1
|
Lee S, Ha HP, Lee JH, Kim J. Uncovering the centrality of mono-dentate SO 32-/SO 42- modifiers grafted on a metal vanadate in accelerating wet NO X reduction and poison pyrolysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132278. [PMID: 37619273 DOI: 10.1016/j.jhazmat.2023.132278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
NOX rarely binds with labile oxygens of catalytic solids, whose Lewis acidic (LA) species possess higher binding strengths with NH3 (ENH3) and H2O than Brönsted acidic counterparts (BA--H+; -OH), oftentimes leading to elevate energy barrier (EBARRIER) and weaken H2O tolerance, respectively. These limit NH3-assisted wet NOX reduction via Langmuir-Hinshelwood-type or Eley-Rideal (ER)-type model on LA species, while leaving ER-type analogue on BA--H+ species proper to reduce wet NOX. Given hard-to-regulate strength/amount of -OH species and occasional association between ENH3 and EBARRIER, Ni1V2O6 (Ni1) was rationally chosen as a platform to isolate mono-dentate SO32-/SO42- species for use as BA--H+ bonds via protonation to increase collision frequency (k'APP,0) alongside with disclosure of advantages of SO32-/SO42--functionalized Ni1V2O6 (Ni1-S) over Ni1 in reducing wet NOX. Ni1-S outperformed Ni1 in achieving a larger BA--H+ quantity (k'APP,0↑), increasing H2O tolerance, and elevating oxygen mobility, thus promoting NOX reduction activity/consequences under SO2-excluding gases. V2O5-WO3 composite simulating a commercial catalyst could isolate mono-dentate SO32-/SO42- species and served as a control (V2O5-WO3-S) for comparison. Ni1-S was superior to V2O5-WO3-S in evading ammonium (bi-)sulfate (AS/ABS) poison accumulation and expediting AS/ABS pyrolysis efficiency, thereby improving AS/ABS resistance under SO2-including gases, while enhancing resistance against hydro-thermal aging.
Collapse
Affiliation(s)
- Seokhyun Lee
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Chemical & Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Heon Phil Ha
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jung-Hyun Lee
- Department of Chemical & Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Jongsik Kim
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
2
|
Krafft MP, Riess JG. About Perfluoropolyhedranes, Their Electron-Accepting Ability and Questionable Supramolecular Hosting Capacity. Angew Chem Int Ed Engl 2023; 62:e202302942. [PMID: 37208990 DOI: 10.1002/anie.202302942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Polyhedral molecules are appealing for their eye-catching architecture and distinctive chemistry. Perfluorination of such, often greatly strained, compounds is a momentous challenge. It drastically changes the electron distribution, structure and properties. Notably, small high-symmetry perfluoropolyhedranes feature a centrally located, star-shaped low-energy unoccupied molecular orbital that can host an extra electron within the polyhedral frame, thus producing a radical anion, without loss of symmetry. This predicted electron-hosting capacity was definitively established for perfluorocubane, the first perfluorinated Platonic polyhedrane to be isolated pure. Hosting atoms, molecules, or ions in such "cage" structures is, however, all but forthright, if not illusionary, offering no easy access to supramolecular constructs. While adamantane and cubane have fostered numerous applications in materials science, medicine, and biology, specific uses for their perfluorinated counterparts remain to be established. Some aspects of highly fluorinated carbon allotropes, such as fullerenes and graphite, are briefly mentioned for context.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess., 67034, Strasbourg Cedex, France
| | - Jean G Riess
- Harangoutte Institute, 68160, Ste-Croix-aux-Mines, France
| |
Collapse
|
3
|
Huang G, Ide Y, Hashikawa Y, Hirose T, Murata Y. CH 3 CN@open-C 60 : An Effective Inner-Space Modification and Isotope Effect Inside a Nano-Sized Flask. Chemistry 2023; 29:e202301161. [PMID: 37264730 DOI: 10.1002/chem.202301161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Despite several small molecules being encapsulated inside cage-opened fullerene derivatives, such species have not considerably affected the structures and properties of the outer carbon cages. Herein, we achieved an effective inner-space modification for an open-cage C60 derivative by insertion of a neutral CH3 CN molecule into the cavity. The CH3 CN@open-C60 thus obtained showed an enhanced polarity, thus affording an easy separation from a mixture containing the empty cage by column chromatography on silica gel, without the preparative HPLC that was needed for previous cases. The less negative reduction potentials with respect to those of empty cage reflect the decreased energy level of the LUMO, which is supported by the DFT calculations. NMR spectroscopy, single-crystal X-ray analysis, and theoretical calculations revealed that both the presence of the encapsulated CH3 CN and cage deformation caused by the CH3 CN play an essential role in the change of the electronic properties. Furthermore, the favored binding affinity of deuterated acetonitrile CD3 CN with internal C60 surface is discussed.
