1
|
Kong Z, Zhao X, Li WC, Wang JY, Li S, Liu Z, Dong XY, Wang R, Huang RW, Zang SQ. Cluster Engineering in Water Catalytic Reactions: Synthesis, Structure-Activity Relationship and Mechanism. ACS APPLIED MATERIALS & INTERFACES 2025; 17:67-90. [PMID: 39718441 DOI: 10.1021/acsami.4c16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Four fundamental reactions are essential to harnessing energy from water sustainably: oxidation reduction reaction (ORR), oxygen reduction reaction (OER), hydrogen oxidation reaction (HOR), and hydrogen evolution reaction (HER). This review summarizes the research advancements in the electrocatalytic reaction of metal nanoclusters for water splitting. It covers various types of nanoclusters, particularly those at the size level, that enhance these catalytic reactions. The synthesis of cluster-based catalysts and the elucidation of the structure-activity relationships and reaction mechanisms are discussed. Emphasis is placed on utilizing atomically precise cluster materials and the interplay between the carrier and cluster in water catalysis, especially for applying catalytic engineering principles (such as synergy, coordination, heterointerface, and lattice strain engineering) to understand structure-activity relationships and catalytic mechanisms for cluster-based catalysts. Finally, the field of cluster water catalysis is summarized and prospected. We believe that developing cluster-based catalysts with high activity, excellent stability, and high selectivity will significantly promote the development of renewable energy conversion reactions.
Collapse
Affiliation(s)
- Zhijie Kong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wu-Chu Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Yun Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Si Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhijuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ren-Wu Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Elstone NS, Shaw EV, Shimizu K, Lai J, Demé B, Lane PD, Costen ML, McKendrick KG, Youngs S, Rogers SE, Canongia Lopes JN, Bruce DW, Slattery JM. Chain-length dependent organisation in mixtures of hydrogenous and fluorous ionic liquids. Faraday Discuss 2024; 253:55-78. [PMID: 39091139 DOI: 10.1039/d4fd00047a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
As part of an ongoing study of the structure and properties of mixtures of ionic liquids in which one component has a hydrocarbon chain and the other a semiperfluorocarbon chain, we now report a study of the mixtures [C8MIM]1-x[C10MIM-F17]x[Tf2N], [C10MIM]1-x[C8MIM-F13]x[Tf2N] and [C10MIM]1-x[C10MIM-F17]x[Tf2N], where [C8MIM][Tf2N] is 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide, [C10MIM][Tf2N] is 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C8MIM-F13][Tf2N] is 1-(1H,1H,2H,2H-perfluorooctyl)-3-methylimidizolium bis(trifluoromethylsulfonyl)imide and [C10MIM-F17][Tf2N] is 1-(1H,1H,2H,2H-perfluorodecyl)-3-methylimidizolium bis(trifluoromethylsulfonyl)imide. The mixtures were investigated using small-angle X-ray (SAXS) and neutron (SANS) scattering complemented by molecular dynamics simulations (with viscosity and surface tension measurements also possible for the mixtures [C10MIM]1-x[C8MIM-F13]x[Tf2N]). Unlike previous studies of [C8MIM]1-x[C8MIM-F13]x[Tf2N], where no strong evidence of alkyl/fluoroalkyl chain segregation or triphilic behaviour was seen (Elstone et al., J. Phys. Chem. B, 2023, 127, 7394-7407), these new mixtures show the formation of small aggregates of varying sizes of each component, even though all were co-miscible across the full range of compositions. Thus, while a clear polar non-polar peak (PNPP) was observed at large or small values of x, at intermediate compositions the small-angle neutron scattering at low q was dominated by scattering from these small aggregates, while at other compositions, there was little or no evidence of the PNPP. The origins of this behaviour are discussed in terms of inter-chain interactions.
Collapse
Affiliation(s)
- Naomi S Elstone
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Emily V Shaw
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Karina Shimizu
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049 001, Portugal.
| | - Joshua Lai
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Bruno Demé
- Institut Laue-Langevin, Grenoble 38000, France
| | - Paul D Lane
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Matthew L Costen
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Kenneth G McKendrick
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Sarah Youngs
- ISIS Neutron and Muon Source, Harwell Campus, Didcot OX11 0QX, UK
| | - Sarah E Rogers
- ISIS Neutron and Muon Source, Harwell Campus, Didcot OX11 0QX, UK
| | - Jose N Canongia Lopes
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049 001, Portugal.
| | - Duncan W Bruce
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - John M Slattery
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
3
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
4
|
Levin N, Goclik L, Walschus H, Antil N, Bordet A, Leitner W. Decarboxylation and Tandem Reduction/Decarboxylation Pathways to Substituted Phenols from Aromatic Carboxylic Acids Using Bimetallic Nanoparticles on Supported Ionic Liquid Phases as Multifunctional Catalysts. J Am Chem Soc 2023; 145:22845-22854. [PMID: 37815193 PMCID: PMC10591467 DOI: 10.1021/jacs.3c09290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 10/11/2023]
Abstract
Valuable substituted phenols are accessible via the selective decarboxylation of hydroxybenzoic acid derivatives using multifunctional catalysts composed of bimetallic iron-ruthenium nanoparticles immobilized on an amine-functionalized supported ionic liquid phase (Fe25Ru75@SILP+IL-NEt2). The individual components of the catalytic system are assembled using a molecular approach to bring metal and amine sites into close contact on the support material, providing high stability and high decarboxylation activity. Operating under a hydrogen atmosphere was found to be essential to achieve high selectivity and yields. As the catalyst materials enable also the selective hydrogenation and hydrodeoxygenation of various additional functional groups (i.e., formyl, acyl, and nitro substituents), direct access to the corresponding phenols can be achieved via integrated tandem reactions. The approach opens versatile synthetic pathways for the production of valuable phenols from a wide range of readily available substrates, including compounds derived from lignocellulosic biomass.
Collapse
Affiliation(s)
- Natalia Levin
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Lisa Goclik
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Henrik Walschus
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Neha Antil
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Alexis Bordet
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
5
|
Zhang C, Chen Z, Zhang H, Liu Y, Wei W, Zhou Y, Xu M. Uniformly Dispersed Sb-Nanodot Constructed by In Situ Confined Polymerization of Ionic Liquids for High-Performance Potassium-Ion Batteries. Molecules 2023; 28:5212. [PMID: 37446874 DOI: 10.3390/molecules28135212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Antimony (Sb) is a potential candidate anode for potassium-ion batteries (PIBs) owing to its high theoretical capacity. However; in the process of potassium alloying reaction; the huge volume expansion (about 407%) leads to pulverization of active substance as well as loss of electrical contact resulting in rapidly declining capacity. Herein; uniformly dispersed Sb-Nanodot in carbon frameworks (Sb-ND@C) were constructed by in situ confined polymerization of ionic liquids. Attributed to the uniformly dispersed Sb-ND and confinement effect of carbon frameworks; as anode for PIBs; Sb-ND@C delivered a superior rate capability (320.1 mA h g-1 at 5 A g-1) and an outstanding cycling stability (486 mA h g-1 after 1000 cycles; achieving 89.8% capacity retention). This work offers a facile route to prepare highly dispersed metal-Nanodot via the in situ polymerization of ionic liquid for high-performance metal-ion batteries.
