1
|
Ojha D, Penschke C, Saalfrank P. Vibrational dynamics and spectroscopy of water at porous g-C 3N 4 and C 2N surfaces. Phys Chem Chem Phys 2024; 26:11084-11093. [PMID: 38530253 DOI: 10.1039/d3cp05964b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Porous graphitic materials containing nitrogen are promising catalysts for photo(electro)chemical reactions, notably water splitting, but can also serve as "molecular sieves". Nitrogen increases the hydrophilicity of the graphite parent material, among other effects. A deeper understanding of how water interacts with C- and N-containing layered materials, if and which differences exist between materials with different N content and pore size, and what the role of water dynamics is - a prerequsite for catalysis and sieving - is largely absent, however. Vibrational spectroscopy can answer some of these questions. In this work, the vibrational dynamics and spectroscopy of deuterated water molecules (D2O) mimicking dense water layers at room temperature on the surfaces of two different C/N-based materials with different N content and pore size, namely graphitic C3N4 (g-C3N4) and C2N, are studied using ab initio molecular dynamics (AIMD). In particular, time-dependent vibrational sum frequency generation (TD-vSFG) spectra of the OD modes and also time-averaged vSFG spectra and OD frequency distributions are computed. This allows us to distinguish "free" (dangling) OD bonds from OD bonds that are bound in a H-bonded water network or at the surface - with subtle differences between the two surfaces and also to a pure water/air interface. It is found that the temporal decay of OD modes is very similar on both surfaces with a correlation time near 4 ps. In contrast, TD-vSFG spectra reveal that the interconversion time from "bonded" to "free" OD bonds is about 8 ps for water on C2N and thus twice as long as for g-C3N4, demonstrating a propensity of the former material to stabilize bonded OD bonds.
Collapse
Affiliation(s)
- Deepak Ojha
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany.
| | - Christopher Penschke
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany.
| | - Peter Saalfrank
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
2
|
Zheng X, Tian Z, Bouchal R, Antonietti M, López-Salas N, Odziomek M. Tin (II) Chloride Salt Melts as Non-Innocent Solvents for the Synthesis of Low-Temperature Nanoporous Oxo-Carbons for Nitrate Electrochemical Hydrogenation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311575. [PMID: 38152896 DOI: 10.1002/adma.202311575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Carbonaceous electrocatalysts offer advantages over metal-based counterparts, being cost-effective, sustainable, and electrochemically stable. Their high surface area increases reaction kinetics, making them valuable for environmental applications involving contaminant removal. However, their rational synthesis is challenging due to the applied high temperatures and activation steps, leading to disordered materials with limited control over doping. Here, a new synthetic pathway using carbon oxide precursors and tin chloride as a p-block metal salt melt is presented. As a result, highly porous oxygen-rich carbon sheets (with a surface area of 1600 m2 g-1 ) are obtained at relatively low temperatures (400 °C). Mechanistic studies reveal that Sn(II) triggers reductive deoxygenation and concomitant condensation/cross-linking, facilitated by the Sn(II) → Sn(IV) transition. Due to their significant surface area and oxygen doping, these materials demonstrate exceptional electrocatalytic activity in the nitrate-to-ammonia conversion, with an ammonia yield rate of 221 mmol g-1 h-1 and a Faradic efficiency of 93%. These results surpass those of other carbon-based electrocatalysts. In situ Raman studies reveal that the reaction occurs through electrochemical hydrogenation, where active hydrogen is provided by water reduction. This work contributes to the development of carbonaceous electrocatalysts with enhanced performance for sustainable environmental applications.
Collapse
Affiliation(s)
- Xinyue Zheng
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Roza Bouchal
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nieves López-Salas
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Sustainable Materials Chemistry, Paderborn University, Warburger Strasse 100, 30098, Paderborn, Germany
| | - Mateusz Odziomek
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
3
|
Wang J, Lv H, Huang L, Li J, Xie H, Wang G, Gu T. Anhydride-Based Compound with Tunable Redox Properties as Advanced Organic Cathodes for High-Performance Aqueous Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49447-49457. [PMID: 37846901 DOI: 10.1021/acsami.3c12163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Organic materials with multiple active sites and flexible structural designs are becoming popular for use in aqueous zinc-ion batteries (AZIBs). However, their applicability is limited due to the low specific capacity and poor cycle stability originating from the introduction of inactive units and high solubility. Herein, three organic molecules with tunable redox properties were synthesized using anhydride (PMDA, 1,2,4,5-benzenetetracarboxylic anhydride-1,2-diaminoanthraquinone, NTCDA, 1,4,5,8-naphthalenetetracarboxylic dianhydride-1,2-diaminoanthraquinone, and PTCDA, 3,4,9,10-perylenetetracarboxylic dianhydride-1,2-diaminoanthraquinone, referred to as PM12, NT12, and PT12) in the solid-phase method. Density functional theory (DFT) simulations and experiments identified that NT12 exhibits superior electrochemical performance compared with PM12 and PT12 because of the low energy gap and large aromatic conjugated structure. They demonstrated specific capacities of 106.7, 192.9, and 124.9 mA h g-1 at 0.05 A g-1, respectively. Especially, NT12 displayed excellent initial specific capacity (85.4 mA h g-1 at 1 A g-1) and remarkable capacity retention (64.1% for 3000 cycles) due to dual active centers (C═N and C═O). The all-NT12 full-cell also had excellent performance (127.1 mA h g-1 under 1 A g-1 and 80.6% over 200 cycles). The organic compounds synthesized in this work have potential applications of AZIBs, highlighting the importance of molecular design to develop the next generation of advanced materials.
Collapse
Affiliation(s)
- Jiali Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Heng Lv
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Lulu Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Jiahao Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd. Y2, second Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu, Hangzhou 310003, Zhejiang, China
| | - Gang Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Tiantian Gu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| |
Collapse
|
4
|
Fantozzi N, Volle JN, Porcheddu A, Virieux D, García F, Colacino E. Green metrics in mechanochemistry. Chem Soc Rev 2023; 52:6680-6714. [PMID: 37691600 DOI: 10.1039/d2cs00997h] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The development of new green methodologies and their broader adoption for promoting sustainable development in chemistry laboratories and industry play a significant role in society, due to the economic importance of chemistry and its widespread presence in everyday life. Therefore, a sustainable approach to chemistry contributes to the well-being of the worldwide population and complies with the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal. The review highlights how batch and continuous mechanochemical methods are an eco-friendly approach for organic synthesis, with a lower environmental footprint in most cases, compared to solution-based procedures. The assessment is objectively based on the use of green metrics (e.g., atom and real atom economy, E-factor, process mass intensity, material parameter recovery, Eco-scale, stoichiometric factor, etc.) and indicators (e.g. DOZN tool and life cycle assessment, LCA, studies) applied to organic transformations such as synthesis of the amide bond, carbamates, heterocycles, active pharmaceutical ingredients (APIs), porphyrins, porous organic polymers (POPs), metal- or acid-catalysed processes, multicomponent and condensation reactions, rearrangements, etc. The generalized absence of bulk solvents, the precise control over the stoichiometry (i.e., using agents in a stoichiometrically rather than in excess), and the more selective reactions enabling simplified work-up procedures are the distinctive factors, marking the superiority of mechanochemical processes over solution-based chemistry.
Collapse
Affiliation(s)
| | - Jean-Noël Volle
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042, Monserrato (CA), Italy
| | - David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo, 33006, Asturias, Spain.
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
5
|
Moreira Da Silva C, Vallet M, Semion C, Blin T, Saint-Martin R, Leroy J, Dragoé D, Brisset F, Gillet C, Guillot R, Huc V. A simple and efficient process for the synthesis of 2D carbon nitrides and related materials. Sci Rep 2023; 13:15423. [PMID: 37723176 PMCID: PMC10507022 DOI: 10.1038/s41598-023-39899-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/01/2023] [Indexed: 09/20/2023] Open
Abstract
We describe here a new process for the synthesis of very high quality 2D Covalent Organic Frameworks (COFs), such a C2N and CN carbon nitrides. This process relies on the use of a metallic surface as both a reagent and a support for the coupling of small halogenated building blocks. The conditions of the assembly reaction are chosen so as to leave the inorganic salts by-products on the surface, to further confine the assembly reaction on the surface and increase the quality of the 2D layers. We found that under these conditions, the process directly returns few layers material. The structure/quality of these materials is demonstrated by extensive cross-characterizations at different scales, combining optical microscopy, Scanning Electron Microscopy (SEM)/Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDS). The availability of such very large, high-quality layers of these materials opens interesting perspectives, for example in photochemistry and electronics (intrinsic transport properties, high gap substrate for graphene, etc...).
