speed and resolution. Herein, we report an efficient 3D printing approach based on the photooxidation of ketocoumarin that functions as the photosensitizer during photopolymerization, which can simultaneously deliver high print speed (5.1 cm h-1) and high print resolution (23 μm) on a common 3D printer. Mechanistically, the initiating radical and deethylated ketocoumarin are both generated upon visible light exposure, with the former giving rise to rapid photopolymerization and high print speed while the latter ensuring high print resolution by confining the light penetration. By comparison, the printed feature is hard to identify when the ketocoumarin encounters photoreduction due to the increased lateral photopolymerization. The proposed approach here provides a viable solution towards efficient additive manufacturing by controlling the photoreaction of photosensitizers during photopolymerization.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
- National Anti-Counterfeit Engineering Research Center, HUST, Wuhan, China
| | - Ye Zhao
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
- National Anti-Counterfeit Engineering Research Center, HUST, Wuhan, China
| | - Ming-De Li
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University (STU), Shantou, China
| | - Zhong'an Li
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Haiyan Peng
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China.
- National Anti-Counterfeit Engineering Research Center, HUST, Wuhan, China.
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University (ZJU), Hangzhou, China
| | - Xiaolin Xie
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China.
- National Anti-Counterfeit Engineering Research Center, HUST, Wuhan, China.
| |
Collapse
|
15
|
Liu X, Liang X, Hu Y, Han L, Qu Q, Liu D, Guo J, Zeng Z, Bai H, Kwok RTK, Qin A, Lam JWY, Tang BZ. Catalyst-Free Spontaneous Polymerization with 100% Atom Economy: Facile Synthesis of Photoresponsive Polysulfonates with Multifunctionalities. JACS AU 2021; 1:344-353. [PMID: 34467298 PMCID: PMC8395608 DOI: 10.1021/jacsau.0c00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 05/14/2023]
Abstract
Photoresponsive polymers have attracted extensive attention due to their tunable functionalities and advanced applications; thus, it is significant to develop facile in situ synthesis strategies, extend polymers family, and establish various applications for photoresponsive polymers. Herein, we develop a catalyst-free spontaneous polymerization of dihaloalkynes and disulfonic acids without photosensitive monomers for the in situ synthesis of photoresponsive polysulfonates at room temperature in air with 100% atom economy in high yields. The resulting polysulfonates could undergo visible photodegradation with strong photoacid generation, leading to various applications including dual-emissive or 3D photopatterning, and practical broad-spectrum antibacterial activity. The halogen-rich polysulfonates also exhibit a high and photoswitched refractive index and could undergo efficient postfunctionalizations to further expand the variety and functionality of photoresponsive heteroatom-containing polyesters.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Liang
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109 China
| | - Yubing Hu
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Lei Han
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109 China
| | - Qing Qu
- Nano
Science and Technology Program and William Mong Institute of Nano
Science and Technology, The Hong Kong University
of Science and Technology, Clear
Water Bay, Hong Kong China
| | - Dongming Liu
- Center
for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute,
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jing Guo
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zebing Zeng
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haotian Bai
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen
Research Institute, No.
9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Anjun Qin
- Center
for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute,
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen
Research Institute, No.
9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen
Research Institute, No.
9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Center
for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute,
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China
| |
Collapse
|
16
|
Bagheri A, Fellows CM, Boyer C. Reversible Deactivation Radical Polymerization: From Polymer Network Synthesis to 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003701. [PMID: 33717856 PMCID: PMC7927619 DOI: 10.1002/advs.202003701] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Indexed: 05/04/2023]
Abstract
3D printing has changed the fabrication of advanced materials as it can provide customized and on-demand 3D networks. However, 3D printing of polymer materials with the capacity to be transformed after printing remains a great challenge for engineers, material, and polymer scientists. Radical polymerization has been conventionally used in photopolymerization-based 3D printing, as in the broader context of crosslinked polymer networks. Although this reaction pathway has shown great promise, it offers limited control over chain growth, chain architecture, and thus the final properties of the polymer networks. More fundamentally, radical polymerization produces dead polymer chains incapable of postpolymerization transformations. Alternatively, the application of reversible deactivation radical polymerization (RDRP) to polymer networks allows the tuning of network homogeneity and more importantly, enables the production of advanced materials containing dormant reactivatable species that can be used for subsequent processes in a postsynthetic stage. Consequently, the opportunities that (photoactivated) RDRP-based networks offer have been leveraged through the novel concepts of structurally tailored and engineered macromolecular gels, living additive manufacturing and photoexpandable/transformable-polymer networks. Herein, the advantages of RDRP-based networks over irreversibly formed conventional networks are discussed.