Collapse
Affiliation(s)
- Cunliang Zhang
- Henan Key Laboratory of Bimolecular Reorganization and Sensing, Henan Engineering Center of New Energy Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Zhengyuan Chen
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Haojie Zhang
- Henan Key Laboratory of Bimolecular Reorganization and Sensing, Henan Engineering Center of New Energy Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yanmei Liu
- Department of Public Science, Shangqiu Medical College, Shangqiu 476000, China
| | - Wei Wei
- Henan Key Laboratory of Bimolecular Reorganization and Sensing, Henan Engineering Center of New Energy Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yanli Zhou
- Henan Key Laboratory of Bimolecular Reorganization and Sensing, Henan Engineering Center of New Energy Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Maotian Xu
- Henan Key Laboratory of Bimolecular Reorganization and Sensing, Henan Engineering Center of New Energy Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| |
Collapse
|
6
|
Louis Anandaraj SJ, Kang L, DeBeer S, Bordet A, Leitner W. Catalytic Hydrogenation of CO 2 to Formate Using Ruthenium Nanoparticles Immobilized on Supported Ionic Liquid Phases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206806. [PMID: 36709493 DOI: 10.1002/smll.202206806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/14/2023] [Indexed: 05/04/2023]
Abstract
Ruthenium nanoparticles (NPs) immobilized on imidazolium-based supported ionic liquid phases (Ru@SILP) act as effective heterogeneous catalysts for the hydrogenation of carbon dioxide (CO2 ) to formate in a mixture of water and triethylamine (NEt3 ). The structure of the imidazolium-based molecular modifiers is varied systematically regarding side chain functionality (neutral, basic, and acidic) and anion to assess the influence of the IL-type environment on the NPs synthesis and catalytic properties. The resulting Ru@SILP materials contain well-dispersed Ru NPs with diameters in the range 0.8-2.9 nm that are found 2 to 10 times more active for CO2 hydrogenation than a reference Ru@SiO2 catalyst under identical conditions. Introduction of sulfonic acid groups in the IL modifiers results in a greatly increased turnover number (TON) and turnover frequency (TOF) at reduced metal loadings. As a result, excellent productivity with TONs up to 16 100 at an initial TOF of 1430 h-1 can be achieved with the Ru@SILP(SO3 H-OAc) catalyst. H/D exchange and other control experiments suggest an accelerated desorption of the formate species from the Ru NPs promoted by the presence of ammonium sulfonate species on Ru@SILP(SO3 H-X) materials, resulting in enhanced catalyst activity and productivity.
Collapse
Affiliation(s)
- Savarithai Jenani Louis Anandaraj
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Liqun Kang
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
7
|
Kalsi D, Louis Anandaraj SJ, Durai M, Weidenthaler C, Emondts M, Nolan SP, Bordet A, Leitner W. One-Pot Multicomponent Synthesis of Allyl and Alkylamines Using a Catalytic System Composed of Ruthenium Nanoparticles on Copper N-Heterocyclic Carbene-Modified Silica. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Deepti Kalsi
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Savarithai J. Louis Anandaraj
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Manisha Durai
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
8
|
Sun T, Lu Y, Lu J, Dong H, Ding W, Wang Y, Yang X, He H. Water-Controlled Structural Transition and Charge Transfer of Interfacial Ionic Liquids. J Phys Chem Lett 2022; 13:7113-7120. [PMID: 35900378 DOI: 10.1021/acs.jpclett.2c01822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Clarification of the water-induced structural transitions and electron transfer between ionic liquids (ILs) and a solid surface allows for establishing a unified view of the electrical properties of interfacial ILs via a hitherto unexplored pathway. Here, we propose a simple and effective method to quantitatively identify and extract the transferred electrons between ILs and a solid surface, while demonstrating the critical structural transition of interfacial ILs from ordered stripe structures to disordered aggregation structures. The formation of hydrated anions, rooted in the hydrogen bonds of O-H···O between the anion and water, lies at the tipping point where electron transfer ends and aggregation structure begins. In addition, it is discovered to what extent the hydrophilicity of substrates can affect electron transfer, and a regulation method based on the electric field is explored. These experimental findings may refresh our knowledge of interfacial ILs and provide an effective method for evaluating the intrinsic electrical features of the ILs-solid surface.
Collapse
Affiliation(s)
- Tinglan Sun
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumiao Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilu Ding
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiuhong Yang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Zhang B, Guo X, Tao L, Li R, Lin Z, Zhao W. Rhodium-Catalyzed Regioselective and Chemoselective Deoxygenative Reduction of 1,3-Diketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Lei Tao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Ruolin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| |
Collapse
|
10
|
Wang Y, He H, Wang C, Lu Y, Dong K, Huo F, Zhang S. Insights into Ionic Liquids: From Z-Bonds to Quasi-Liquids. JACS AU 2022; 2:543-561. [PMID: 35373210 PMCID: PMC8965826 DOI: 10.1021/jacsau.1c00538] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 05/26/2023]
Abstract
Ionic liquids (ILs) hold great promise in the fields of green chemistry, environmental science, and sustainable technology due to their unique properties, such as a tailorable structure, the various types available, and their environmentally friendly features. On the basis of multiscale simulations and experimental characterizations, two unique features of ILs are as follows: (1) strong coupling interactions between the electrostatic forces and hydrogen bonds, namely in the Z-bond, and (2) the unique semiordered structure and properties of ultrathin films, specifically regarding the quasi-liquid. In accordance with the aforementioned theoretical findings, many cutting-edge applications have been proposed: for example, CO2 capture and conversion, biomass conversion and utilization, and energy storage materials. Although substantial progress has been made recently in the field of ILs, considerable challenges remain in understanding the nature of and devising applications for ILs, especially in terms of e.g. in situ/real-time observation and highly precise multiscale simulations of the Z-bond and quasi-liquid. In this Perspective, we review recent developments and challenges for the IL research community and provide insights into the nature and function of ILs, which will facilitate future applications.