Collapse
Affiliation(s)
- Cora Moreira Da Silva
- CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, 91405, Orsay, France
| | - Maxime Vallet
- École Centrale Sup'Élec, Université Paris-Saclay, Paris, France
| | - Clément Semion
- ONERA, CNRS, Laboratoire d'Étude des Microstructures, Université Paris-Saclay, Châtillon, 92322, France
| | - Thomas Blin
- CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, 91405, Orsay, France
| | - Romuald Saint-Martin
- CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, 91405, Orsay, France
| | - Jocelyne Leroy
- CEA, CNRS, NIMBE, LICSEN, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Diana Dragoé
- CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, 91405, Orsay, France
| | - François Brisset
- CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, 91405, Orsay, France
| | - Cynthia Gillet
- CNRS-Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Régis Guillot
- CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, 91405, Orsay, France
| | - Vincent Huc
- CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, 91405, Orsay, France.
| |
Collapse
|
6
|
Tian Z, Li D, Zheng W, Chang Q, Sang Y, Lai F, Wang J, Zhang Y, Liu T, Antonietti M. Heteroatom-doped noble carbon-tailored mixed matrix membranes with ultrapermeability for efficient CO 2 separation. MATERIALS HORIZONS 2023; 10:3660-3667. [PMID: 37350178 DOI: 10.1039/d3mh00463e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Membranes with ultrapermeability for CO2 are desired for future large-scale carbon capture projects, because of their excellent separative productivity and economic efficiency. Herein, we demonstrate that a membrane with ultrapermeability for CO2 can be constructed by combining N/O para-doped noble carbons, C2NxO1-x, with high-permeability polymer PIM-1. The optimal PIM-1/C2NxO1-x membranes exhibit superior CO2 permeability (22110 Barrer) with a CO2/N2 selectivity of 15.5, and an unprecedented CO2 permeability of 37272 Barrer can be obtained after a PEG activation treatment, far surpassing the 2008 upper bound. Both broad experiments and molecular dynamics simulations reveal that the numerous ordered polar channels of C2NxO1-x and their excellent compatibility with PIM-1 are responsible for the superior CO2 separation performance of the membrane. Although this is the first study on C2N-type gas separation membranes, the outstanding results indicate that noble carbon building blocks may pave a new avenue to advance high-performance CO2 separation membranes.
Collapse
Affiliation(s)
- Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Dongyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Weigang Zheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Qishuo Chang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yudong Sang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Jing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
7
|
Du S, Huang B, Hao GP, Huang J, Liu Z, Oschatz M, Xiao J, Lu AH. pH-Regulated Refinement of Pore Size in Carbon Spheres for Size-Sieving of Gaseous C 8 , C 6 and C 3 Hydrocarbon Pairs. CHEMSUSCHEM 2023; 16:e202300215. [PMID: 37186177 DOI: 10.1002/cssc.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Selective separation of industrial important C8 , C6 and C3 hydrocarbon pairs by physisorbents can greatly reduce the energy intensity related to the currently used cryogenic distillation techniques. The achievement of size-sieving based on carbonaceous materials is desirable, but commonly hindered by the random structure of carbons often with a broad pore size distribution. Herein, a pH-regulated pre-condensation strategy was introduced to control the carbon pore architecture by the sp2 /sp3 hybridization of precursor. The lower pH value during pre-condensation of glucose facilitates the growth of aromatic nanodomains, rearrangement of stacked layers and a concomitant transition from sp3 -C to sp2 -C. The subsequent pyrolysis endows the pore size manipulated from 6.8 to 4.8 Å and narrowly distributed over a range of 0.2 Å. The refined pores enable effective size-sieving of C8 , C6 and C3 hydrocarbon pairs with high separation factor of 1.9 and 4.9 for C8 xylene (X) isomers para-X/meta-X and para-X/ortho-X, respectively, 5.1 for C6 alkane isomers n-hexane/3-methylpentane, and 22.0 for C3 H6 /C3 H8 . The excellent separation performance based-on size exclusion effect is validated by static adsorption isotherms and dynamic breakthrough experiments. This synthesis strategy provides a means of exploring advanced carbonaceous materials with controlled hybridized structure and pore sizes for challenging separation needs.
Collapse
Affiliation(s)
- Shengjun Du
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Institute for Technical Chemistry and Environmental Chemistry, Center for Energy and Environmental Chemistry Jena, Friedrich-Schiller-University, Jena, 07745, Germany
| | - Baolin Huang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiawu Huang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zewei Liu
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Martin Oschatz
- Institute for Technical Chemistry and Environmental Chemistry, Center for Energy and Environmental Chemistry Jena, Friedrich-Schiller-University, Jena, 07745, Germany
| | - Jing Xiao
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
8
|
Chen X, Liu D, Yang C, Shi L, Li F. Hexaazatrinaphthalene-Based Covalent Triazine Framework-Supported Rhodium(III) Complex: A Recyclable Heterogeneous Catalyst for the Reductive Amination of Ketones to Primary Amines. Inorg Chem 2023. [PMID: 37285321 DOI: 10.1021/acs.inorgchem.3c00301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of efficient and recyclable heterogeneous catalysts is an important topic. Herein, a rhodium(III) complex Cp*Rh@HATN-CTF was synthesized by the coordinative immobilization of [Cp*RhCl2]2 on a hexaazatrinaphthalene-based covalent triazine framework. In the presence of Cp*Rh@HATN-CTF (1 mo l% Rh), a series of primary amines could be obtained via the reductive amination of ketones in high yields. Moreover, catalytic activity of Cp*Rh@HATN-CTF is well maintained during six runs. The present catalytic system was also applied for the large scale preparation of a biologically active compound. It would facilitate the development of CTF-supported transition metal catalysts for sustainable chemistry.
Collapse
Affiliation(s)
- Xiaozhong Chen
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Deyun Liu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Chenchen Yang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Lili Shi
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Feng Li
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
9
|
Du S, Huang J, Ryder MR, Daemen LL, Yang C, Zhang H, Yin P, Lai Y, Xiao J, Dai S, Chen B. Probing sub-5 Ångstrom micropores in carbon for precise light olefin/paraffin separation. Nat Commun 2023; 14:1197. [PMID: 36864084 PMCID: PMC9981619 DOI: 10.1038/s41467-023-36890-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Olefin/paraffin separation is an important but challenging and energy-intensive process in petrochemical industry. The realization of carbons with size-exclusion capability is highly desirable but rarely reported. Herein, we report polydopamine-derived carbons (PDA-Cx, where x refers to the pyrolysis temperature) with tailorable sub-5 Å micropore orifices together with larger microvoids by one-step pyrolysis. The sub-5 Å micropore orifices centered at 4.1-4.3 Å in PDA-C800 and 3.7-4.0 Å in PDA-C900 allow the entry of olefins while entirely excluding their paraffin counterparts, performing a precise cut-off to discriminate olefin/paraffin with sub-angstrom discrepancy. The larger voids enable high C2H4 and C3H6 capacities of 2.25 and 1.98 mmol g-1 under ambient conditions, respectively. Breakthrough experiments confirm that a one-step adsorption-desorption process can obtain high-purity olefins. Inelastic neutron scattering further reveals the host-guest interaction of adsorbed C2H4 and C3H6 molecules in PDA-Cx. This study opens an avenue to exploit the sub-5 Å micropores in carbon and their desirable size-exclusion effect.
Collapse
Affiliation(s)
- Shengjun Du
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Jiawu Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Matthew R Ryder
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Cuiting Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jing Xiao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, USA.
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
10
|
Chai H, Chen W, Li Y, Zhao M, Shi J, Tang Y, Dai X. Theoretical exploration of the structural, electronic and optical properties of g-C 3N 4/C 3N heterostructures. Phys Chem Chem Phys 2023; 25:4081-4092. [PMID: 36651147 DOI: 10.1039/d2cp04559a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Integration of graphene-like carbon nitride materials is essential for nanoelectronic applications. Using density-functional theory (DFT), we systematically investigate the structural, electronic and optical properties of a s-triazine-based g-C3N4/C3N heterostructure under different modified conditions. The g-C3N4/C3N van der Waals heterostructure (vdWH) formed has an indirect bandgap with type-II band alignment and the band structures can be tuned from type-II band alignment to type-I band alignment by applying biaxial strains and external electric fields (Efield). Compared to single transition metal (TM) atoms at g-C3N4/C3N surfaces, the TM atoms anchored in the interlayer region exhibit more stability, and the corresponding bandgaps are changed from 0.19 eV to 0.61 eV. In addition, the g-C3N4/C3N heterostructure has a strong absorption coefficient in the ultraviolet-visible light region along the x direction. It is found that compressive strain has a large influence on the absorption coefficient of the g-C3N4/C3N system. With the increased compressive strain, the absorption spectra in the visible light region disappeared. Tensile strain has a slight effect on the absorption range, but causes a red shift of the absorption spectrum. In comparison, the light absorption coefficient of the g-C3N4/C3N system remains almost unchanged under the Efield conditions. In summary, the formation of a s-triazine-based g-C3N4/C3N heterostructure has shown potential for applications in nanoelectronic and optoelectronic devices.