Collapse
Affiliation(s)
- Ali Bagheri
- School of Science and TechnologyThe University of New EnglandArmidaleNSW2351Australia
| | - Christopher M. Fellows
- School of Science and TechnologyThe University of New EnglandArmidaleNSW2351Australia
- Desalination Technologies Research InstituteAl Jubail31951Kingdom of Saudi Arabia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
17
|
Ebner C, Mitterer J, Gonzalez-Gutierrez J, Rieß G, Kern W. Resins for Frontal Photopolymerization: Combining Depth-Cure and Tunable Mechanical Properties. MATERIALS 2021; 14:ma14040743. [PMID: 33562577 PMCID: PMC7914558 DOI: 10.3390/ma14040743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022]
Abstract
Photopolymerization has undergone significant development in recent years. It enables fast and easy processing of materials with customized properties and allows precise printing of complex surface geometries. Nevertheless, photopolymerization is mainly applied to cure thin films since the low curing depth limits the fast production of large volumes. Frontal photopolymerization (FPP) is suitable to overcome these limitations so that curing of centimeter-thick (meth)acrylic layers can be accomplished within minutes by light induction only. Prerequisites, however, are the low optical density of the resin and bleaching ability of the photoinitiator. To date, tailored FPP-resins are not commercially available. This study discusses the potential of long-chain polyether dimethacrylates, offering high-temperature resistance and low optical density, as crosslinkers in photobleaching resins and investigates the mechanical properties of photofrontally-cured copolymers. Characteristics ranging from ductile to hard and brittle are observed in tensile tests, demonstrating that deep curing and versatile material properties are achieved with FPP. Analyzed components display uniform polymerization over a depth of four centimeters in Fourier transform infrared spectroscopy and swelling tests.
Collapse
Affiliation(s)
- Catharina Ebner
- Department of Polymer Engineering and Science, Chair in Chemistry of Polymeric Materials, University of Leoben, 8700 Leoben, Austria; (C.E.); (J.M.); (W.K.)
| | - Julia Mitterer
- Department of Polymer Engineering and Science, Chair in Chemistry of Polymeric Materials, University of Leoben, 8700 Leoben, Austria; (C.E.); (J.M.); (W.K.)
| | - Joamin Gonzalez-Gutierrez
- Department of Polymer Engineering and Science, Chair of Polymer Processing, University of Leoben, 8700 Leoben, Austria;
| | - Gisbert Rieß
- Department of Polymer Engineering and Science, Chair in Chemistry of Polymeric Materials, University of Leoben, 8700 Leoben, Austria; (C.E.); (J.M.); (W.K.)
- Correspondence: ; Tel.: +43-3842-402-2301
| | - Wolfgang Kern
- Department of Polymer Engineering and Science, Chair in Chemistry of Polymeric Materials, University of Leoben, 8700 Leoben, Austria; (C.E.); (J.M.); (W.K.)
| |
Collapse
|
18
|
Song HB, Sowan N, Baranek A, Sinha J, Cook WD, Bowman CN. Effects of network structures on the tensile toughness of copper-catalyzed azide-alkyne cycloaddition (CuAAC)-based photopolymers. Macromolecules 2021; 54:747-756. [PMID: 33888918 PMCID: PMC8057713 DOI: 10.1021/acs.macromol.0c02455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the present study, the photo-initiated copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization was utilized to form structurally diverse glassy polymer networks. Systematic alterations in the monomer backbone rigidity (e.g., cyclic or aliphatic groups with a different length of backbone) and the reactive functional group density (e.g., tetra-, tri-, di-, and mono-functional azide and alkyne monomers) were used to provide readily tailorable network structures with crosslink densities (estimated from the rubbery modulus) varying by a factor of over 20. All eight of the resultant networks exhibited glass transition temperatures (Tg) between 50 and 80 °C with tensile toughness ranging from 28 to 61 MJ m-3. A nearly linear dependence of yield stress and elongation at break (broadly defined as strength and ductility, respectively) on the Tg and rubbery modulus was established in these triazole networks. When a flexible di-alkyne monomer (5 carbon spacing between alkynes) was incorporated in a network composed of a tri-alkyne and di-azide monomer, the elongation at break was improved from 166 to 300 %, while the yield stress was reduced from 36 to 23 MPa. Additionally, the polymer ductility was also varied by incorporating mono-functional azides as chain ends in the network - replacing a sterically hindered stiff mono-azide with a more flexible mono-azide increased the elongation at break from 24 to 185 % and the tensile toughness from 6 to 28 MJ m-3.
