1
|
Yu ZT. Chemical design of metal complexes for electrochemical water oxidation under acidic conditions. Dalton Trans 2025; 54:2718-2736. [PMID: 39834165 DOI: 10.1039/d4dt02874k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The development of viable, stable, and highly efficient molecular water oxidation catalysts under acidic aqueous conditions (pH < 7) is challenging with Earth-abundant metals in the field of renewable energy due to their low stability and catalytic activity. The utilization of these catalysts is generally considered more cost-effective and sustainable relative to conventional catalysts relying on precious metals such as ruthenium and iridium, which exhibit outstanding activities. Herein, we discussed the effectiveness of transition metal complexes for electrocatalytic water oxidation under acidic conditions. We focus on important aspects of 3d first-row metal complexes as they relate to the design of water oxidation systems and emphasize the importance of the fundamental coordination chemistry perspective in this field, which can be applied to the understanding of catalytic activity and fundamental structure-function relationships. Finally, we identified the scientific challenges that should be overcome for the future development and application of water oxidation electrochemical catalysts.
Collapse
Affiliation(s)
- Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
| |
Collapse
|
2
|
Chen F, Wu LW, Liu ZW, Yan QW, Si LP, Zhan SZ, Liu HY. Carboxyl-Group-Bearing Metal Corroles of Cobalt, Manganese and Copper for Electrocatalytic Hydrogen Evolution. Chempluschem 2025; 90:e202400589. [PMID: 39441809 DOI: 10.1002/cplu.202400589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
5,15-bis(perfluorophenyl)-10-(4-carboxyphenyl) corrole and its Co(III), Mn(III), and Cu(III) corrole complexes were synthesized. The electrocatalytic hydrogen evolution reaction (HER) of these metal corrole complexes was investigated using different proton sources (AcOH, trifluoroacetic acid, and TsOH) in an organic dimethylformamide solvent. The electrocatalytic HER may proceed through EECC, EECEC, or EEECEC pathways (where E represents electron transfer and C represents proton binding) depending on the acidity and concentration of the proton source used. The Co corrole complex exhibits remarkable hydrogen production performance, achieving a turnover frequency of 201 s-1 and a catalytic efficiency of 1.00. The examined metal corrole complexes also exhibit good HER activity in aqueous solution, with their catalytic activity following an order of 1-Co>1-Cu>1-Mn in both organic and aqueous phases.
Collapse
Affiliation(s)
- Feng Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou, 510641, China
| | - Ling-Wei Wu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou, 510641, China
| | - Zhen-Wu Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou, 510641, China
| | - Qiao-Wei Yan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou, 510641, China
| | - Li-Ping Si
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou, 510641, China
- School of Materials Science and Energy, Foshan University, Foshan, 528000, China
| | - Shu-Zhong Zhan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou, 510641, China
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
3
|
Li W, Peng X, Qin H, Xu Y, Han J, Lei H, Cao R. Electrocatalytic hydrogen evolution reaction with a Cu porphyrin bearing meso-CF 3 substituents. Dalton Trans 2024; 53:19121-19125. [PMID: 39588664 DOI: 10.1039/d4dt03098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Cu tetrakis(trifluoromethyl)porphyrin (1) was synthesized and examined as an electrocatalyst for the hydrogen evolution reaction (HER). We showed that 1 is highly efficient for the electrocatalytic HER in acetonitrile with trifluoroacetic acid (TFA) and outperforms Cu tetrakis(pentafluorophenyl)porphyrin (2) by decreasing the onset overpotential by 220 mV. The icat/ip value (icat is the catalytic peak current and ip is the non-catalytic peak current) with 1 is 97, while it is 53 with 2. These results suggest that for Cu porphyrins, meso-CF3 substituents are much more effective than meso-C6F5 substituents to enhance the HER.