Collapse
Affiliation(s)
- Guanglin Huang
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Yuki Ide
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
4
|
Abdulla HM, Gangwar P, Sajith PK, Ramachandran CN. Probing the Interaction of NO with C 60: Comparison between Endohedral and Exohedral Complexes. J Phys Chem A 2023; 127:3598-3607. [PMID: 37051864 DOI: 10.1021/acs.jpca.3c00381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Recent advances in synthetic methodologies have opened new strategies for synthesizing stable metal-free electron spin systems based on fullerenes. Introducing nitric oxide (NO) inside a fullerene cage is one of the methods to attain this goal. In the present study, dispersion corrected density functional theory (B3LYP-D3) has been used to evaluate the structure, stability, and electronic properties of NO encapsulated fullerene NO@C60 and compared those with its exohedral fullerene NO.C60 analog. The calculated stabilization energy for NO@C60 is appreciably higher than NO.C60, and this difference is comprehended via the Quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) topological analyses. The delocalization of electron density of NO and the C60 cage in NO@C60 is discussed using electrostatic potential analysis. In addition, an attempt has been made to understand the different locations and orientations involving the interaction of two NO radicals and the fullerene C60. It is shown that the encapsulation of the NO dimer inside the C60 cage is an energetically unfavorable process. On the other hand, stable structures are obtained upon the physisorption of other NO on the surface of NO@C60 and NO.C60. The present work provides an in-depth understanding of the interaction of NO and C60 fullerene, its preferable position, and its orientation in both endohedral and exohedral complexes.
Collapse
Affiliation(s)
| | - Peaush Gangwar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pookkottu K Sajith
- Department of Chemistry, Farook College, Kozhikode, Kerala 673632, India
| | - C N Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
5
|
Bloodworth S, Whitby RJ. Synthesis of endohedral fullerenes by molecular surgery. Commun Chem 2022; 5:121. [PMID: 36697689 PMCID: PMC9814919 DOI: 10.1038/s42004-022-00738-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023] Open
Abstract
Encapsulation of atoms or small molecules inside fullerenes provides a unique opportunity for study of the confined species in the isolated cavity, and the synthesis of closed C60 or C70 fullerenes with enclosed atoms or molecules has recently developed using the method of 'molecular surgery'; in which an open-cage intermediate fullerene is the host for encapsulation of a guest species, before repair of the cage opening. In this work we review the main methods for cage-opening and closure, and the achievements of molecular surgery to date.
Collapse
Affiliation(s)
- Sally Bloodworth
- grid.5491.90000 0004 1936 9297Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Richard J. Whitby
- grid.5491.90000 0004 1936 9297Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ UK
| |
Collapse
|
6
|
Buchachenko AL. Compressed Molecules and Enzymes. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Hauser AW, Pototschnig JV. Vibronic Coupling in Spherically Encapsulated, Diatomic Molecules: Prediction of a Renner-Teller-like Effect for Endofullerenes. J Phys Chem A 2022; 126:1674-1680. [PMID: 35258966 PMCID: PMC8935370 DOI: 10.1021/acs.jpca.1c10970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In the year 1933,
Herzberg and Teller realized that the potential
energy surface of a triatomic, linear molecule splits into two as
soon as the molecule is bent. The phenomenon, later dubbed the Renner–Teller
effect due to the detailed follow-up work of Renner on the subject,
describes the coupling of a symmetry-reducing molecular vibration
with degenerate electronic states. In this article, we show that a
very similar type of nonadiabatic coupling can occur for certain translational
degrees of freedom of diatomic, electronically degenerate molecules
when trapped in a nearly spherical or cylindrical quantum confinement,
e.g., realized through electromagnetic fields or molecular encapsulation.