Collapse
Affiliation(s)
- Yanlei Wang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Hongyan He
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Chenlu Wang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Yumiao Lu
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Kun Dong
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Feng Huo
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Suojiang Zhang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| |
Collapse
|
11
|
Bimetallic MxRu100-x Nanoparticles (M = Fe, Co) on Supported Ionic Liquid Phases (MxRu100-x@SILP) as Hydrogenation Catalysts: Influence of M and M:Ru ratio on Activity and Selectivity. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Wang Y, Lee S, Zhou J, Fu J, Foucher A, Stach E, Ma L, Marinkovic N, Ehrlich S, Zheng W, Vlachos DG. Higher loadings of Pt single atoms and clusters over reducible metal oxides: application to C–O bond activation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00193d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop higher loadings of isolated noble metal atoms and clusters on a metal oxide via redistribution.
Collapse
Affiliation(s)
- Yunzhu Wang
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
| | - Seungyeon Lee
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jiahua Zhou
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jiayi Fu
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Alexandre Foucher
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric Stach
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Nebojsa Marinkovic
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Steven Ehrlich
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Weiqing Zheng
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
| | - Dionisios G. Vlachos
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
13
|
Sun R, Guo HY, Ma SS, Wang YF, Yu Z, Xu BH. Ru(dppbsa)-catalyzed hydrodeoxygenation and reductive etherification of ketones and aldehydes. Org Chem Front 2022. [DOI: 10.1039/d1qo01717a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(dppbsa)-catalyzed hydrodeoxygenation and reductive etherification of ketones and aldehydes were developed. The carbonyl substrates without β-CH functionality follow the hydrogenation-hydrogenolysis path, wherein the hydrogenolysis of the alkanol intermediates presents as...
Collapse
|
14
|
Wang C, Wang Y, Gan Z, Lu Y, Qian C, Huo F, He H, Zhang S. Topological engineering of two-dimensional ionic liquid islands for high structural stability and CO 2 adsorption selectivity. Chem Sci 2021; 12:15503-15510. [PMID: 35003578 PMCID: PMC8654070 DOI: 10.1039/d1sc05431g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
Ionic liquids (ILs) as green solvents and catalysts are highly attractive in the field of chemistry and chemical engineering. Their interfacial assembly structure and function are still far less well understood. Herein, we use coupling first-principles and molecular dynamics simulations to resolve the structure, properties, and function of ILs deposited on the graphite surface. Four different subunits driven by hydrogen bonds are identified first, and can assemble into close-packed and sparsely arranged annular 2D IL islands (2DIIs). Meanwhile, we found that the formation energy and HOMO–LUMO gap decrease exponentially as the island size increases via simulating a series of 2DIIs with different topological features. However, once the size is beyond the critical value, both the structural stability and electrical structure converge. Furthermore, the island edges are found to be dominant adsorption sites for CO2 and better than other pure metal surfaces, showing an ultrahigh adsorption selectivity (up to 99.7%) for CO2 compared with CH4, CO, or N2. Such quantitative structure–function relations of 2DIIs are meaningful for engineering ILs to efficiently promote their applications, such as the capture and conversion of CO2. Multi-scale simulations reveal the structure and properties of the two-dimensional ionic liquid islands supported by graphite, and the island edges show an ultrahigh adsorption selectivity for CO2 compared with CH4, CO, or N2.![]()
Collapse
Affiliation(s)
- Chenlu Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhongdong Gan
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Yumiao Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Cheng Qian
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology Ulsan 44919 South Korea
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences Beijing 100190 China.,Dalian National Laboratory for Clean Energy Dalian 116023 Liaoning China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
15
|
Seitkalieva MM, Samoylenko DE, Lotsman KA, Rodygin KS, Ananikov VP. Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213982] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Díaz-Puerto ZJ, Raya-Barón Á, van Leeuwen PWNM, Asensio JM, Chaudret B. Determination of the surface temperature of magnetically heated nanoparticles using a catalytic approach. NANOSCALE 2021; 13:12438-12442. [PMID: 34195744 DOI: 10.1039/d1nr02283k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein we describe a new method for the determination of the surface temperature of magnetically heated nanoparticles in solution using the temperature dependency of the catalytic performances of iron carbide nanoparticles coated with ruthenium (Fe2.2C@Ru) for acetophenone hydrodeoxygenation. A correlation between nanoparticle surface temperature and magnetic field could be established. Very high surface temperatures could be estimated in different solvents, which were also found similar at a given magnetic field and well above some solvent boiling points.
Collapse
|
17
|
Selectivity control in hydrogenation through adaptive catalysis using ruthenium nanoparticles on a CO 2-responsive support. Nat Chem 2021; 13:916-922. [PMID: 34226704 PMCID: PMC8440215 DOI: 10.1038/s41557-021-00735-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
With the advent of renewable carbon resources, multifunctional catalysts are becoming essential to hydrogenate selectively biomass-derived substrates and intermediates. However, the development of adaptive catalytic systems, that is, with reversibly adjustable reactivity, able to cope with the intermittence of renewable resources remains a challenge. Here, we report the preparation of a catalytic system designed to respond adaptively to feed gas composition in hydrogenation reactions. Ruthenium nanoparticles immobilized on amine-functionalized polymer-grafted silica act as active and stable catalysts for the hydrogenation of biomass-derived furfural acetone and related substrates. Hydrogenation of the carbonyl group is selectively switched on or off if pure H2 or a H2/CO2 mixture is used, respectively. The formation of alkylammonium formate species by the catalytic reaction of CO2 and H2 at the amine-functionalized support has been identified as the most likely molecular trigger for the selectivity switch. As this reaction is fully reversible, the catalyst performance responds almost in real time to the feed gas composition. ![]()
A multifunctional catalytic system composed of ruthenium nanoparticles immobilized on a silica surface decorated with an amine-functionalized polymer is used for the hydrogenation of biomass-derived furfural acetone and related substrates. The presence or absence of CO2 in the gas feed alters the selectivity of the hydrogenation—producing either a ketone or a saturated alcohol, respectively—in a fully reversible manner.