Collapse
Affiliation(s)
- Huadou Chai
- School of Physics, Henan Normal University, Xinxiang, Henan, 453007, China. .,College of Physics and Electronic Engineering, Zhengzhou Key Laboratory of Low-Dimensional Micro and Nano Materials, Zhengzhou Normal University, Zhengzhou, Henan, 450044, China.
| | - Weiguang Chen
- College of Physics and Electronic Engineering, Zhengzhou Key Laboratory of Low-Dimensional Micro and Nano Materials, Zhengzhou Normal University, Zhengzhou, Henan, 450044, China.
| | - Yi Li
- College of Physics and Electronic Engineering, Zhengzhou Key Laboratory of Low-Dimensional Micro and Nano Materials, Zhengzhou Normal University, Zhengzhou, Henan, 450044, China.
| | - Mingyu Zhao
- College of Physics and Electronic Engineering, Zhengzhou Key Laboratory of Low-Dimensional Micro and Nano Materials, Zhengzhou Normal University, Zhengzhou, Henan, 450044, China.
| | - Jinlei Shi
- College of Physics and Electronic Engineering, Zhengzhou Key Laboratory of Low-Dimensional Micro and Nano Materials, Zhengzhou Normal University, Zhengzhou, Henan, 450044, China.
| | - Yanan Tang
- College of Physics and Electronic Engineering, Zhengzhou Key Laboratory of Low-Dimensional Micro and Nano Materials, Zhengzhou Normal University, Zhengzhou, Henan, 450044, China.
| | - Xianqi Dai
- School of Physics, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
11
|
Du S, Leistenschneider D, Xiao J, Dellith J, Troschke E, Oschatz M. Application of Thermal Response Measurements to Investigate Enhanced Water Adsorption Kinetics in Ball-Milled C 2 N-Type Materials. ChemistryOpen 2022; 11:e202200193. [PMID: 36511511 PMCID: PMC9746058 DOI: 10.1002/open.202200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Sorption-based water capture is an attractive solution to provide potable water in arid regions. Heteroatom-decorated microporous carbons with hydrophilic character are promising candidates for water adsorption at low humidity, but the strong affinity between the polar carbon pore walls and water molecules can hinder the water transport within the narrow pore system. To reduce the limitations of mass transfer, C2 N-type carbon materials obtained from the thermal condensation of a molecular hexaazatriphenylene-hexacarbonitrile (HAT-CN) precursor were treated mechanochemically via ball milling. Scanning electron microscopy as well as static light scattering reveal that large pristine C2 N-type particles were split up to a smaller size after ball milling, thus increasing the pore accessibility which consequently leads to faster occupation of the water vapor adsorption sites. The major aim of this work is to demonstrate the applicability of thermal response measurements to track these enhanced kinetics of water adsorption. The adsorption rate constant of a C2 N material condensed at 700 °C remarkably increased from 0.026 s-1 to 0.036 s-1 upon ball milling, while maintaining remarkably high water vapor capacity. This work confirms the advantages of small particle sizes in ultramicroporous materials on their vapor adsorption kinetics. It is demonstrated that thermal response measurements are a valuable and time-saving method to investigate water adsorption kinetics, capacities, and cycling stability.
Collapse
Affiliation(s)
- Shengjun Du
- Institute for Technical Chemistry and Environmental ChemistryCenter for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich-Schiller-University JenaPhilosophenweg 7a07743JenaGermany
- School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Desirée Leistenschneider
- Institute for Technical Chemistry and Environmental ChemistryCenter for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich-Schiller-University JenaPhilosophenweg 7a07743JenaGermany
| | - Jing Xiao
- School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Jan Dellith
- Department Competence Center for Micro- and NanotechnologiesLeibniz Institute of Photonic TechnologyAlbert-Einstein-Straße 907745JenaGermany
| | - Erik Troschke
- Institute for Technical Chemistry and Environmental ChemistryCenter for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich-Schiller-University JenaPhilosophenweg 7a07743JenaGermany
| | - Martin Oschatz
- Institute for Technical Chemistry and Environmental ChemistryCenter for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich-Schiller-University JenaPhilosophenweg 7a07743JenaGermany
| |
Collapse
|
12
|
Zhang W, Zhan S, Qin Q, Heil T, Liu X, Hwang J, Ferber TH, Hofmann JP, Oschatz M. Electrochemical Generation of Catalytically Active Edge Sites in C 2 N-Type Carbon Materials for Artificial Nitrogen Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204116. [PMID: 36114151 DOI: 10.1002/smll.202204116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3 ) is a potentially carbon-neutral and decentralized supplement to the established Haber-Bosch process. Catalytic activation of the highly stable dinitrogen molecules remains a great challenge. Especially metal-free nitrogen-doped carbon catalysts do not often reach the desired selectivity and ammonia production rates due to their low concentration of NRR active sites and possible instability of heteroatoms under electrochemical potential, which can even contribute to false positive results. In this context, the electrochemical activation of nitrogen-doped carbon electrocatalysts is an attractive, but not yet established method to create NRR catalytic sites. Herein, a metal-free C2 N material (HAT-700) is electrochemically etched prior to application in NRR to form active edge-sites originating from the removal of terminal nitrile groups. Resulting activated metal-free HAT-700-A shows remarkable catalytic activity in electrochemical nitrogen fixation with a maximum Faradaic efficiency of 11.4% and NH3 yield of 5.86 µg mg-1 cat h-1 . Experimental results and theoretical calculations are combined, and it is proposed that carbon radicals formed during activation together with adjacent pyridinic nitrogen atoms play a crucial role in nitrogen adsorption and activation. The results demonstrate the possibility to create catalytically active sites on purpose by etching labile functional groups prior to NRR.
Collapse
Affiliation(s)
- Wuyong Zhang
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Institute for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Shaoqi Zhan
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Qing Qin
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Tobias Heil
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Xiyu Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinyeon Hwang
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Thimo H Ferber
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Martin Oschatz
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Institute for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
13
|
Enhancement in non-linear optical properties of carbon nitride (C2N) by doping superalkali (Li3O): A DFT study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Zou Y, Abednatanzi S, Gohari Derakhshandeh P, Mazzanti S, Schüßlbauer CM, Cruz D, Van Der Voort P, Shi JW, Antonietti M, Guldi DM, Savateev A. Red edge effect and chromoselective photocatalysis with amorphous covalent triazine-based frameworks. Nat Commun 2022; 13:2171. [PMID: 35449208 PMCID: PMC9023581 DOI: 10.1038/s41467-022-29781-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Chromoselective photocatalysis offers an intriguing opportunity to enable a specific reaction pathway out of a potentially possible multiplicity for a given substrate by using a sensitizer that converts the energy of incident photon into the redox potential of the corresponding magnitude. Several sensitizers possessing different discrete redox potentials (high/low) upon excitation with photons of specific wavelength (short/long) have been reported. Herein, we report design of molecular structures of two-dimensional amorphous covalent triazine-based frameworks (CTFs) possessing intraband states close to the valence band with strong red edge effect (REE). REE enables generation of a continuum of excited sites characterized by their own redox potentials, with the magnitude proportional to the wavelength of incident photons. Separation of charge carriers in such materials depends strongly on the wavelength of incident light and is the primary parameter that defines efficacy of the materials in photocatalytic bromination of electron rich aromatic compounds. In dual Ni-photocatalysis, excitation of electrons from the intraband states to the conduction band of the CTF with 625 nm photons enables selective formation of C‒N cross-coupling products from arylhalides and pyrrolidine, while an undesirable dehalogenation process is completely suppressed.