Collapse
Affiliation(s)
- Wenzi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Liu T, Chen C, Pu Z, Huang Q, Zhang X, Al-Enizi AM, Nafady A, Huang S, Chen D, Mu S. Non-Noble-Metal-Based Electrocatalysts for Acidic Oxygen Evolution Reaction: Recent Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405399. [PMID: 39183523 DOI: 10.1002/smll.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The oxygen evolution reaction (OER) plays a pivotal role in diverse renewable energy storage and conversion technologies, including water electrolysis, electrochemical CO2 reduction, nitrogen fixation, and metal-air batteries. Among various water electrolysis techniques, proton exchange membrane (PEM)-based water electrolysis devices offer numerous advantages, including high current densities, exceptional chemical stability, excellent proton conductivity, and high-purity H2. Nevertheless, the prohibitive cost associated with Ir/Ru-based OER electrocatalysts poses a significant barrier to the broad-scale application of PEM-based water splitting. Consequently, it is crucial to advance the development of non-noble metal OER catalysis substance with high acid-activity and stability, thereby fostering their widespread integration into PEM water electrolyzers (PEMWEs). In this review, a comprehensive analysis of the acidic OER mechanism, encompassing the adsorbate evolution mechanism (AEM), lattice oxygen mechanism (LOM) and oxide path mechanism (OPM) is offered. Subsequently, a systematic summary of recently reported noble-metal-free catalysts including transition metal-based, carbon-based and other types of catalysts is provided. Additionally, a comprehensive compilation of in situ/operando characterization techniques is provided, serving as invaluable tools for furnishing experimental evidence to comprehend the catalytic mechanism. Finally, the present challenges and future research directions concerning precious-metal-free acidic OER are comprehensively summarized and discussed in this review.
Collapse
Affiliation(s)
- Tingting Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Chen Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Zonghua Pu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
5
|
Barman K, Askarova G, Somni R, Hu G, Mirkin MV. Voltage-Driven Molecular Photoelectrocatalysis of Water Oxidation. J Am Chem Soc 2024. [PMID: 39361953 DOI: 10.1021/jacs.4c10896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Molecular photocatalysis and photoelectrocatalysis have been widely used to conduct oxidation-reduction processes ranging from fuel generation to electroorganic synthesis. We recently showed that an electrostatic potential drop across the double layer contributes to the driving force for electron transfer (ET) between a dissolved reactant and a molecular catalyst immobilized directly on the electrode surface. In this article, we report voltage-driven molecular photoelectrocatalysis with a prevalent homogeneous water oxidation catalyst, (bpy)Cu (II), which was covalently attached to the carbon surface and exhibited photocatalytic activity. The strong potential dependence of the photooxidation current suggests that the electrostatic potential drop across the double layer contributes to the driving force for ET between a water molecule and the excited state of surface-bound (bpy)Cu (II). Scanning electrochemical microscopy (SECM) was used to analyze the products and determine the faradaic efficiencies for the generation of oxygen and hydrogen peroxide. Unlike electrocatalytic water oxidation by (bpy)Cu (II) in the dark, which produces only O2, the voltage-driven photooxidation includes an additional 2e- pathway generating H2O2. DFT calculations show that the applied voltage and the presence of light can alter the activation energy for the rate-determining water nucleophilic attack steps, thereby increasing the reaction rate of photo-oxidation of water and opening the 2e- pathway. These results suggest a new route for designing next-generation hybrid molecular photo(electro)catalysts for water oxidation and other processes.
Collapse
Affiliation(s)
- Koushik Barman
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
| | - Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Rahul Somni
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Guoxiang Hu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
6
|
Gao Y, Wang SJ, Guo Z, Wang YZ, Qu YP, Zhao PH. Covalent versus noncovalent attachments of [FeFe]‑hydrogenase models onto carbon nanotubes for aqueous hydrogen evolution reaction. J Inorg Biochem 2024; 259:112665. [PMID: 39018746 DOI: 10.1016/j.jinorgbio.2024.112665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
In an effort to develop the biomimetic chemistry of [FeFe]‑hydrogenases for catalytic hydrogen evolution reaction (HER) in aqueous environment, we herein report the integrations of diiron dithiolate complexes into carbon nanotubes (CNTs) through three different strategies and compare the electrochemical HER performances of the as-resulted 2Fe2S/CNT hybrids in neutral aqueous medium. That is, three new diiron dithiolate complexes [{(μ-SCH2)2N(C6H4CH2C(O)R)}Fe2(CO)6] (R = N-oxylphthalimide (1), NHCH2pyrene (2), and NHCH2Ph (3)) were prepared and could be further grafted covalently to CNTs via an amide bond (this 2Fe2S/CNT hybrid is labeled as H1) as well as immobilized noncovalently to CNTs via π-π stacking interaction (H2) or via simple physisorption (H3). Meanwhile, the molecular structures of 1-3 are determined by elemental analysis and spectroscopic as well as crystallographic techniques, whereas the structures and morphologies of H1-H3 are characterized by various spectroscopies and scanning electronic microscopy. Further, the electrocatalytic HER activity trend of H1 > H2 ≈ H3 is observed in 0.1 M phosphate buffer solution (pH = 7) through different electrochemical measurements, whereas the degradation processes of H1-H3 lead to their electrocatalytic deactivation in the long-term electrolysis as proposed by post operando analysis. Thus, this work is significant to extend the potential application of carbon electrode materials engineered with diiron molecular complexes as heterogeneous HER electrocatalysts for water splitting to hydrogen.