Collapse
|
18
|
Zhang YY, Zhang N, Peng P, Wang R, Jin Y, Lv YK, Wang X, Wei W, Zang SQ. Uniformly Dispersed Ru Nanoparticles Constructed by In Situ Confined Polymerization of Ionic Liquids for the Electrocatalytic Hydrogen Evolution Reaction. SMALL METHODS 2021; 5:e2100505. [PMID: 34927987 DOI: 10.1002/smtd.202100505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 06/14/2023]
Abstract
Design and development of cost-effective electrocatalysts with high efficiency and stability for scalable and sustainable hydrogen production through water splitting is still challenging. Herein, with the aid of divinyl functionalized ionic liquids, uniformly distributed Ru nanoparticles (NPs) on nitrogen-doped carbon frameworks are obtained via an in situ confined polymerization strategy. Attributed to the unique lamellar structure and confinement effect of carbon supports, the optimized homo-PIL-Ru/C-600 (with Ru 10 wt%) catalyst exhibits superior catalytic efficiency for the hydrogen evolution reaction with the overpotential of only 16 mV at a current density of 10 mA cm-2 and the corresponding Tafel slope of only 42 mV dec-1 . Moreover, the performance can be well reserved even after 10 000 cycles, demonstrating excellent stability and promising potentials for industrial application. This work not only provides a facile approach for the preparation of highly efficient Ru-based catalysts, but also guides the synthesis of other highly dispersed metallic NPs for special applications.
Collapse
Affiliation(s)
- Yong-Ya Zhang
- Henan Engineering Center of New Energy Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Nan Zhang
- Henan Engineering Center of New Energy Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Peng Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yan Jin
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ya-Kun Lv
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin Wang
- Henan Engineering Center of New Energy Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Wei Wei
- Henan Engineering Center of New Energy Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
19
|
Greco R, Lloret V, Rivero-Crespo MÁ, Hirsch A, Doménech-Carbó A, Abellán G, Leyva-Pérez A. Acid Catalysis with Alkane/Water Microdroplets in Ionic Liquids. JACS AU 2021; 1:786-794. [PMID: 34240079 PMCID: PMC8243323 DOI: 10.1021/jacsau.1c00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 05/05/2023]
Abstract
Ionic liquids are composed of an organic cation and a highly delocalized perfluorinated anion, which remain tight to each other and neutral across the extended liquid framework. Here we show that n-alkanes in millimolar amounts enable a sufficient ion charge separation to release the innate acidity of the ionic liquid and catalyze the industrially relevant alkylation of phenol, after generating homogeneous, self-stabilized, and surfactant-free microdroplets (1-5 μm). This extremely mild and simple protocol circumvents any external additive or potential ionic liquid degradation and can be extended to water, which spontaneously generates microdroplets (ca. 3 μm) and catalyzes Brönsted rather than Lewis acid reactions. These results open new avenues not only in the use of ionic liquids as acid catalysts/solvents but also in the preparation of surfactant-free, well-defined ionic liquid microemulsions.
Collapse
Affiliation(s)
- Rossella Greco
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
| | - Vicent Lloret
- Department
of Chemistry and Pharmacy, Friedrich−Alexander−Universität
Erlangen−Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
- Joint
Institute of Advanced Materials and Processes (ZMP), Friedrich−Alexander−Universität Erlangen−Nürnberg
(FAU), Dr.-Mack Strasse 81, 90762 Fürth, Germany
| | - Miguel Ángel Rivero-Crespo
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
| | - Andreas Hirsch
- Department
of Chemistry and Pharmacy, Friedrich−Alexander−Universität
Erlangen−Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
- Joint
Institute of Advanced Materials and Processes (ZMP), Friedrich−Alexander−Universität Erlangen−Nürnberg
(FAU), Dr.-Mack Strasse 81, 90762 Fürth, Germany
| | - Antonio Doménech-Carbó
- Departament
de Química Analítica, Universitat
de València, Dr.
Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Abellán
- Instituto
de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Valencia, Spain
- . Phone: +34963544074. Fax: +34963543273
| | - Antonio Leyva-Pérez
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
- . Phone: +34963877800. Fax: +349638 77809
| |
Collapse
|
20
|
Bordet A, Leitner W. Metal Nanoparticles Immobilized on Molecularly Modified Surfaces: Versatile Catalytic Systems for Controlled Hydrogenation and Hydrogenolysis. Acc Chem Res 2021; 54:2144-2157. [PMID: 33822579 PMCID: PMC8154204 DOI: 10.1021/acs.accounts.1c00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 01/08/2023]
Abstract
The synthesis and use of supported metal nanoparticle catalysts have a long-standing tradition in catalysis, typically associated with the field of heterogeneous catalysis. More recently, the development and understanding of catalytic systems composed of metal nanoparticles (NPs) that are synthesized from organometallic precursors on molecularly modified surfaces (MMSs) have opened a conceptually new approach to the design of multifunctional catalysts (NPs@MMS). These complex yet fascinating materials bridge molecular ("homogeneous") and material ("heterogeneous") approaches to catalysis and provide access to catalytic systems with tailor-made reactivity through judicious combinations of supports, molecular modifiers, and nanoparticle precursors. A particularly promising field of application is the controlled activation and transfer of dihydrogen, enabling highly selective hydrogenation and hydrogenolysis reactions as relevant for the conversion of biogenic feedstocks and platform chemicals as well as for novel synthetic pathways to fine chemicals and even pharmaceuticals. Consequently, the topic offers an emerging field for interdisciplinary research activities involving organometallic chemists, material scientists, synthetic organic chemists, and catalysis experts.This Account will provide a brief overview of the historical background and cover examples from the most recent developments in the field. A coherent account on the methodological and experimental basis will be given from the long-standing experience in our laboratories. MMSs are widely accessible via chemisorption and physisorption methods for the generation of stable molecular environments on solid surfaces, whereby a special emphasis is given here to ionic liquid-type molecules as modifiers (supported ionic liquid phases, SILPs) and silica as support material. Metal nanoparticles are synthesized following an organometallic approach, allowing the controlled formation of small and uniformly dispersed monometallic or multimetallic NPs in defined composition. A combination of techniques from molecular and material characterization provides a detailed insight into the structure of the resulting materials across various scales (electron microscopy, solid-state NMR, XPS, XAS, etc.).The molecular functionalities grafted on the silica surface have a pronounced influence on the formation, stabilization, and reactivity of the NPs. The complementary and synergistic fine-tuning of the metal and its molecular environment in NPs@MMSs allow in particular the control of the activation of hydrogen and its transfer to substrates. Monometallic (Ru, Rh, Pd) monofunctional NPs@MMSs possess excellent activities for the hydrogenation of alkenes, alkynes, and arenes for which a nonpolarized (homolytic) activation of H2 is predominant. The incorporation of 3d metals in noble metal NPs to give bimetallic (FeRu, CoRh, etc.) monofunctional NPs@MMSs favors a more polarized H2 activation and thus its transfer to the C═O bond, while at the same time preventing the arrangement of noble metal atoms necessary for ring hydrogenation. The incorporation of reactive functionalities, such as, for example, a -SO3H moiety on NPs@MMSs, results in bifunctional catalysts enabling the heterolytic cleavage corresponding to a formal H-/H+ transfer. Consequently, such catalysts possess excellent deoxygenation activity with strong synergistic effects arising from an intimate contact between the nanoparticles and the molecular functionality.While many more efforts are still required to explore, control, and understand the chemistry of NPs@MMS catalysts fully, the currently available examples already highlight the large potential of this approach for the rational design of multifunctional catalytic systems.