Collapse
Affiliation(s)
- Yajun Zou
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Sara Abednatanzi
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, 9000, Gent, Belgium
| | | | - Stefano Mazzanti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Christoph M Schüßlbauer
- Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Daniel Cruz
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 14195, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Mülheiman der Ruhr, 45470, Germany
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, 9000, Gent, Belgium
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Aleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
| |
Collapse
|
15
|
Chen H, Suo X, Yang Z, Dai S. Graphitic Aza-Fused π-Conjugated Networks: Construction, Engineering, and Task-Specific Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107947. [PMID: 34739143 DOI: 10.1002/adma.202107947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/01/2021] [Indexed: 06/13/2023]
Abstract
2D π-conjugated networks linked by aza-fused units represent a pivotal category of graphitic materials with stacked nanosheet architectures. Extensive efforts have been directed at their fabrication and application since the discovery of covalent triazine frameworks (CTFs). Besides the triazine cores, tricycloquinazoline and hexaazatriphenylene linkages are further introduced to tailor the structures and properties. Diverse related materials have been developed rapidly, and a thorough outlook is necessitated to unveil the structure-property-application relationships across multiple subcategories, which is pivotal to guide the design and fabrication toward enhanced task-specific performance. Herein, the structure types and development of related materials including CTFs, covalent quinazoline networks, and hexaazatriphenylene networks, are introduced. Advanced synthetic strategies coupled with characterization techniques provide powerful tools to engineer the properties and tune the associated behaviors in corresponding applications. Case studies in the areas of gas adsorption, membrane-based separation, thermo-/electro-/photocatalysis, and energy storage are then addressed, focusing on the correlation between structure/property engineering and optimization of the corresponding performance, particularly the preferred features and strategies in each specific field. In the last section, the underlying challenges and opportunities in construction and application of this emerging and promising material category are discussed.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xian Suo
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
16
|
Tan L, Wang J, Cai B, Wang C, Ao Z, Wang S. Nitrogen-rich layered carbon for adsorption of typical volatile organic compounds and low-temperature thermal regeneration. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127348. [PMID: 34601402 DOI: 10.1016/j.jhazmat.2021.127348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Carbon-based adsorbents with a high adsorption capacity and low price have been widely used in the removal of volatile organic compounds (VOCs), but the poor gas selectivity and reusability limit their industrial applications. In this work, disc-like nitrogen-rich porous carbon materials (HAT-Xs) were synthesized to remove typical VOCs via adsorption. By controlling the synthesis temperature from 450 to 1000 °C, the C/N ratio of the HAT-Xs increased from 1.85 to 12.56. The HAT-650 synthesized at 650 °C with the high specific surface area of 305 m2 g-1 exhibits the highest adsorption capacity of 141 mg g-1 for ethyl acetate (which is 3.2 times for that of activated carbon), and 39.4 mg g-1 for n-hexane, 48.6 mg g-1 for toluene. Kinetic studies indicated that the adsorption is physical adsorption and that the interior surface diffusion is the main rate-determining step during the adsorption progress, the interior surface diffusion rate of ethyl acetate on HAT-650 is 1.455 mg g-1 min-0.5. At the same time, the desorption and reuse tests show that HAT-650 has excellent reusability with low desorption and regeneration temperature of 120 °C, and high desorption efficiency of 95.2% and that it could be a promising ethyl acetate adsorbent for industrial applications.
Collapse
Affiliation(s)
- Li Tan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangdong 510006, China
| | - Jiangen Wang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangdong 510006, China
| | - Bihai Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangdong 510006, China
| | - Chengyin Wang
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, Yangzhou 225002, China
| | - Zhimin Ao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangdong 510006, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, the University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
17
|
Zhang Y, Mo Y, Cao Z. Rational Design of Main Group Metal-Embedded Nitrogen-Doped Carbon Materials as Frustrated Lewis Pair Catalysts for CO 2 Hydrogenation to Formic Acid. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1002-1014. [PMID: 34935336 DOI: 10.1021/acsami.1c20230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing efficient and inexpensive main group catalysts for CO2 conversion and utilization has attracted increasing attention, as the conversion process would be both economical and environmentally benign. Here, based on the main group element Al, we designed several heterogeneous frustrated Lewis acid/base pair (FLP) catalysts and performed extensive first-principles calculations for the hydrogenation of CO2. These catalysts, including Al@N-Gr-1, Al@N-Gr-2, and Al@C2N, are composed of a single Al atom and two-dimensional (2D) N-doped carbon-based materials to form frustrated Al/C or Al/N Lewis acid/base pairs, which are all predicted to have high reactivity to absorb and activate hydrogen (H2). Compared with Al@N-Gr-1, both Al@N-Gr-2 and Al@C2N, especially Al@N-Gr-2, containing Al/N Lewis pairs exhibit better catalytic activity for CO2 hydrogenation with lower activation energies. CO2 hydrogenation on the three catalysts prefers to go through a three-step mechanism, i.e., the heterolytic dissociation of H2, followed by the transfer of the hydride near Al to CO2, and finally the activation of a second H2 molecule. Other IIIA group element (B and Ga)-embedded N-Gr-2 materials (B@N-Gr-2 and Ga@N-Gr-2) were also explored and compared. Both Al@N-Gr-2 and Ga@N-Gr-2 show higher catalytic activity for CO2 hydrogenation to HCOOH than B@N-Gr-2. However, the CO2 hydrogenation path on Ga@N-Gr-2 tends to follow a two-step mechanism, including H2 dissociation and subsequent hydrogen transfer. The present study provides a potential solution for CO2 hydrogenation by designing novel and effective FLP catalysts based on main group elements.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Penschke C, Edler von Zander R, Beqiraj A, Zehle A, Jahn N, Neumann R, Saalfrank P. Water on porous, nitrogen-containing layered carbon materials: The performance of computational model chemistries. Phys Chem Chem Phys 2022; 24:14709-14726. [DOI: 10.1039/d2cp00657j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous, layered materials containing sp2-hybridized carbon and nitrogen atoms, offer through their tunable properties, a versatile route towards tailormade catalysts for electrochemistry and photochemistry. A key molecule interacting with these...
Collapse
|
19
|
Schutjajew K, Pampel J, Zhang W, Antonietti M, Oschatz M. Influence of Pore Architecture and Chemical Structure on the Sodium Storage in Nitrogen-Doped Hard Carbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006767. [PMID: 33615707 DOI: 10.1002/smll.202006767] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Hard carbon is the material of choice for sodium ion battery anodes. Capacities comparable to those of lithium/graphite can be reached, but the understanding of the underlying sodium storage mechanisms remains fragmentary. A two-step process is commonly observed, where sodium first adsorbs to polar sites of the carbon ("sloping region") and subsequently fills small voids in the material ("plateau region"). To study the impact of nitrogen functionalities and pore geometry on sodium storage, a systematic series of nitrogen-doped hard carbons is synthesized. The nitrogen content is found to contribute to sloping capacity by binding sodium ions at edges and defects, whereas higher plateau capacities are found for materials with less nitrogen content and more extensive graphene layers, suggesting the formation of 2D sodium structures stabilized by graphene-like pore walls. In fact, up to 84% of the plateau capacity is measured at potentials less than 0 V versus metallic Na, that is, quasimetallic sodium can be stabilized in such structure motifs. Finally, gas physisorption measurements are related to charge-discharge data to identify the energy storage relevant pore architectures. Interestingly, these are pores inaccessible to probe gases and electrolytes, suggesting a new view on such "closed pores" required for efficient sodium storage.
Collapse
Affiliation(s)
- Konstantin Schutjajew
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jonas Pampel
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Wuyong Zhang
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Martin Oschatz
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
20
|
Bellani S, Bartolotta A, Agresti A, Calogero G, Grancini G, Di Carlo A, Kymakis E, Bonaccorso F. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem Soc Rev 2021; 50:11870-11965. [PMID: 34494631 PMCID: PMC8559907 DOI: 10.1039/d1cs00106j] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 12/12/2022]
Abstract
In the ever-increasing energy demand scenario, the development of novel photovoltaic (PV) technologies is considered to be one of the key solutions to fulfil the energy request. In this context, graphene and related two-dimensional (2D) materials (GRMs), including nonlayered 2D materials and 2D perovskites, as well as their hybrid systems, are emerging as promising candidates to drive innovation in PV technologies. The mechanical, thermal, and optoelectronic properties of GRMs can be exploited in different active components of solar cells to design next-generation devices. These components include front (transparent) and back conductive electrodes, charge transporting layers, and interconnecting/recombination layers, as well as photoactive layers. The production and processing of GRMs in the liquid phase, coupled with the ability to "on-demand" tune their optoelectronic properties exploiting wet-chemical functionalization, enable their effective integration in advanced PV devices through scalable, reliable, and inexpensive printing/coating processes. Herein, we review the progresses in the use of solution-processed 2D materials in organic solar cells, dye-sensitized solar cells, perovskite solar cells, quantum dot solar cells, and organic-inorganic hybrid solar cells, as well as in tandem systems. We first provide a brief introduction on the properties of 2D materials and their production methods by solution-processing routes. Then, we discuss the functionality of 2D materials for electrodes, photoactive layer components/additives, charge transporting layers, and interconnecting layers through figures of merit, which allow the performance of solar cells to be determined and compared with the state-of-the-art values. We finally outline the roadmap for the further exploitation of solution-processed 2D materials to boost the performance of PV devices.