We illustrate this on the example of fullerene-encapsulated nitric
oxide, and provide a prediction of its interesting, perturbed vibronic
spectrum.
Collapse
Affiliation(s)
- Andreas W Hauser
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Johann V Pototschnig
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
| |
Collapse
|
8
|
Hashikawa Y, Murata Y. Hydrogenation of cage-opened C 60 derivatives mediated by frustrated Lewis pairs. Org Biomol Chem 2022; 20:1000-1003. [PMID: 35029624 DOI: 10.1039/d1ob02316k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiply-carbonylated fullerene derivatives were found to work as one component in frustrated Lewis pairs which caused an Si-H bond activation in the presence of B(C6F5)3, leading to the carbonyl hydrogenation in up to 99% yield. The Lewis acid-mediated reductive arylation also took place to furnish a corresponding ketal derivative.
Collapse
Affiliation(s)
- Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Huang G, Hasegawa S, Hashikawa Y, Ide Y, Hirose T, Murata Y. An H 2 O 2 Molecule Stabilized inside Open-Cage C 60 Derivatives by a Hydroxy Stopper. Chemistry 2021; 28:e202103836. [PMID: 34850990 DOI: 10.1002/chem.202103836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 12/31/2022]
Abstract
An H2 O2 molecule was isolated inside hydroxylated open-cage fullerene derivatives by mixing an H2 O2 solution with a precursor molecule followed by reduction of one of carbonyl groups on its orifice. Depending on the reduction site, two structural isomers for H2 O2 @open-fullerenes were obtained. A high encapsulation ratio of 81 % was attained at low temperature. The structures of the peroxosolvate complexes thus obtained were studied by 1 H NMR spectroscopy, X-ray analysis, and DFT calculations, showing strong hydrogen bonding between the encapsulated H2 O2 and the hydroxy group located at the center of the orifice. This OH group was found to act as a kinetic stopper, and the formation of the hydrogen bonding caused thermodynamic stabilization of the H2 O2 molecule, both of which prevent its escape from the cage. One of the peroxosolvates was isolated by HPLC, affording H2 O2 @open-fullerene with 100 % encapsulation ratio, likely due to the intramolecular hydrogen-bonding interaction.
Collapse
Affiliation(s)
- Guanglin Huang
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shota Hasegawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuki Ide
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
10
|
Hasegawa S, Meichsner SL, Holstein JJ, Baksi A, Kasanmascheff M, Clever GH. Long-Lived C 60 Radical Anion Stabilized Inside an Electron-Deficient Coordination Cage. J Am Chem Soc 2021; 143:9718-9723. [PMID: 34156243 DOI: 10.1021/jacs.1c02860] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fullerene C60 and its derivatives are widely used in molecular electronics, photovoltaics, and battery materials, because of their exceptional suitability as electron acceptors. In this context, single-electron transfer on C60 generates the C60• - radical anion. However, the short lifetime of free C60• - hampers its investigation and application. In this work, we dramatically stabilize the usually short-lived C60• - species within a self-assembled M2L4 coordination cage consisting of a triptycene-based ligand and Pd(II) cations. The electron-deficient cage strongly binds C60 by providing a curved inner π-surface complementary to the fullerene's globular shape. Cyclic voltammetry revealed a positive potential shift for the first reduction of encapsulated C60, which is indicative of a strong interaction between confined C60• - and the cationic cage. Photochemical one-electron reduction with 1-benzyl-1,4-dihydronicotinamide allows selective and quantitative conversion of the confined C60 molecule in millimolar acetonitrile solution at room temperature. Radical generation was confirmed by nuclear magnetic resonance, electron paramagnetic resonance, ultraviolet-visible-near-infrared spectroscopy and electrospray ionization mass spectrometry. The lifetime of C60• - within the cage was determined to be so large that it could still be detected after one month under an inert atmosphere.