Collapse
Affiliation(s)
- Han Byul Song
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States
| | - Nancy Sowan
- Materials Science and Engineering Program, University of Colorado Boulder, 596 UCB, Boulder, CO, United States
| | - Austin Baranek
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States
| | - Wayne D Cook
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States
- Materials Science and Engineering Program, University of Colorado Boulder, 596 UCB, Boulder, CO, United States
| |
Collapse
|
19
|
Yee DW, Greer JR. Three‐dimensional
chemical reactors:
in situ
materials synthesis to advance vat photopolymerization. POLYM INT 2021. [DOI: 10.1002/pi.6165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daryl W. Yee
- Division of Engineering and Applied Science California Institute of Technology Pasadena CA USA
| | - Julia R. Greer
- Division of Engineering and Applied Science California Institute of Technology Pasadena CA USA
| |
Collapse
|
20
|
Peer G, Kury M, Gorsche C, Catel Y, Frühwirt P, Gescheidt G, Moszner N, Liska R. Revival of Cyclopolymerizable Monomers as Low-Shrinkage Cross-Linkers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gernot Peer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
- Christian-Doppler-Laboratory for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Markus Kury
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
| | - Christian Gorsche
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
| | - Yohann Catel
- Ivoclar Vivadent AG, 9494 Schaan, Liechtenstein
- Christian-Doppler-Laboratory for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Philipp Frühwirt
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Norbert Moszner
- Ivoclar Vivadent AG, 9494 Schaan, Liechtenstein
- Christian-Doppler-Laboratory for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
- Christian-Doppler-Laboratory for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
21
|
Zhou R, Jin M, Malval J, Pan H, Wan D. Bicarbazole‐based oxalates as photoinitiating systems for photopolymerization under UV–Vis LEDs. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20199298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ruchun Zhou
- Department of Polymer Materials, School of Materials Science and EngineeringTongji University Shanghai China
| | - Ming Jin
- Department of Polymer Materials, School of Materials Science and EngineeringTongji University Shanghai China
| | - Jean‐Pierre Malval
- Institut de Science des Matériaux de Mulhouse, UMR CNRS 7361Université de Haute‐Alsace Mulhouse France
| | - Haiyan Pan
- Department of Polymer Materials, School of Materials Science and EngineeringTongji University Shanghai China
| | - Decheng Wan
- Department of Polymer Materials, School of Materials Science and EngineeringTongji University Shanghai China
| |
Collapse
|
22
|
Kütahya C, Wang P, Li S, Liu S, Li J, Chen Z, Strehmel B. Carbon Dots as a Promising Green Photocatalyst for Free Radical and ATRP-Based Radical Photopolymerization with Blue LEDs. Angew Chem Int Ed Engl 2020; 59:3166-3171. [PMID: 31724298 PMCID: PMC7027833 DOI: 10.1002/anie.201912343] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 11/08/2022]
Abstract
Carbon dots (CDs) have been used for the first time as a sensitizer to initiate and activate free radical and controlled radical polymerization, respectively, based on an ATRP protocol with blue LEDs. Consideration of diverse heteroatom-doped CDs indicated that N-doped CDs could serve as an effective photocatalyst and photosensitizer in combination with LEDs emitting either at 405 nm or 470 nm. Free radical polymerization was initiated by combining the CDs with an iodonium or sulfonium salt in tri(propylene glycol) diacrylate. Polymerization of methyl methacrylate (MMA) by photo-induced ATRP was achieved with CDs and ethyl α-bromophenylacetate using CuII as catalyst in the ppm range. The polymers obtained showed temporal control, narrower dispersity ≲1.5, and chain-end fidelity. The first-order kinetics and ON/OFF experiments additionally gave evidence of the constant concentration of polymer radicals. No remarkable cytotoxic activity was observed for the CDs, underlining their biocompatibility.