Collapse
Affiliation(s)
- Sebastiano Bellani
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| | - Antonino Bartolotta
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Antonio Agresti
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
| | - Giuseppe Calogero
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Giulia Grancini
- University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia, Italy
| | - Aldo Di Carlo
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
- L.A.S.E. - Laboratory for Advanced Solar Energy, National University of Science and Technology "MISiS", 119049 Leninskiy Prosect 6, Moscow, Russia
| | - Emmanuel Kymakis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, Estavromenos 71410 Heraklion, Crete, Greece
| | - Francesco Bonaccorso
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| |
Collapse
|
21
|
Kuehl VA, Duong PHH, Sadrieva D, Amin SA, She Y, Li-Oakey KD, Yarger JL, Parkinson BA, Hoberg JO. Synthesis, Postsynthetic Modifications, and Applications of the First Quinoxaline-Based Covalent Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37494-37499. [PMID: 34319711 DOI: 10.1021/acsami.1c08854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report a new synthetic protocol for preparing highly ordered two-dimensional nanoporous covalent organic frameworks (2D-COFs) based on a quinoxaline backbone. The quinoxaline framework represents a new type of COF that enables postsynthetic modification by placing two different chemical functionalities within the nanopores including layer-to-layer cross-linking. We also demonstrate that membranes fabricated using this new 2D-COF perform highly selective separations resulting in dramatic performance enhancement post cross-linking.
Collapse
Affiliation(s)
- Valerie A Kuehl
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Phuoc H H Duong
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Deana Sadrieva
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Samrat A Amin
- Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuqi She
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Katie D Li-Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jeffery L Yarger
- Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Bruce A Parkinson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John O Hoberg
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
22
|
Sakaushi K, Nishihara H. Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism. Acc Chem Res 2021; 54:3003-3015. [PMID: 33998232 DOI: 10.1021/acs.accounts.1c00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusAlthough electrochemical energy storage is commonplace in our society, further advancements in this technology are indispensable for the transition to a low-carbon society. Recent intensive research has expanded concepts in this field; however, finding one suitable material to obtain a high energy density accomplishing the criteria of next-generation batteries is still a conundrum. To solve this issue, material investigations based on big data combined with artificial intelligence are a present trend. On the contrary, this Account focuses on an alternative approach, i.e., fundamental research to shed light on key basic principles to design new electrode materials and new principles achieving multielectron transfer, which is a key to improve a specific capacity. In addition to the cation-redox mechanism, materials showing the multielectron-transfer mechanism based on cation-/anion-redox can enrich material choices with high theoretical energy densities. The challenge in this mechanism is that a rational design of electrode materials based on microscopic understanding of underlying electrode processes has not been fully achieved so far. This is a key bottleneck in machine-learning approaches as well because the reliability of outputs from an algorithm is dependent on the reliability of data from a corresponding microscopic electrode process. Therefore, uncovering fundamental mechanisms in electrochemical energy storage remains one of the primary goals for the present research. In our series of investigations, we developed concepts for replacing complex practical electrode materials, such as polyanion or Li-rich layered oxides, by simplified model systems based on two-dimensional (2D) π-conjugated frameworks, which are based on purely organic aromatic systems and metal-containing coordination polymers. These materials are relatively simple, but it is still possible to control their complexity of systems in order to mimic certain aspects of structure-property relations in practical electrode materials. In particular, recent studies have shown that we can tune electronic structures of 2D π-conjugated frameworks, which is a key feature to investigate electron-transfer mechanisms, along with the concept of the threefold correlation approach, i.e., the relations in chemical structures, electronic structures, and electrochemical reactions. In this Account, several model studies focusing on microscopic understandings of structure-electrochemical energy storage functions are presented in which we investigate how the structural periodicity and nature of the coordination environment affect their electronic properties and the electrochemical reactions. In particular, we investigate the effects of combinations of linkers and metal ions toward the mechanism of the electrochemical energy storage reaction. We identified few major factors determining the energy storage mechanism of 2D π-conjugated frameworks. Local configurations of coordinate covalent bonding and organic linkers interact with each other, and these effects provide unique electronic states. These electronic states are projections of intriguing electrochemical features in this materials system, such as cation/anion co-redox mechanism, anion-insertion mechanism, or inductive effect. This Account indicates that 2D π-conjugated frameworks can be applied as models to extract fundamental/microscopic principles in the complicated electrode processes, which is linked to practical electrode materials, such as oxides. Therefore, the approach shown here is a powerful tool to unveil microscopic electrochemical energy storage mechanisms, which is indispensable to advance clean energy technology and accelerate decarbonization.
Collapse
Affiliation(s)
- Ken Sakaushi
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hiroshi Nishihara
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
23
|
Jiang Y, Jung H, Joo SH, Sun QK, Li C, Noh H, Oh I, Kim YJ, Kwak SK, Yoo J, Baek J. Catalyst‐ and Solvent‐Free Synthesis of a Chemically Stable Aza‐Bridged Bis(phenanthroline) Macrocycle‐Linked Covalent Organic Framework. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Jiang
- School of Energy and Chemical Engineering Center for Dimension Controllable Organic Frameworks Ulsan National Institute of Science and Technology South Korea
| | - Hyeonjung Jung
- Department of Materials Science and Engineering Ulsan National Institute of Science and Technology South Korea
| | - Se Hun Joo
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (South Korea)
| | - Qi Kun Sun
- School of Energy and Chemical Engineering Center for Dimension Controllable Organic Frameworks Ulsan National Institute of Science and Technology South Korea
| | - Changqing Li
- School of Energy and Chemical Engineering Center for Dimension Controllable Organic Frameworks Ulsan National Institute of Science and Technology South Korea
| | - Hyuk‐Jun Noh
- School of Energy and Chemical Engineering Center for Dimension Controllable Organic Frameworks Ulsan National Institute of Science and Technology South Korea
| | - Inseon Oh
- Department of Materials Science and Engineering Ulsan National Institute of Science and Technology South Korea
| | - Yu Jin Kim
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (South Korea)
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (South Korea)
| | - Jung‐Woo Yoo
- Department of Materials Science and Engineering Ulsan National Institute of Science and Technology South Korea
| | - Jong‐Beom Baek
- School of Energy and Chemical Engineering Center for Dimension Controllable Organic Frameworks Ulsan National Institute of Science and Technology South Korea
| |
Collapse
|
24
|
Harmanli I, Tarakina NV, Antonietti M, Oschatz M. "Giant" Nitrogen Uptake in Ionic Liquids Confined in Carbon Pores. J Am Chem Soc 2021; 143:9377-9384. [PMID: 34128662 PMCID: PMC8251693 DOI: 10.1021/jacs.1c00783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Ionic liquids are
well known for their high gas absorption capacity.
It is shown that this is not a solvent constant, but can be enhanced
by another factor of 10 by pore confinement, here of the ionic liquid
(IL) 1-ethyl-3-methylimidazolium acetate (EmimOAc) in the pores of
carbon materials. A matrix of four different carbon compounds with
micro- and mesopores as well as with and without nitrogen doping is
utilized to investigate the influence of the carbons structure on
the nitrogen uptake in the pore-confined EmimOAc. In general, the
absorption is most improved for IL in micropores and in nitrogen-doped
carbon. This effect is so large that it is already seen in TGA and
DSC experiments. Due to the low vapor pressure of the IL, standard
volumetric sorption experiments can be used to quantify details of
this effect. It is reasoned that it is the change of the molecular
arrangement of the ions in the restricted space of the pores that
creates additional free volume to host molecular nitrogen.
Collapse
Affiliation(s)
- Ipek Harmanli
- Department of Colloid Chemistry, Research Campus Golm, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strase 24-25, D-14476 Potsdam, Germany
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Research Campus Golm, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Research Campus Golm, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martin Oschatz
- Department of Colloid Chemistry, Research Campus Golm, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strase 24-25, D-14476 Potsdam, Germany
| |
Collapse
|
25
|
Kossmann J, Rothe R, Heil T, Antonietti M, López-Salas N. Ultrahigh water sorption on highly nitrogen doped carbonaceous materials derived from uric acid. J Colloid Interface Sci 2021; 602:880-888. [PMID: 34186464 DOI: 10.1016/j.jcis.2021.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS Developing materials for thermally driven adsorption chillers and adsorption heat pumps is a growing research field due to the potential of these technologies to address up to 50% of the world's total energy demand. These materials must be abundant, easy to synthesize, hydrophilic, and low in cost. Bare carbon materials are hydrophobic and therefore usually not considered for these applications. However, by introducing heteroatoms and tuning their porosity, the hydrophilicity of carbonaceous networks can be increased significantly. EXPERIMENTAL Herein, a series of highly nitrogen doped carbonaceous materials (CNs) have been synthesized by submitting uric acid to heat treatment at different temperatures in the presence of an inorganic salt mix as solvent and pore template. The effect of the thermal treatment on the materials composition, pore network, and water sorption capability has been studied. FINDINGS At 800 °C, a nitrogen depleted carbonaceous material with a maximal water uptake of 1.38gH2O g-1 is obtained. Condensation at 750 °C creates an ultra-hydrophilic CN with a water uptake of 0.8 gH2O g-1 at already much lower partial pressures. While the maximum uptake is mainly ascribed to the mesopore volume of the material, the differences in hydrophilicity can be controlled by functionality.