Collapse
Affiliation(s)
- Shota Hasegawa
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Shari L Meichsner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Ananya Baksi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Horii Y, Suzuki H, Miyazaki Y, Nakano M, Hasegawa S, Hashikawa Y, Murata Y. Dynamics and magnetic properties of NO molecules encapsulated in open-cage fullerene derivatives evidenced by low temperature heat capacity. Phys Chem Chem Phys 2021; 23:10251-10256. [PMID: 33899869 DOI: 10.1039/d1cp00482d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-temperature heat capacity analyses for an NO-encapsulated fullerene derivative revealed (i) low-energy motion and (ii) strong magnetic anisotropy of the NO molecule due to its orbital angular momentum. The low-energy motion was attributed to reorientational motions of the NO molecules, in which only a small number (n ∼ 0.04) of NO molecules were found to participate. The NO molecules were confirmed to be paramagnetic even at 1 K. Ab-initio calculation indicated that the magnetic properties of the NO unit strongly depended on its surroundings, allowing the conformation of the fullerene cage to be estimated.
Collapse
Affiliation(s)
- Yoji Horii
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Hal Suzuki
- Department of Chemistry, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Yuji Miyazaki
- Research Center for Thermal and Entropic Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Motohiro Nakano
- Research Center for Thermal and Entropic Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shota Hasegawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
12
|
Hoffman G, Walkey MC, Gräsvik J, Bacanu GR, Alom S, Bloodworth S, Light ME, Levitt MH, Whitby RJ. A Solid-State Intramolecular Wittig Reaction Enables Efficient Synthesis of Endofullerenes Including Ne@C 60 , 3 He@C 60 , and HD@C 60. Angew Chem Int Ed Engl 2021; 60:8960-8966. [PMID: 33554419 PMCID: PMC8048630 DOI: 10.1002/anie.202100817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 11/24/2022]
Abstract
An open-cage fullerene incorporating phosphorous ylid and carbonyl group moieties on the rim of the orifice can be filled with gases (H2 , He, Ne) in the solid state, and the cage opening then contracted in situ by raising the temperature to complete an intramolecular Wittig reaction, trapping the atom or molecule inside. Known transformations complete conversion of the product fullerene to C60 containing the endohedral species. As well as providing an improved synthesis of large quantities of 4 He@C60 , H2 @C60 , and D2 @C60 , the method allows the efficient incorporation of expensive gases such as HD and 3 He, to prepare HD@C60 and 3 He@C60 . The method also enables the first synthesis of Ne@C60 by molecular surgery, and its characterization by crystallography and 13 C NMR spectroscopy.
Collapse
Affiliation(s)
- Gabriela Hoffman
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Mark C. Walkey
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - John Gräsvik
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
- Current address: Iggesund Paperboard ABIggesunds BrukLSKA82580IggesundSweden
| | - George R. Bacanu
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Shamim Alom
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Sally Bloodworth
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Mark E. Light
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Malcolm H. Levitt
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Richard J. Whitby
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| |
Collapse
|
13
|
Hoffman G, Walkey MC, Gräsvik J, Bacanu GR, Alom S, Bloodworth S, Light ME, Levitt MH, Whitby RJ. A Solid‐State Intramolecular Wittig Reaction Enables Efficient Synthesis of Endofullerenes Including Ne@C
60
,
3
He@C
60
, and HD@C
60. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gabriela Hoffman
- Chemistry, Faculty of Engineering and Physical Sciences University of Southampton Southampton SO17 1BJ UK
| | - Mark C. Walkey
- Chemistry, Faculty of Engineering and Physical Sciences University of Southampton Southampton SO17 1BJ UK
| | - John Gräsvik
- Chemistry, Faculty of Engineering and Physical Sciences University of Southampton Southampton SO17 1BJ UK
- Current address: Iggesund Paperboard AB Iggesunds Bruk LSKA 82580 Iggesund Sweden
| | - George R. Bacanu
- Chemistry, Faculty of Engineering and Physical Sciences University of Southampton Southampton SO17 1BJ UK
| | - Shamim Alom
- Chemistry, Faculty of Engineering and Physical Sciences University of Southampton Southampton SO17 1BJ UK
| | - Sally Bloodworth
- Chemistry, Faculty of Engineering and Physical Sciences University of Southampton Southampton SO17 1BJ UK
| | - Mark E. Light