Collapse
Affiliation(s)
- Alexis Bordet
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
21
|
Rizescu C, Sun C, Popescu I, Urdă A, Da Costa P, Marcu IC. Hydrodeoxygenation of benzyl alcohol on transition-metal-containing mixed oxides catalysts derived from layered double hydroxide precursors. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Li Z, Sun J, Xu Q, Yin J. Homogeneous and Heterogeneous Ionic Liquid System: Promising “Ideal Catalysts” for the Fixation of CO
2
into Cyclic Carbonates. ChemCatChem 2021. [DOI: 10.1002/cctc.202001572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhuo‐Jian Li
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Jian‐Fei Sun
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Qin‐Qin Xu
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Jian‐Zhong Yin
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
23
|
Dietrich C, Chen S, Uzunidis G, Hähsler M, Träutlein Y, Behrens S. Bimetallic Pd/Sn-based Nanoparticles and their Catalytic Properties in the Semihydrogenation of Diphenylacetylene. ChemistryOpen 2021; 10:296-304. [PMID: 33751864 PMCID: PMC7944562 DOI: 10.1002/open.202000298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/09/2021] [Indexed: 11/23/2022] Open
Abstract
Multimetallic nanoparticles often enhance the catalytic performance of their monometallic counterparts by increasing reaction rates, catalyst selectivity, and/or stability. A prerequisite for understanding structure- and composition-associated properties, however, is the careful design of multimetallic nanoparticles with various structures and compositions. Here, bimetallic Pd/Sn-based nanoparticles are prepared with a tunable composition and structure exploiting ionic liquids (ILs) as reaction medium (i. e., methyltrioctylammonium bis(trifluoromethylsulfonyl)imide). The nanoparticles are obtained in a one-pot synthetic procedure by reducing the metal salt precursors with triethylborohydride in the IL. The results show that the reaction parameters, in particular the nature and ratio of the Pd2+ /Sn2+ precursors as well as the reaction temperature, influence NP formation and composition. X-ray diffraction with Rietveld analysis and transmission electron microscopy are employed to determine NP size and phase composition. Under optimized reaction conditions Pd2 Sn or PdSn nanocrystals are formed as single-phase products after introducing an additional annealing step at 200 °C. Nanocrystals with intermetallic composition reveal enhanced catalytic properties in the semihydrogenation of diphenylacetylene which was used as a model reaction.
Collapse
Affiliation(s)
- Christine Dietrich
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1 D76344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Si Chen
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1 D76344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Georgios Uzunidis
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1 D76344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Martin Hähsler
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1 D76344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Yannick Träutlein
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1 D76344Eggenstein-LeopoldshafenGermany
| | - Silke Behrens
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1 D76344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
24
|
Rengshausen S, Van Stappen C, Levin N, Tricard S, Luska KL, DeBeer S, Chaudret B, Bordet A, Leitner W. Organometallic Synthesis of Bimetallic Cobalt-Rhodium Nanoparticles in Supported Ionic Liquid Phases (Co x Rh 100- x @SILP) as Catalysts for the Selective Hydrogenation of Multifunctional Aromatic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006683. [PMID: 33346403 DOI: 10.1002/smll.202006683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The synthesis, characterization, and catalytic properties of bimetallic cobalt-rhodium nanoparticles of defined Co:Rh ratios immobilized in an imidazolium-based supported ionic liquid phase (Cox Rh100- x @SILP) are described. Following an organometallic approach, precise control of the Co:Rh ratios is accomplished. Electron microscopy and X-ray absorption spectroscopy confirm the formation of small, well-dispersed, and homogeneously alloyed zero-valent bimetallic nanoparticles in all investigated materials. Benzylideneacetone and various bicyclic heteroaromatics are used as chemical probes to investigate the hydrogenation performances of the Cox Rh100- x @SILP materials. The Co:Rh ratio of the nanoparticles is found to have a critical influence on observed activity and selectivity, with clear synergistic effects arising from the combination of the noble metal and its 3d congener. In particular, the ability of Cox Rh100- x @SILP catalysts to hydrogenate 6-membered aromatic rings is found to experience a remarkable sharp switch in a narrow composition range between Co25 Rh75 (full ring hydrogenation) and Co30 Rh70 (no ring hydrogenation).
Collapse
Affiliation(s)
- Simon Rengshausen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Natalia Levin
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Simon Tricard
- Laboratoire de Physique et Chimie des Nano-Objets, Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 Avenue de Rangueil, Toulouse, 31077, France
| | - Kylie L Luska
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets, Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 Avenue de Rangueil, Toulouse, 31077, France
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| |
Collapse
|
25
|
Zhang H, Liu Y, Fu S, Deng Y. Selective hydrodeoxygenation of lignin model compound (3,4-dimethoxybenzyl alcohol) by Pd/CN X catalyst. Int J Biol Macromol 2020; 169:274-281. [PMID: 33345971 DOI: 10.1016/j.ijbiomac.2020.12.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 11/15/2022]
Abstract
Upgrading of lignin derived bio-oil is an essential step for producing sustainable bio-based chemicals and fuel. Taken into account that α hydroxyl is the abundant functional group in lignin, high effective and selective catalytic alcoholysis for cleaving the Cα-OH linkages would be desirable. However, an in-depth understanding of the reaction mechanisms involved in the cleavage of Caromatic-Cα and Cα-O bonds over a novel catalyst is still needed. Herein, we report an efficient liquid-phase hydrogen transfer strategy for the selective hydrodeoxygenation of a non-phenolic lignin model compound, 3,4-dimethoxybenzyl (veratryl) alcohol, under mild conditions. By employing iso-propanol as solvent and H-donor, and palladium nanoparticles immobilized on nitrogen-doped carbon (Pd/CNX) as efficient multifunctional catalyst, veratryl alcohol dehydroxylation exhibited almost 100% conversion along with very high selectivity for 1,2-dimethoxy-benzene (46%) and 3,4-dimethoxytoluene (54%). Compared with other Pd catalysis, the Pd/CNX has excellent catalytic performances and exhibits higher selectivity for 3,4-dimethoxytoluene under incorporation with 1% HCOOH at 220 °C. The proportion of Pd (0) significantly increases in Pd/CNX catalyst when introduced into N precursor because of its highly dispersed Pd NPs and preventing the reoxidation of Pd (0). The dehydrogenation reaction occurred through the hydrogen generation of a secondary alcohol. Then, the Cα-OH and Caromatic-Cα bonds of veratryl alcohol were selectively cleaved by catalytic transfer hydrogenolysis. The alcoholysis mechanism is supported by dispersion-corrected density functional theory computations.