Collapse
Affiliation(s)
- Janina Kossmann
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany.
| | - Regina Rothe
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany.
| | - Tobias Heil
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany.
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany.
| | - Nieves López-Salas
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany.
| |
Collapse
|
26
|
Jiang Y, Jung H, Joo SH, Sun QK, Li C, Noh HJ, Oh I, Kim YJ, Kwak SK, Yoo JW, Baek JB. Catalyst- and Solvent-Free Synthesis of a Chemically Stable Aza-Bridged Bis(phenanthroline) Macrocycle-Linked Covalent Organic Framework. Angew Chem Int Ed Engl 2021; 60:17191-17197. [PMID: 34114283 DOI: 10.1002/anie.202106389] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Indexed: 11/08/2022]
Abstract
Developing new linkage-based covalent organic frameworks (COFs) is one of the major topics in reticular chemistry. Electrically conductive COFs have enabled applications in energy storage and electrochemical catalysis, which are not feasible using insulating COFs. Despite significant advances, the construction of chemically stable conductive COFs by the formation of new linkages remains relatively unexplored and challenging. Here we report the solvent- and catalyst-free synthesis of a two-dimensional aza-bridged bis(phenanthroline) macrocycle-linked COF (ABBPM-COF) from the thermally induced poly-condensation of a tri-topic monomer and ammonia gas. The ABBPM-COF structure was elucidated using multiple techniques, including X-ray diffraction analysis combined with structural simulation, revealing its crystalline nature with an ABC stacking mode. Further experiments demonstrated its excellent chemical stability in acid/base solutions. Electrical-conductivity measurements showed that the insulating ABBPM-COF becomes a semiconducting material after exposure to iodine vapor.
Collapse
Affiliation(s)
- Yi Jiang
- School of Energy and Chemical Engineering, Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology, South Korea
| | - Hyeonjung Jung
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, South Korea
| | - Se Hun Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (South Korea)
| | - Qi Kun Sun
- School of Energy and Chemical Engineering, Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology, South Korea
| | - Changqing Li
- School of Energy and Chemical Engineering, Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology, South Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering, Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology, South Korea
| | - Inseon Oh
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, South Korea
| | - Yu Jin Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (South Korea)
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (South Korea)
| | - Jung-Woo Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, South Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering, Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology, South Korea
| |
Collapse
|
27
|
Perovic M, Aloni SS, Zhang W, Mastai Y, Antonietti M, Oschatz M. Toward Efficient Synthesis of Porous All-Carbon-Based Nanocomposites for Enantiospecific Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24228-24237. [PMID: 33977720 PMCID: PMC8289191 DOI: 10.1021/acsami.1c02673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Chiral separation and asymmetric synthesis and catalysis are crucial processes for obtaining enantiopure compounds, which are especially important in the pharmaceutical industry. The efficiency of the separation processes is readily increased by using porous materials as the active material can interact with a larger surface area. Silica, metal-organic frameworks, or chiral polymers are versatile porous materials that are established in chiral applications, but their instability under certain conditions in some cases requires the use of more stable porous materials such as carbons. In addition to their stability, porous carbon materials can be tailored for their ability to adsorb and catalytically activate different chemical compounds from the liquid and the gas phase. The difficulties imposed by the functionalization of carbons with chiral species were tackled in the past by carbonizing chiral ionic liquids (CILs) together with a template to create pores, which results in the entire body of a material that is built up from the precursor. To increase the atomic efficiency of ionic liquids for better economic utilization of CILs, the approach presented here is based on the formation of a composite between CIL-derived chiral carbon and a pristine carbon material obtained from carbohydrate precursors. Two novel enantioselective carbon composite materials are applied for the chiral recognition of molecules in the gas phase, as well as in solution. The enantiomeric ratio of the l-composite for phenylalanine from the solution was (L/D) = 8.4, and for 2-butanol from the gas phase, it was (S/R) = 1.3. The d-composite showed an opposite behavior, where the enantiomeric ratio for phenylalanine was (D/L) = 2.7, and for 2-butanol from the gas phase, it was (R/S) = 1.3.
Collapse
Affiliation(s)
- Milena Perovic
- Department
of Colloid Chemistry, Max-Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sapir Shekef Aloni
- Department
of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Wuyong Zhang
- Department
of Colloid Chemistry, Max-Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Yitzhak Mastai
- Department
of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max-Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martin Oschatz
- Department
of Colloid Chemistry, Max-Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute
for Technical Chemistry and Environmental Chemistry, Center for Energy
and Environmental Chemistry Jena (CEEC Jena), Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
28
|
Ilic IK, Oschatz M. The Functional Chameleon of Materials Chemistry-Combining Carbon Structures into All-Carbon Hybrid Nanomaterials with Intrinsic Porosity to Overcome the "Functionality-Conductivity-Dilemma" in Electrochemical Energy Storage and Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007508. [PMID: 33773047 DOI: 10.1002/smll.202007508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Nanoporous carbon materials can cover a remarkably wide range of physicochemical properties. They are widely applied in electrochemical energy storage and electrocatalysis. As a matter of fact, all these applications combine a chemical process at the electrode-electrolyte interface with the transport (and possibly the transfer) of electrons. This leads to multiple requirements which can hardly be fulfilled by one and the same material. This "functionality-conductivity-dilemma" can be minimized when multiple carbon-based compounds are combined into porous all-carbon hybrid nanomaterials. This article is giving a broad and general perspective on this approach from the viewpoint of materials chemists. The problem and existing solutions are first summarized. This is followed by an overview of the most important design principles for such porous materials, a chapter discussing recent examples from different fields where the formation of comparable structures has already been successfully applied, and an outlook over the future development of this field that is foreseen.
Collapse
Affiliation(s)
- Ivan K Ilic
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Martin Oschatz
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
- Friedrich-Schiller-University Jena, Institute for Technical Chemistry and Environmental Chemistry, Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
29
|
Ghasemi SA, Mirhosseini H, Kühne TD. Thermodynamically stable polymorphs of nitrogen-rich carbon nitrides: a C 3N 5 study. Phys Chem Chem Phys 2021; 23:6422-6432. [PMID: 33710185 DOI: 10.1039/d0cp06185a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have carried out an extensive search for stable polymorphs of carbon nitride with C3N5 stoichiometry using the minima hopping method. Contrary to the widely held opinion that stacked, planar, graphite-like structures are energetically the most stable carbon nitride polymorphs for various nitrogen contents, we find that this does not apply for nitrogen-rich materials owing to the high abundance of N-N bonds. In fact, our results disclose novel morphologies with moieties not previously considered for C3N5. We demonstrate that nitrogen-rich compounds crystallize in a large variety of different structures due to particular characteristics of their energy landscapes. The newly found low-energy structures of C3N5 have band gaps within good agreement with the values measured in experimental studies.
Collapse
Affiliation(s)
- S Alireza Ghasemi
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany.
| | | | | |
Collapse
|
30
|
Schutjajew K, Tichter T, Schneider J, Antonietti M, Roth C, Oschatz M. Insights into the sodiation mechanism of hard carbon-like materials from electrochemical impedance spectroscopy. Phys Chem Chem Phys 2021; 23:11488-11500. [PMID: 33959733 DOI: 10.1039/d1cp00610j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To render the sodium ion battery (SIB) competitive among other technologies, the processes behind sodium storage in hard carbon anodes must be understood. For this purpose, electrochemical impedance spectroscopy (EIS) is usually undervalued, since fitting the spectra with equivalent circuit models requires an a priori knowledge about the system at hand. The analysis of the distribution of relaxation times (DRT) is an alternative, which refrains from fitting arbitrarily nested equivalent circuits. In this paper, the sodiation and desodiation of a hard carbon anode is studied by EIS at different states of charge (SOC). By reconstructing the DRT function, highly resolved information on the number and relative contribution of individual electrochemical processes is derived. During the sloping part of the sodiation curve, mass transport is found to be the most dominant source of resistance but rapidly diminishes when the plateau phase is reached. An equivalent circuit model qualitatively reproducing the experimental data of the sloping region was built upon the DRT results, which is particularly useful for future EIS studies on hard carbon SIB anodes. More importantly, this work contributes to establish EIS as a practical tool to directly study electrode processes without the bias of a previously assumed model.