- Chemistry, Faculty of Engineering and Physical Sciences University of Southampton Southampton SO17 1BJ UK
| | - Malcolm H. Levitt
- Chemistry, Faculty of Engineering and Physical Sciences University of Southampton Southampton SO17 1BJ UK
| | - Richard J. Whitby
- Chemistry, Faculty of Engineering and Physical Sciences University of Southampton Southampton SO17 1BJ UK
| |
Collapse
|
14
|
Hashikawa Y, Hasegawa S, Murata Y. Precise Fixation of an NO Molecule inside Carbon Nanopores: A Long‐Range Electron–Nuclear Interaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Shota Hasegawa
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Yasujiro Murata
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
15
|
Hashikawa Y, Kizaki K, Murata Y. Pressure-induced annulative orifice closure of a cage-opened C 60 derivative. Chem Commun (Camb) 2021; 57:5322-5325. [PMID: 33928322 DOI: 10.1039/d1cc01662h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cage-opened C60 derivative was found to undergo an unusual annulative orifice-closure reaction under high-pressure conditions, in which the orifice size changed from a 16- to a 13-membered ring. The structure was different from that obtained by the reaction at 1 atm. The theoretical calculations suggested that the formation of the former one is thermodynamically favored.
Collapse
Affiliation(s)
- Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazuro Kizaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
16
|
Hashikawa Y, Hasegawa S, Murata Y. Precise Fixation of an NO Molecule inside Carbon Nanopores: A Long‐Range Electron–Nuclear Interaction. Angew Chem Int Ed Engl 2020; 60:2866-2870. [DOI: 10.1002/anie.202012538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 11/09/2022]
Affiliation(s)
| | - Shota Hasegawa
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Yasujiro Murata
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
17
|
Dinse KP, Kato T, Hasegawa S, Hashikawa Y, Murata Y, Bittl R. EPR study of NO radicals encased in modified open C 60 fullerenes. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:197-207. [PMID: 37904828 PMCID: PMC10500688 DOI: 10.5194/mr-1-197-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/10/2020] [Indexed: 11/01/2023]
Abstract
Using pulsed electron paramagnetic resonance (EPR) techniques, the low-temperature magnetic properties of the NO radical being confined in two different modified open C 60 -derived cages are determined. It is found that the smallest principal g value g 3 , being assigned to the axis of the radical, deviates strongly from the free electron value. This behaviour results from partial compensation of the spin and orbital contributions to the g 3 value. The measured g 3 values in the range of 0.7 yield information about the deviation of the locking potential for the encaged NO from axial symmetry. The estimated 17 meV asymmetry is quite small compared to the situation found for the same radical in polycrystalline or amorphous matrices ranging from 300 to 500 meV. The analysis of the temperature dependence of spin relaxation times resulted in an activation temperature of about 3 K, assigned to temperature-activated motion of the NO within the modified open C 60 -derived cages with coupled rotational and translational degrees of freedom in a complicated three-dimensional locking potential.
Collapse
Affiliation(s)
- Klaus-Peter Dinse
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Tatsuhisa Kato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shota Hasegawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Robert Bittl
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
18
|
Yang Y, Niu C, Chen M, Yang S, Wang GW. Electrochemical regioselective alkylations of a [60]fulleroindoline with bulky alkyl bromides. Org Biomol Chem 2020; 18:4783-4787. [PMID: 32520053 DOI: 10.1039/d0ob00876a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrochemical alkylations of a [60]fulleroindoline with different bulky alkyl bromides exhibit different reaction behaviors. The hydroalkylation and dialkylation of the electrochemically generated dianionic [60]fulleroindoline with bulky 2,4,6-tris(bromomethyl)mesitylene give rise to 1,2,3,16-adducts. In comparison, the hydroalkylation of the dianionic [60]fulleroindoline with bulkier diphenylbromomethane still affords a 1,2,3,16-adduct, while the corresponding dialkylation provides a sterically favoured 1,4,9,12-adduct, which is scarcely investigated, as the major product along with the isomeric 1,2,3,16-adduct as the minor product. The structures of these products have been determined by spectroscopic data and single-crystal X-ray diffraction analysis. A plausible reaction mechanism has been proposed to explain the formation of the observed products.