Collapse
Affiliation(s)
- Haichuan Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China; School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| |
Collapse
|
26
|
Bordet A, Moos G, Welsh C, Licence P, Luska KL, Leitner W. Molecular Control of the Catalytic Properties of Rhodium Nanoparticles in Supported Ionic Liquid Phase (SILP) Systems. ACS Catal 2020; 10:13904-13912. [PMID: 33343998 PMCID: PMC7737233 DOI: 10.1021/acscatal.0c03559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Rhodium nanoparticles (NPs) immobilized on imidazolium-based supported ionic liquid phases (Rh@SILP) act as effective catalysts for the hydrogenation of biomass-derived furfuralacetone. The structure of ionic liquid-type (IL) molecular modifiers was systematically varied regarding spacer, side chain, and anion to assess the influence on the NP synthesis and their catalytic properties. Well-dispersed Rh NPs with diameters in the range of 0.6-2.0 nm were formed on all SILP materials, whereby the actual size was dependent significantly on the IL structure. The resulting variations in catalytic activity for hydrogenation of the C=O moiety in furfuralacetone allowed control of the product selectivity to obtain either the saturated alcohol or the ketone in high yield. Experiments conducted under batch and continuous flow conditions demonstrated that Rh NPs immobilized on SILPs with suitable IL structures are more active and much more stable than Rh@SiO2 catalyst synthesized on unmodified silica.
Collapse
Affiliation(s)
- Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Gilles Moos
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Calum Welsh
- The University of Nottingham, School of Chemistry, Clifton Boulevard, Nottingham NG7 2RD, United Kingdom
| | - Peter Licence
- The University of Nottingham, School of Chemistry, Clifton Boulevard, Nottingham NG7 2RD, United Kingdom
| | - Kylie L. Luska
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| |
Collapse
|
27
|
Goclik L, Offner-Marko L, Bordet A, Leitner W. Selective hydrodeoxygenation of hydroxyacetophenones to ethyl-substituted phenol derivatives using a FeRu@SILP catalyst. Chem Commun (Camb) 2020; 56:9509-9512. [PMID: 32686801 DOI: 10.1039/d0cc03695a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective hydrodeoxygenation of hydroxyacetophenone derivatives is achieved opening a versatile pathway for the production of valuable substituted ethylphenols from readily available substrates. Bimetallic iron ruthenium nanoparticles immobilized on an imidazolium-based supported ionic liquid phase (Fe25Ru75@SILP) show high activity and stability for a broad range of substrates without acidic co-catalysts.
Collapse
Affiliation(s)
- Lisa Goclik
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany. and Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Lisa Offner-Marko
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany. and Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany. and Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
28
|
Moos G, Emondts M, Bordet A, Leitner W. Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh@SILP Catalyst. Angew Chem Int Ed Engl 2020; 59:11977-11983. [PMID: 32220119 PMCID: PMC7383641 DOI: 10.1002/anie.201916385] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 11/18/2022]
Abstract
Rhodium nanoparticles immobilized on an acid‐free triphenylphosphonium‐based supported ionic liquid phase (Rh@SILP(Ph3‐P‐NTf2)) enabled the selective hydrogenation and hydrodeoxygenation of aromatic ketones. The flexible molecular approach used to assemble the individual catalyst components (SiO2, ionic liquid, nanoparticles) led to outstanding catalytic properties. In particular, intimate contact between the nanoparticles and the phosphonium ionic liquid is required for the deoxygenation reactivity. The Rh@SILP(Ph3‐P‐NTf2) catalyst was active for the hydrodeoxygenation of benzylic ketones under mild conditions, and the product distribution for non‐benzylic ketones was controlled with high selectivity between the hydrogenated (alcohol) and hydrodeoxygenated (alkane) products by adjusting the reaction temperature. The versatile Rh@SILP(Ph3‐P‐NTf2) catalyst opens the way to the production of a wide range of high‐value cyclohexane derivatives by the hydrogenation and/or hydrodeoxygenation of Friedel–Crafts acylation products and lignin‐derived aromatic ketones.
Collapse
Affiliation(s)
- Gilles Moos
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.,Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany.,Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
29
|
Moos G, Emondts M, Bordet A, Leitner W. Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh@SILP Catalyst. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gilles Moos
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
30
|
Valdebenito C, Pinto J, Nazarkovsky M, Chacón G, Martínez-Ferraté O, Wrighton-Araneda K, Cortés-Arriagada D, Camarada MB, Alves Fernandes J, Abarca G. Highly modulated supported triazolium-based ionic liquids: direct control of the electronic environment on Cu nanoparticles. NANOSCALE ADVANCES 2020; 2:1325-1332. [PMID: 36133065 PMCID: PMC9418861 DOI: 10.1039/d0na00055h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/12/2020] [Accepted: 02/09/2020] [Indexed: 05/15/2023]
Abstract
A series of new triazolium-based supported ionic liquids (SILPs), decorated with Cu NPs, were successfully prepared and applied to the N-arylation of aryl halides with anilines. The triazoles moieties were functionalised using copper-catalysed azide-alkyne cycloaddition. SILP surface characterisation showed a strong correlation between the triazolium cation volume and textural properties. STEM images showed well-dispersed Cu NPs on SILPs with a mean diameter varying from 3.6 to 4.6 nm depending on the triazolium cation used. Besides, XPS results suggest that the Cu(0)/Cu(i) ratio can be modulated by the electronic density of triazolium substituents. XPS and computational analysis gave mechanistic insights into the Cu NP stabilisation pathways, where the presence of electron-rich groups attached to a triazolium ring plays a critical role in leading to a cation adsorption pathway (E ads = 72 kcal mol-1). In contrast, less electron-rich groups favour the anion adsorption pathway (E ads = 63 kcal mol-1). The Cu@SILP composite with electron-rich groups showed the highest activity for the C-N Ullmann coupling reaction, which suggests that electron-rich groups might act as an electron-like reservoir to facilitate oxidative addition for N-arylation. This strategy firmly suggests the strong dependence of the nature of triazolium-based SILPs on the Cu NP surface active sites, which may provide a new environment to confine and stabilise MNPs for catalytic applications.