Collapse
Affiliation(s)
- Konstantin Schutjajew
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Tim Tichter
- Institute of Physical and Theoretical Chemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Jonathan Schneider
- Institute of Physical and Theoretical Chemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Christina Roth
- Electrochemical Process Engineering, Universität Bayreuth, Bayerisches Zentrum für Batterietechnik, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Martin Oschatz
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
31
|
Cui C, Liu Y, Du Y. Recent Advancements of Hexaazatriphenylene-Based Materials for Energy Applications. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Tian Z, López‐Salas N, Liu C, Liu T, Antonietti M. C 2N: A Class of Covalent Frameworks with Unique Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001767. [PMID: 33344122 PMCID: PMC7740084 DOI: 10.1002/advs.202001767] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/11/2020] [Indexed: 05/19/2023]
Abstract
C2N is a unique member of the CnNm family (carbon nitrides), i.e., having a covalent structure that is ideally composed of carbon and nitrogen with only 33 mol% of nitrogen. C2N, with a stable composition, can easily be prepared using a number of precursors. Moreover, it is currently gaining extensive interest owing to its high polarity and good thermal and chemical stability, complementing carbon as well as classical carbon nitride (C3N4) in various applications, such as catalysis, environmental science, energy storage, and biotechnology. In this review, a comprehensive overview on C2N is provided; starting with its preparation methods, followed by a fundamental understanding of structure-property relationships, and finally introducing its application in gas sorption and separation technologies, as supercapacitor and battery electrodes, and in catalytic and biological processes. The review with an outlook on current research questions and future possibilities and extensions based on these material concepts is ended.
Collapse
Affiliation(s)
- Zhihong Tian
- Key Laboratory of Materials Processing and Mold (Zhengzhou University)Ministry of EducationNational Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou UniversityZhengzhouHenan450002China
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesPotsdam14476Germany
| | - Nieves López‐Salas
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesPotsdam14476Germany
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University)Ministry of EducationNational Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou UniversityZhengzhouHenan450002China
| | - Tianxi Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University)Ministry of EducationNational Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou UniversityZhengzhouHenan450002China
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxi214122P. R. China
| | - Markus Antonietti
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesPotsdam14476Germany
| |
Collapse
|
33
|
Giusto P, Arazoe H, Cruz D, Lova P, Heil T, Aida T, Antonietti M. Boron Carbon Nitride Thin Films: From Disordered to Ordered Conjugated Ternary Materials. J Am Chem Soc 2020; 142:20883-20891. [PMID: 33245855 PMCID: PMC7735703 DOI: 10.1021/jacs.0c10945] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
We
present an innovative method for the synthesis of boron carbon nitride
thin film materials in a simple furnace setup, using commonly available
solid precursors and relatively low temperature compared to previous
attempts. The as-prepared structural and optical properties of thin
films are tuned via the precursor content, leading to a sp2-conjugated boron nitride–carbon nitride mixed material, instead
of the commonly reported boron nitride–graphene phase segregation,
with tunable optical properties such as band gap and fluorescence.
Collapse
Affiliation(s)
- Paolo Giusto
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Hiroki Arazoe
- Department of Chemistry and Biotechnology, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel Cruz
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany.,Department of Heterogeneous Reactions, Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim 45470, Germany
| | - Paola Lova
- Dipartimento di Chimica e Chimica Industriale, Universita degli Studi di Genova, Via Dodecaneso 31, Genova 16146, Italy
| | - Tobias Heil
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| |
Collapse
|
34
|
Sahoo S, Heske J, Antonietti M, Qin Q, Oschatz M, Kühne TD. Electrochemical N 2 Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon. ACS APPLIED ENERGY MATERIALS 2020; 3:10061-10069. [PMID: 33134880 PMCID: PMC7592340 DOI: 10.1021/acsaem.0c01740] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3) is a promising alternative route for an NH3 synthesis at ambient conditions to the conventional high temperature and pressure Haber-Bosch process without the need for hydrogen gas. Single metal ions or atoms are attractive candidates for the catalytic activation of non-reactive nitrogen (N2), and for future targeted improvement of NRR catalysts, it is of utmost importance to get detailed insights into structure-performance relationships and mechanisms of N2 activation in such structures. Here, we report density functional theory studies on the NRR catalyzed by single Au and Fe atoms supported in graphitic C2N materials. Our results show that the metal atoms present in the structure of C2N are the reactive sites, which catalyze the aforesaid reaction by strong adsorption and activation of N2. We further demonstrate that a lower onset electrode potential is required for Fe-C2N than for Au-C2N. Thus, Fe-C2N is theoretically predicted to be a potentially better NRR catalyst at ambient conditions than Au-C2N owing to the larger adsorption energy of N2 molecules. Furthermore, we have experimentally shown that single sites of Au and Fe supported on nitrogen-doped porous carbon are indeed active NRR catalysts. However, in contrast to our theoretical results, the Au-based catalyst performed slightly better with a Faradaic efficiency (FE) of 10.1% than the Fe-based catalyst with an FE of 8.4% at -0.2 V vs. RHE. The DFT calculations suggest that this difference is due to the competitive hydrogen evolution reaction and higher desorption energy of ammonia.
Collapse
Affiliation(s)
- Sudhir
K. Sahoo
- Dynamics
of Condensed Mater and Center for Sustainable System Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Str. 100, Paderborn D-33098, Germany
| | - Julian Heske
- Dynamics
of Condensed Mater and Center for Sustainable System Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Str. 100, Paderborn D-33098, Germany
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Qing Qin
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Martin Oschatz
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Thomas D. Kühne
- Dynamics
of Condensed Mater and Center for Sustainable System Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Str. 100, Paderborn D-33098, Germany
- Paderborn
Center for Parallel Computing and Institute for Lightweight Design, University of Paderborn, Warburger Str. 100, Paderborn D-33098, Germany
| |
Collapse
|
35
|
|
36
|
Tian Z, Heil T, Schmidt J, Cao S, Antonietti M. Synthesis of a Porous C 3N-Derived Framework with High Yield by Gallic Acid Cross-Linking Using Salt Melts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13127-13133. [PMID: 32091193 PMCID: PMC7307830 DOI: 10.1021/acsami.9b20478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Porous carbon/nitrogen frameworks are an emerging class of noble organic materials with a wide range of potential applications. However, the design and controlled synthesis of those materials are still a challenge. Herein, we present the rational design of such a system with high microporosity, specific surface areas of up to 946 m2 g-1, and excellent condensation yields. The obtained noble frameworks were used for the delivery of larger organic molecules and changed the melting behavior of some daily drug molecules along their highly polarizable surfaces.
Collapse
Affiliation(s)
- Zhihong Tian
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, P. R. China
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Potsdam 14476, Germany
| | - Tobias Heil
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Potsdam 14476, Germany
| | - Johannes Schmidt
- Technical
University of Berlin, Institute of Chemistry, Hardenberg str. 40, Berlin 10623, Germany
| | - Shaokui Cao
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, P. R. China
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
37
|
van Deelen TW, Hernández Mejía C, de Jong KP. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 2019. [DOI: 10.1038/s41929-019-0364-x] [Citation(s) in RCA: 652] [Impact Index Per Article: 108.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Hwang J, Walczak R, Oschatz M, Tarakina NV, Schmidt BVKJ. Micro-Blooming: Hierarchically Porous Nitrogen-Doped Carbon Flowers Derived from Metal-Organic Mesocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901986. [PMID: 31264774 DOI: 10.1002/smll.201901986] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/17/2019] [Indexed: 05/19/2023]
Abstract
Synthesis of 3D flower-like zinc-nitrilotriacetic acid (ZnNTA) mesocrystals and their conformal transformation to hierarchically porous N-doped carbon superstructures is reported. During the solvothermal reaction, 2D nanosheet primary building blocks undergo oriented attachment and mesoscale assembly forming stacked layers. The secondary nucleation and growth preferentially occurs at the edges and defects of the layers, leading to formation of 3D flower-like mesocrystals comprised of interconnected 2D micropetals. By simply varying the pyrolysis temperature (550-1000 °C) and the removal method of in the situ-generated Zn species, nonporous parent mesocrystals are transformed to hierarchically porous carbon flowers with controllable surface area (970-1605 m2 g-1 ), nitrogen content (3.4-14.1 at%), pore volume (0.95-2.19 cm3 g-1 ), as well as pore diameter and structures. The carbon flowers prepared at 550 °C show high CO2 /N2 selectivity due to the high nitrogen content and the large fraction of (ultra)micropores, which can greatly increase the CO2 affinity. The results show that the physicochemical properties of carbons are highly dependent on the thermal transformation and associated pore formation process, rather than directly inherited from parent precursors. The present strategy demonstrates metal-organic mesocrystals as a facile and versatile means toward 3D hierarchical carbon superstructures that are attractive for a number of potential applications.