Collapse
Affiliation(s)
- Ceren Kütahya
- Niederrhein University of Applied SciencesChemistry DepartmentInstitute for Coatings and Surface ChemistryAdlerstraße 147798KrefeldGermany
| | - Ping Wang
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Shujun Li
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Shouxin Liu
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Jian Li
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Zhijun Chen
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Bernd Strehmel
- Niederrhein University of Applied SciencesChemistry DepartmentInstitute for Coatings and Surface ChemistryAdlerstraße 147798KrefeldGermany
| |
Collapse
|
23
|
Do T, Ko YG, Jung Y, Choi US. Highly Durable and Thermally Conductive Shell-Coated Phase-Change Capsule as a Thermal Energy Battery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5759-5766. [PMID: 31977173 DOI: 10.1021/acsami.9b18627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Robust and thermally conductive phase-change capsules (PCCs) can be effectively used as dispersoids for heat transfer fluids (HTFs) to utilize waste heat. Here, we demonstrate PCCs encapsulated with a cross-linked poly(2-hydroxyethyl methacrylate) shell that showed high durability and low thermal hysteresis for effective heat uptake and release. The circulation system was manufactured by mimicking the 4th Generation District Heating (4GDH) system to confirm the heat delivery efficiencies of PCC-dispersed slurries (PCSs) as the HTFs. The enthalpy change of water after it received heat from the PCS improved by up to 41.1% on increasing the amount of PCCs in the PCS. Furthermore, a high PCC recovery of 92 wt % was achieved after 1500 cycles, which accompanied a phase transition. The PCC developed by us can thus enable effective storage/delivery of waste heat-driven energy for zero-energy buildings and a 4GDH system, as well as thermal management of electronics.
Collapse
Affiliation(s)
- Taegu Do
- National Agenda Research Division , Korea Institute of Science and Technology , Hwarang-ro 14-gil 5 , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - Young Gun Ko
- Environmental Radioactivity Assessment Team , Korea Atomic Energy Research Institute , 989-111 Daedeok-daero , Yuseong-gu, Daejeon 34057 , Republic of Korea
| | - Youngkyun Jung
- National Agenda Research Division , Korea Institute of Science and Technology , Hwarang-ro 14-gil 5 , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - Ung Su Choi
- National Agenda Research Division , Korea Institute of Science and Technology , Hwarang-ro 14-gil 5 , Seongbuk-gu, Seoul 02792 , Republic of Korea
| |
Collapse
|
24
|
Kütahya C, Wang P, Li S, Liu S, Li J, Chen Z, Strehmel B. Kohlenstoff‐Nanopunkte als Photokatalysatoren für die freie radikalische und ATRP‐basierte radikalische Photopolymerisation mit blauen LEDs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ceren Kütahya
- Hochschule Niederrhein Fachbereich Chemie Institut für Lacke und Oberflächenchemie Adlerstraße 1 47798 Krefeld Deutschland
| | - Ping Wang
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Shujun Li
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Shouxin Liu
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Jian Li
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Zhijun Chen
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Hexing Road 26 150040 Harbin China
| | - Bernd Strehmel
- Hochschule Niederrhein Fachbereich Chemie Institut für Lacke und Oberflächenchemie Adlerstraße 1 47798 Krefeld Deutschland
| |
Collapse
|
25
|
Bagheri A, Engel KE, Bainbridge CWA, Xu J, Boyer C, Jin J. 3D printing of polymeric materials based on photo-RAFT polymerization. Polym Chem 2020. [DOI: 10.1039/c9py01419e] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For the first time, we report 3D printing of RAFT-based formulations to fabricate functional objects in a layer-by-layer fashion.