Collapse
Affiliation(s)
- Cristián Valdebenito
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor Camino la Pirámide 5750 Huechuraba Santiago Chile
| | - Jose Pinto
- School of Chemistry, University of Nottingham NG7 2RD Nottingham UK
| | - Michael Nazarkovsky
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro R. Marquês de São Vicente 225 Rio de Janeiro 22451-900 RJ Brazil
| | - Gustavo Chacón
- Instituto de Química, Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Oriol Martínez-Ferraté
- Instituto de Química, Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Kerry Wrighton-Araneda
- Programa Institucional de Fomento a la Investigación, Universidad Tecnológica Metropolitana Desarrollo e Innovación Ignacio Valdivieso 2409, P.O. Box San Joaquín Santiago Chile
| | - Diego Cortés-Arriagada
- Programa Institucional de Fomento a la Investigación, Universidad Tecnológica Metropolitana Desarrollo e Innovación Ignacio Valdivieso 2409, P.O. Box San Joaquín Santiago Chile
| | - María Belén Camarada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor Camino la Pirámide 5750 Huechuraba Santiago Chile
| | | | - Gabriel Abarca
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor Camino la Pirámide 5750 Huechuraba Santiago Chile
| |
Collapse
|
31
|
El Sayed S, Bordet A, Weidenthaler C, Hetaba W, Luska KL, Leitner W. Selective Hydrogenation of Benzofurans Using Ruthenium Nanoparticles in Lewis Acid-Modified Ruthenium-Supported Ionic Liquid Phases. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05124] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sami El Sayed
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Walid Hetaba
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4, 14195 Berlin, Germany
| | - Kylie L. Luska
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
32
|
Affiliation(s)
- M. Rosa Axet
- UPR8241, Université de Toulouse, UPS, INPT, CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de NarbonneF-31077 Toulouse cedex 4, France
| | - Karine Philippot
- UPR8241, Université de Toulouse, UPS, INPT, CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de NarbonneF-31077 Toulouse cedex 4, France
| |
Collapse
|
33
|
Li D, Ding MM, Ge Y, Tello Yepes DF, Sun M, Najib MS, Li Y, Zhang YQ, Yao JL. Assembling two Dy 2 single-molecule magnets with different energy barriers via fine-tuning the geometries of Dy III sites. NEW J CHEM 2020. [DOI: 10.1039/d0nj04009f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two Dy2 single-molecule magnets are prepared. The energy barrier of 2 is slightly enhanced by adjusting the geometries of DyIII centers.
Collapse
Affiliation(s)
- Dawei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- China
| | - Man-Man Ding
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University
- Nanjing
- China
| | - Yu Ge
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- China
| | - David Felipe Tello Yepes
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology
- Suzhou
- China
| | - Mingyuan Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- China
| | - Muhammad Saleem Najib
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology
- Suzhou
- China
| | - Yahong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University
- Nanjing
- China
| | - Jin-lei Yao
- College of Environmental Engineering
- University of Waterloo
- Waterloo N2L3G1
- Canada
| |
Collapse
|
34
|
Naikwade A, Jagadale M, Kale D, Rashinkar G. Magnetic Nanoparticle Supported Ionic Liquid Phase Catalyst for Oxidation of Alcohols. Aust J Chem 2020. [DOI: 10.1071/ch19627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new magnetic nanoparticle supported ionic liquid phase (SILP) catalyst containing perruthenate anions was prepared by a multistep procedure. The various analytical techniques such as FT-IR spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, thermogravimetric analysis, energy dispersive X-ray analysis, and vibrating sample magnetometer analysis ascertained the successful formation of catalyst. The performance of a magnetically retrievable SILP catalyst was evaluated in the selective oxidation of alcohols. The split test and leaching studies of the SILP catalyst confirmed its heterogeneous nature. In addition, the reusability potential of SILP catalyst was also investigated which revealed its robust activity up to six consecutive cycles.
Collapse
|
35
|
Kacem S, Emondts M, Bordet A, Leitner W. Selective hydrogenation of fluorinated arenes using rhodium nanoparticles on molecularly modified silica. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01716g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh nanoparticles prepared on hydrophobic molecularly modified silica act as effective catalysts for the hydrogenation of fluoroarenes to fluorocyclohexane derivatives.
Collapse
Affiliation(s)
- Souha Kacem
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
| | - Meike Emondts
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI-Leibniz Institute for Interactive Materials
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
| |
Collapse
|
36
|
Fang H, Chen W, Li S, Li X, Duan X, Ye L, Yuan Y. Tandem Hydrogenolysis-Hydrogenation of Lignin-Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations. CHEMSUSCHEM 2019; 12:5199-5206. [PMID: 31647183 DOI: 10.1002/cssc.201902029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The efficient hydrodeoxygenation (HDO) of lignin-derived oxygenates is essential but challenging owing to the inherent complexity of feedstock and the lack of effective catalytic approaches. A catalytic strategy has been developed that separates C-O hydrogenolysis and aromatic hydrogenation on different active catalysts with interoperation that can achieve high oxygen removal in lignin-derived oxygenates. The flexible use of tungsten carbide for C-O bond cleavage and a nickel catalyst with controlled particle size for arene hydrogenation enables the tunable production of cyclohexane and cyclohexanol with almost full conversion of guaiacol. Such integration of dual catalysts in close proximity enables superior HDO of bio-oils into liquid alkanes with high mass and carbon yields of 27.9 and 45.0 wt %, respectively. This finding provides a new effective strategy for practical applications.
Collapse
Affiliation(s)
- Huihuang Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of, Alcohols-Ethers-Esters and iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Weikun Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of, Alcohols-Ethers-Esters and iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Shuang Li
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Xuehui Li
- School of Chemistry and Chemical Engineering, Pulp & Paper Engineering State Key Laboratory of China, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Xinping Duan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of, Alcohols-Ethers-Esters and iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Linmin Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of, Alcohols-Ethers-Esters and iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Youzhu Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of, Alcohols-Ethers-Esters and iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| |
Collapse
|
37
|
Asensio JM, Miguel AB, Fazzini P, van Leeuwen PWNM, Chaudret B. Hydrodeoxygenation Using Magnetic Induction: High‐Temperature Heterogeneous Catalysis in Solution. Angew Chem Int Ed Engl 2019; 58:11306-11310. [DOI: 10.1002/anie.201904366] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/03/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Juan M. Asensio
- LPCNOUniversité de ToulouseINSACNRSUPS 135, Avenue de Rangueil 31077 Toulouse France
| | - Ana B. Miguel
- LPCNOUniversité de ToulouseINSACNRSUPS 135, Avenue de Rangueil 31077 Toulouse France
| | | | | | - Bruno Chaudret
- LPCNOUniversité de ToulouseINSACNRSUPS 135, Avenue de Rangueil 31077 Toulouse France
| |
Collapse
|
38
|
Roberts EJ, Karadaghi LR, Wang L, Malmstadt N, Brutchey RL. Continuous Flow Methods of Fabricating Catalytically Active Metal Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27479-27502. [PMID: 31287651 DOI: 10.1021/acsami.9b07268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the obstacles preventing the commercialization of colloidal nanoparticle catalysts is the difficulty in fabricating these materials at scale while maintaining a high level of control over their resulting morphologies, and ultimately, their properties. Translation of batch-scale solution nanoparticle syntheses to continuous flow reactors has been identified as one method to address the scaling issue. The superior heat and mass transport afforded by the high surface-area-to-volume ratios of micro- and millifluidic channels allows for high control over reaction conditions and oftentimes results in decreased reaction times, higher yields, and/or more monodisperse size distributions compared to an analogous batch reaction. Furthermore, continuous flow reactors are automatable and have environmental health and safety benefits, making them practical for commercialization. Herein, a discussion of continuous flow methods, reactor design, and potential challenges is presented. A thorough account of the implementation of these technologies for the fabrication of catalytically active metal nanoparticles is reviewed for hydrogenation, electrocatalysis, and oxidation reactions.