Collapse
Affiliation(s)
- Jongkook Hwang
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Ralf Walczak
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Martin Oschatz
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, Potsdam, 14476, Germany
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Bernhard V K J Schmidt
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
39
|
Wang R, Kapteijn F, Gascon J. Engineering Metal–Organic Frameworks for the Electrochemical Reduction of CO
2
: A Minireview. Chem Asian J 2019; 14:3452-3461. [DOI: 10.1002/asia.201900710] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Riming Wang
- Catalysis EngineeringChemical Engineering DepartmentDelft University of Technology Van der Maasweg 9 2629 HZ Delft Netherlands
| | - Freek Kapteijn
- Catalysis EngineeringChemical Engineering DepartmentDelft University of Technology Van der Maasweg 9 2629 HZ Delft Netherlands
| | - Jorge Gascon
- Catalysis EngineeringChemical Engineering DepartmentDelft University of Technology Van der Maasweg 9 2629 HZ Delft Netherlands
- Advanced Catalytic MaterialsKAUST Catalysis CenterKing Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| |
Collapse
|
40
|
Tahir N, Wang G, Onyshchenko I, De Geyter N, Leus K, Morent R, Van Der Voort P. High-nitrogen containing covalent triazine frameworks as basic catalytic support for the Cu-catalyzed Henry reaction. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Li D, Ning XA, Huang Y, Li S. Nitrogen-rich microporous carbon materials for high-performance membrane capacitive deionization. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.172] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Fan X, Yang F, Huang J, Yang Y, Nie C, Zhao W, Ma L, Cheng C, Zhao C, Haag R. Metal-Organic-Framework-Derived 2D Carbon Nanosheets for Localized Multiple Bacterial Eradication and Augmented Anti-infective Therapy. NANO LETTERS 2019; 19:5885-5896. [PMID: 31117696 DOI: 10.1021/acs.nanolett.9b01400] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently emerging graphene-based 2D nanoplatforms with multiple therapeutic modalities provide enormous opportunities to combat pathogenic bacterial infections. However, because these materials suffer from complicated synthesis, massive dosage requirements, and abundant nonlocalized heat, much more simplified, tunable, and localized eradication approaches are urgently required. Herein, we report on the fabrication of the metal-organic-framework (MOF)-derived 2D carbon nanosheets (2D-CNs) with phase-to-size transformation and localized bacterial eradication capabilities for augmented anti-infective therapy. The MOF-derived, ZnO-doped carbon on graphene (ZnO@G) is first synthesized and then anchored with phase transformable thermally responsive brushes (TRB) by in situ polymerization to yield the TRB-ZnO@G. The TRB-ZnO@G exhibits flexible 2D nanostructures, high photothermal activities, sustained Zn2+ ions release, and ON-OFF switchable phase-to-size transformation abilities. Notably, the near-infrared-triggered formation of TRB-ZnO@G-bacteria aggregations enables localized massive Zn2+ ions penetration, physical cutting, and hyperthermia killing, which synergistically enhance the disruption of bacterial membranes and intracellular substances. The obtained novel 2D-CNs not only present robust and localized multiple bacterial eradication capabilities with nearly 100% bactericidal efficiency at low concentrations but also possess rapid and safe skin wound disinfection via a short-time photothermal treatment without damaging normal skin tissues or causing accumulative toxicities, thus presenting great potential for broad-spectrum eradication of pathogenic bacteria.
Collapse
Affiliation(s)
- Xin Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China.,Department of Chemistry and Biochemistry , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Fan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Jianbo Huang
- Department of Ultrasound, West China School of Medicine/West China Hospital , Sichuan University , Chengdu 610041 , China
| | - Ye Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Lang Ma
- Department of Ultrasound, West China School of Medicine/West China Hospital , Sichuan University , Chengdu 610041 , China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China.,Department of Chemistry and Biochemistry , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Rainer Haag
- Department of Chemistry and Biochemistry , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| |
Collapse
|
43
|
Feng X, Bian L, Ma J, Zhou L, Wang X, Guo G, Pu Q. Distinct correlation between (CN 2) x units and pores: a low-cost method for predesigned wide range control of micropore size of porous carbon. Chem Commun (Camb) 2019; 55:3963-3966. [PMID: 30874265 DOI: 10.1039/c9cc01213c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Flexible control of the micropore size of carbon was achieved in a cost-efficient way by predesigned quantitative correlation between the sizes of extendable (CN2)x nanosized modulators and the generated micropore sizes ranged from 0.2 to 2.3 nm, with effectiveness for boosting the electrochemical performance systematically.
Collapse
Affiliation(s)
- Xiaotong Feng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Lei Bian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Jie Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Lei Zhou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Xiayan Wang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Guangsheng Guo
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
44
|
Xie J, Li B, Peng H, Song Y, Li J, Zhang Z, Zhang Q. From Supramolecular Species to Self‐Templated Porous Carbon and Metal‐Doped Carbon for Oxygen Reduction Reaction Catalysts. Angew Chem Int Ed Engl 2019; 58:4963-4967. [DOI: 10.1002/anie.201814605] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Xie
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Bo‐Quan Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Hong‐Jie Peng
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Yun‐Wei Song
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jia‐Xing Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Ze‐Wen Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| |
Collapse
|
45
|
Kurpil B, Otte K, Mishchenko A, Lamagni P, Lipiński W, Lock N, Antonietti M, Savateev A. Carbon nitride photocatalyzes regioselective aminium radical addition to the carbonyl bond and yields N-fused pyrroles. Nat Commun 2019; 10:945. [PMID: 30808862 PMCID: PMC6391478 DOI: 10.1038/s41467-019-08652-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
Addition of N-centered radicals to C=C bonds or insertion into C-H bonds is well represented in the literature. These reactions have a tremendous significance, because they afford polyfunctionalized organic molecules. Despite the tetrahydroisoquinoline (THIQ) moiety widely occurring in natural biologically active compounds, N-unsubstituted THIQs as a source of N-centered radicals are not studied. Herein, we report a photocatalytic reaction between tetrahydroisoquinoline and chalcones that gives N-fused pyrroles-1,3-disubstituted-5,6-dihydropyrrolo[2,1-a]isoquinolines (DHPIQ). The mechanism includes at least two photocatalytic events in one pot: (1) C-N bond formation; (2) C-C bond formation. In this process potassium poly(heptazine imide) is used as a visible light active heterogeneous and recyclable photocatalyst. Fifteen N-fused pyrroles are reported with 65-90% isolated yield. DHPIQs are characterized by UV-vis and fluorescence spectroscopy, while the fluorescence quantum efficiency of fluorinated DHPIQs reaches 24%.
Collapse
Affiliation(s)
- Bogdan Kurpil
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424, Potsdam, Germany
| | - Katharina Otte
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424, Potsdam, Germany
| | - Artem Mishchenko
- V.I. Vernadsky Institute of General and Inorganic Chemistry, NAS of Ukraine, Palladina Avenue, 32/34, Kiev, 03142, Ukraine
| | - Paolo Lamagni
- Carbon Dioxide Activation Center, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Wojciech Lipiński
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424, Potsdam, Germany
| | - Nina Lock
- Carbon Dioxide Activation Center, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Markus Antonietti
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424, Potsdam, Germany
| | - Aleksandr Savateev
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424, Potsdam, Germany.
| |
Collapse
|
46
|
Xie J, Li B, Peng H, Song Y, Li J, Zhang Z, Zhang Q. From Supramolecular Species to Self‐Templated Porous Carbon and Metal‐Doped Carbon for Oxygen Reduction Reaction Catalysts. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jin Xie
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Bo‐Quan Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Hong‐Jie Peng
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Yun‐Wei Song
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jia‐Xing Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Ze‐Wen Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| |
Collapse
|
47
|
Barrio J, Shalom M. Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. ChemCatChem 2018. [DOI: 10.1002/cctc.201801410] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jesús Barrio
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 8410501 Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 8410501 Israel
| |
Collapse
|
48
|
Crucial Factors for the Application of Functional Nanoporous Carbon-Based Materials in Energy and Environmental Applications. C — JOURNAL OF CARBON RESEARCH 2018. [DOI: 10.3390/c4040056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This special issue of C—Journal of Carbon Research is dedicated to “Functional Nanoporous Carbon-Based Materials”. It contains contributions reporting on the synthesis of nanoporous carbons for the adsorption of proteins, their applications in electrochemical energy storage/conversion, and on the characterization/modification of their surface chemistry. Nanoporous carbon-based materials are widely researched, but at the same time, the field is still full of unutilized potential. The atomic construction of the carbon framework, pore sizes, pore geometries, presence of heteroatoms, particle size and shape, and many other “internal screws” are available; in the end, the high potential of carbon-based materials will only be fully explored if the interplay of these crucial factors is precisely controlled. This article is a summary of what we consider important for future targeted improvement of porous carbon nanomaterials for energy and environmental applications.
Collapse
|