Collapse
Affiliation(s)
- Yong Yang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Chuang Niu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Guan-Wu Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
19
|
Niu C, Chen XP, Yin ZC, Wang WF, Wang GW. Alternative Access to Cyclopentafullerenes through the Reaction of [60]Fullerene with Aldehydes and Secondary Amines. J Org Chem 2020; 85:6878-6887. [PMID: 32397711 DOI: 10.1021/acs.joc.9b03436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of cyclopentafullerenes have been synthesized in high stereoselectivity by the thermal reaction of [60]fullerene with aldehydes and secondary amines. Both α,β-unsaturated aldehydes and saturated aldehydes can be utilized to synthesize cyclopentafullerenes as the cis isomers. The possible reaction mechanisms for the formation of cyclopentafullerenes are proposed on the basis of the experimental results.
Collapse
Affiliation(s)
- Chuang Niu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiao-Ping Chen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zheng-Chun Yin
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
20
|
Hussain M, Chen M, Yang S, Wang GW. Palladium-Catalyzed Heteroannulation of Indole-1-carboxamides with [60]Fullerene and Subsequent Electrochemical Transformations. Org Lett 2019; 21:8568-8571. [DOI: 10.1021/acs.orglett.9b03112] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Majid Hussain
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
21
|
Bloodworth S, Sitinova G, Alom S, Vidal S, Bacanu GR, Elliott SJ, Light ME, Herniman JM, Langley GJ, Levitt MH, Whitby RJ. First Synthesis and Characterization of CH 4 @C 60. Angew Chem Int Ed Engl 2019; 58:5038-5043. [PMID: 30773760 PMCID: PMC6492075 DOI: 10.1002/anie.201900983] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 11/30/2022]
Abstract
The endohedral fullerene CH4 @C60 , in which each C60 fullerene cage encapsulates a single methane molecule, has been synthesized for the first time. Methane is the first organic molecule, as well as the largest, to have been encapsulated in C60 to date. The key orifice contraction step, a photochemical desulfinylation of an open fullerene, was completed, even though it is inhibited by the endohedral molecule. The crystal structure of the nickel(II) octaethylporphyrin/ benzene solvate shows no significant distortion of the carbon cage, relative to the C60 analogue, and shows the methane hydrogens as a shell of electron density around the central carbon, indicative of the quantum nature of the methane. The 1 H spin-lattice relaxation times (T1 ) for endohedral methane are similar to those observed in the gas phase, indicating that methane is freely rotating inside the C60 cage. The synthesis of CH4 @C60 opens a route to endofullerenes incorporating large guest molecules and atoms.
Collapse
Affiliation(s)
- Sally Bloodworth
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Gabriela Sitinova
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Shamim Alom
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Sara Vidal
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - George R. Bacanu
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Stuart J. Elliott
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
- Current address: Centre de Résonance Magnétique Nucléaire à Très Hauts ChampsFRE 2034 Université de LyonCNRSUniversité Claude Bernard Lyon 1ENS de Lyon5 Rue de la Doua69100VilleurbanneFrance
| | - Mark E. Light
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Julie M. Herniman
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - G. John Langley
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Malcolm H. Levitt
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Richard J. Whitby
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| |
Collapse
|
22
|
Bloodworth S, Sitinova G, Alom S, Vidal S, Bacanu GR, Elliott SJ, Light ME, Herniman JM, Langley GJ, Levitt MH, Whitby RJ. First Synthesis and Characterization of CH
4
@C
60. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sally Bloodworth
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Gabriela Sitinova
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Shamim Alom
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Sara Vidal
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - George R. Bacanu
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Stuart J. Elliott
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
- Current address: Centre de Résonance Magnétique Nucléaire à Très Hauts ChampsFRE 2034 Université de LyonCNRSUniversité Claude Bernard Lyon 1ENS de Lyon 5 Rue de la Doua 69100 Villeurbanne France
| | - Mark E. Light
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Julie M. Herniman
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - G. John Langley
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Malcolm H. Levitt
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Richard J. Whitby
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| |
Collapse
|