Collapse
Affiliation(s)
- Ali Bagheri
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies
| | - Kyle Edward Engel
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
| | | | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- The University of New South Wales
- Sydney NSW 2052
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- The University of New South Wales
- Sydney NSW 2052
- Australia
| | - Jianyong Jin
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies
| |
Collapse
|
26
|
Peer G, Eibel A, Gorsche C, Catel Y, Gescheidt G, Moszner N, Liska R. Ester-Activated Vinyl Ethers as Chain Transfer Agents in Radical Photopolymerization of Methacrylates. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gernot Peer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
- Christian-Doppler-Laboratory
for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Anna Eibel
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christian Gorsche
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
| | - Yohann Catel
- Christian-Doppler-Laboratory
for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
- Ivoclar Vivadent
AG, 9494 Schaan, Liechtenstein
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Norbert Moszner
- Christian-Doppler-Laboratory
for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
- Ivoclar Vivadent
AG, 9494 Schaan, Liechtenstein
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
- Christian-Doppler-Laboratory
for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
27
|
Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201805473] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Peter Judzewitsch
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| |
Collapse
|
28
|
Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angew Chem Int Ed Engl 2019; 58:5170-5189. [PMID: 30066456 DOI: 10.1002/anie.201805473] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 12/20/2022]
Abstract
The application of photochemistry to polymer and material science has led to the development of complex yet efficient systems for polymerization, polymer post-functionalization, and advanced materials production. Using light to activate chemical reaction pathways in these systems not only leads to exquisite control over reaction dynamics, but also allows complex synthetic protocols to be easily achieved. Compared to polymerization systems mediated by thermal, chemical, or electrochemical means, photoinduced polymerization systems can potentially offer more versatile methods for macromolecular synthesis. We highlight the utility of light as an energy source for mediating photopolymerization, and present some promising examples of systems which are advancing materials production through their exploitation of photochemistry.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Peter Judzewitsch
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| |
Collapse
|
29
|
Schoerpf S, Catel Y, Moszner N, Gorsche C, Liska R. Enhanced reduction of polymerization-induced shrinkage stress via combination of radical ring opening and addition fragmentation chain transfer. Polym Chem 2019. [DOI: 10.1039/c8py01540f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The combination of vinylcyclopropanes with an ester-activated vinyl sulfonate ester in a light-induced radical polymerization shows high reactivity accompanied by a significant increase in conversion and it leads to an enhanced reduction of polymerization-induced shrinkage stress.
Collapse
Affiliation(s)
- Sebastian Schoerpf
- Institute of Applied Synthetic Chemistry
- Technische Universität Wien
- A-1060 Vienna
- Austria
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry
| | - Yohann Catel
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry
- Technische Universität Wien
- A-1060 Vienna
- Austria
- Ivoclar Vivadent AG
| | - Norbert Moszner
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry
- Technische Universität Wien
- A-1060 Vienna
- Austria
- Ivoclar Vivadent AG
| | - Christian Gorsche
- Institute of Applied Synthetic Chemistry
- Technische Universität Wien
- A-1060 Vienna
- Austria
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry
| | - Robert Liska
- Institute of Applied Synthetic Chemistry
- Technische Universität Wien
- A-1060 Vienna
- Austria
- Christian Doppler Laboratory for Photopolymers in Digital and Restorative Dentistry
| |
Collapse
|
30
|
Difunctional vinyl sulfonate esters for the fabrication of tough methacrylate-based photopolymer networks. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Švajdlenková H, Šauša O, Peer G, Gorsche C. In situinvestigation of the kinetics and microstructure during photopolymerization by positron annihilation technique and NIR-photorheology. RSC Adv 2018; 8:37085-37091. [PMID: 35557792 PMCID: PMC9089453 DOI: 10.1039/c8ra07578f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/29/2018] [Indexed: 11/21/2022] Open
Abstract
The microstructural free volume evolution during a photopolymerization process was studied on a commercial photopolymer (SPOT LV) in situ by positron annihilation lifetime spectroscopy (PALS) and concomitant NIR-photorheology. Analysis of the positron lifetime spectra revealed a high sensitivity of the PALS technique to the different phases of photopolymerization associated with different reaction rates as well as to the evolution of microstructural free-volume shrinkage, which was described at the molecular level by the Kohlrausch–Williams–Watts equation. The in situ PALS study of microstructural changes in photopolymerization was related to the vitrification (gel point) accompanied by shrinkage stress registered via NIR-photorheology. The simultaneous NIR measurements yield information on the monomer conversion of SPOT LV, which can be correlated to the occurrence of the gel point and the evolution of the microstructural free volume. This combined study allows us to see deeper into the crosslinking process and its influence on the resulting material characteristics. Positron annihilation lifetime spectroscopy is a sensitive tool for the in situ study of the microstructural evolution during photopolymerization.![]()
Collapse
Affiliation(s)
| | - Ondrej Šauša
- Institute of Physics of SAS
- 845 11 Bratislava
- Slovakia
| | - Gernot Peer
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
- Christian-Doppler-Laboratory for Photopolymers in Digital and Restorative Dentistry
| | | |
Collapse
|