Collapse
Affiliation(s)
- Emily J Roberts
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lanja R Karadaghi
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lu Wang
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Noah Malmstadt
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Richard L Brutchey
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| |
Collapse
|
39
|
Asensio JM, Miguel AB, Fazzini P, van Leeuwen PWNM, Chaudret B. Hydrodeoxygenation Using Magnetic Induction: High‐Temperature Heterogeneous Catalysis in Solution. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Juan M. Asensio
- LPCNOUniversité de ToulouseINSACNRSUPS 135, Avenue de Rangueil 31077 Toulouse France
| | - Ana B. Miguel
- LPCNOUniversité de ToulouseINSACNRSUPS 135, Avenue de Rangueil 31077 Toulouse France
| | | | | | - Bruno Chaudret
- LPCNOUniversité de ToulouseINSACNRSUPS 135, Avenue de Rangueil 31077 Toulouse France
| |
Collapse
|
40
|
Wang H, Zhao Y, Ke Z, Yu B, Li R, Wu Y, Wang Z, Han J, Liu Z. Synthesis of renewable acetic acid from CO2and lignin over an ionic liquid-based catalytic system. Chem Commun (Camb) 2019; 55:3069-3072. [DOI: 10.1039/c9cc00819e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Renewable acetic acid can be synthesized from CO2and lignin over an ionic liquid-based catalytic system containing Ru–Rh bimetal catalyst.
Collapse
Affiliation(s)
- Huan Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid, Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid, Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Zhengang Ke
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid, Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Bo Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid, Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Ruipeng Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid, Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yunyan Wu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid, Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Zhenpeng Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid, Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid, Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid, Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
41
|
Huang Y, Qin Y, Ge Y, Cui Y, Zhang X, Li Y, Yao J. Rationally assembled nonanuclear lanthanide clusters: Dy9 displays slow relaxation of magnetization and Tb9 serves as luminescent sensor for Fe3+, CrO42− and Cr2O72−. NEW J CHEM 2019. [DOI: 10.1039/c9nj04893f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The utilization of a Schiff base ligand 2-((2-hydroxy-4-methoxy-benzylideneamino)methyl)phenol (H2L) afforded five nonanuclear lanthanide(iii) clusters. Dy9 displays slow relaxation of magnetization and Tb9 serves as luminescent sensor for Fe3+, CrO42− and Cr2O72−.
Collapse
Affiliation(s)
- Yuan Huang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Yaru Qin
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Yu Ge
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Yanfeng Cui
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Xiamei Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Yahong Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Jinlei Yao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application
- School of Mathematics and Physics
- Suzhou University of Science and Technology
- Suzhou
- China
| |
Collapse
|
42
|
Zhang L, Zhou W, Xu Y, Wang Y, Hu J, Shi F. Sulfonic Group Functionalized Periodic Mesoporous Ethylenesilica: A Highly Efficient and Reusable Catalysts for Carbon-Carbon Coupling Reaction. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Linlong Zhang
- School of chemistry and Life Sciences; Changchun University of Technology; Changchun 130012 P. R. China
| | - Wei Zhou
- Department of Pharmacy; the First Hospital of Jilin University; Changchun 130021 P. R. China
| | - Yong Xu
- School of Chemical Engineering; Changchun University of Technology; Changchun 130012 P. R. China
| | - Yaoyao Wang
- School of Chemical Engineering; Changchun University of Technology; Changchun 130012 P. R. China
| | - Jianglei Hu
- School of Chemical Engineering; Changchun University of Technology; Changchun 130012 P. R. China
| | - Fengwei Shi
- School of Chemical Engineering; Changchun University of Technology; Changchun 130012 P. R. China
| |
Collapse
|
43
|
Offner-Marko L, Bordet A, Moos G, Tricard S, Rengshausen S, Chaudret B, Luska KL, Leitner W. Bimetallic Nanoparticles in Supported Ionic Liquid Phases as Multifunctional Catalysts for the Selective Hydrodeoxygenation of Aromatic Substrates. Angew Chem Int Ed Engl 2018; 57:12721-12726. [PMID: 30176102 PMCID: PMC6175319 DOI: 10.1002/anie.201806638] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 11/23/2022]
Abstract
Bimetallic iron–ruthenium nanoparticles embedded in an acidic supported ionic liquid phase (FeRu@SILP+IL‐SO3H) act as multifunctional catalysts for the selective hydrodeoxygenation of carbonyl groups in aromatic substrates. The catalyst material is assembled systematically from molecular components to combine the acid and metal sites that allow hydrogenolysis of the C=O bonds without hydrogenation of the aromatic ring. The resulting materials possess high activity and stability for the catalytic hydrodeoxygenation of C=O groups to CH2 units in a variety of substituted aromatic ketones and, hence, provide an effective and benign alternative to traditional Clemmensen and Wolff–Kishner reductions, which require stoichiometric reagents. The molecular design of the FeRu@SILP+IL‐SO3H materials opens a general approach to multifunctional catalytic systems (MM′@SILP+IL‐func).
Collapse
Affiliation(s)
- Lisa Offner-Marko
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany
| | - Alexis Bordet
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany.,Laboratoire de Physique et Chemie de Nano-Objets, Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Gilles Moos
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany
| | - Simon Tricard
- Laboratoire de Physique et Chemie de Nano-Objets, Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Simon Rengshausen
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany
| | - Bruno Chaudret
- Laboratoire de Physique et Chemie de Nano-Objets, Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Kylie L Luska
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|