Collapse
Affiliation(s)
- Yan Gao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Shao-Jie Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Zhen Guo
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Yan-Zhong Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Yong-Ping Qu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Pei-Hua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
7
|
Calvani D, Louwersheimer R, Buda F. Effect of Anchoring Dynamics on Proton-Coupled Electron Transfer in the Ru(bda) Coordination Oligomer on a Graphitic Surface. Chempluschem 2024; 89:e202400082. [PMID: 38625893 DOI: 10.1002/cplu.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/18/2024]
Abstract
The oligomeric ruthenium-based water oxidation catalyst, Ru(bda), is known to be experimentally anchored on graphitic surfaces through CH-π stacking interactions between the auxiliary bda ([2,2'-bipyridine]-6,6'-dicarboxylate) ligand bonded to ruthenium and the hexagonal rings of the surface. This anchoring provides control over their molecular coverage and enables efficient catalysis of water oxidation to dioxygen. The oligomeric nature of the molecule offers multiple anchoring sites at the surface, greatly enhancing the overall stability of the hybrid catalyst-graphitic surface anode through dynamic bonding. However, the impact of this dynamic anchoring on the overall catalytic mechanism is still a topic of debate. In this study, a crucial proton-coupled electron transfer event in the catalytic cycle is investigated using DFT-based molecular dynamics simulations plus metadynamics. The CH-π stacking anchoring plays a critical role not only in stabilizing this hybrid system but also in facilitating the proton-coupled electron transfer event with possible vibronic couplings between the anchoring bonds motion and charge fluctuations at the catalyst - graphitic surface interface. Furthermore, this computational investigation displays the presence of a quartet spin state intermediate that can lead to the experimentally observed and thermodynamically more stable doublet spin state.
Collapse
Affiliation(s)
- Dario Calvani
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | - Rick Louwersheimer
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | - Francesco Buda
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
8
|
Lan X, Li H, Liu Y, Zhang Y, Zhang T, Chen Y. Covalent Organic Framework with Donor 1-Acceptor-Donor 2 Motifs Regulating Local Charge of Intercalated Single Cobalt Sites for Photocatalytic CO 2 Reduction to Syngas. Angew Chem Int Ed Engl 2024; 63:e202407092. [PMID: 38773811 DOI: 10.1002/anie.202407092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/24/2024]
Abstract
Covalent organic framework (COF) has attracted increasing interest in photocatalytic CO2 reduction, but it remains a challenge to achieve high conversion efficiency owing to the insufficient active site and fast charge recombination. Rationally optimizing the electronic structures of COF to regulate the local charge of active sites precisely is the key point to improving catalytic performance. Herein, intercalated single Co sites coordinated by imine-N motifs have been designed by using trinuclear copper-based imine-COFs with distinct electronic moieties via a molecular engineering strategy. It is confirmed that the charge delivery property and local charge distribution of these heterometallic frameworks can be profoundly influenced by electronic structures. Among these featured structures with mixed-state copper clusters, Co/Cu3-TPA-COF stands out for an exceptional photocatalytic CO2 reduction activity and tunable syngas (CO/H2) ratio by changing various bipyridines. Experimental and theoretical results indicate that interlayer Co-imine N motifs on the donor1-acceptor-donor2 structures facilitate the formation of a highly separated electron-hole state, which effectively induces the oriented electron transfer from dual electron donors to Co centers, achieving an enhanced CO2 activation and reduction. This work opens up an avenue for the design of high-performance COF-based catalysts for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Xingwang Lan
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Hangshuai Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Yuemeng Liu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Yize Zhang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Tianjun Zhang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Taechaworaphong C, Juthathan M, Thamyongkit P, Tuntulani T, Leeladee P. Electrocatalytic Hydrogen Evolution of Immobilized Copper Complex on Carbonaceous Materials: From Neutral Water to Seawater. Chempluschem 2024; 89:e202300679. [PMID: 38367268 DOI: 10.1002/cplu.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Electrochemical hydrogen evolution reaction (HER) is an appealing strategy to utilize renewable electricity to produce green H2. Moreover, use of neutral-pH electrolyte such as water and seawater for the HER has long been desired for eco-friendly energy production that aligns with net zero emission goal. Herein, new heterogeneous catalysts were developed by dispersing an HER-active copper complex containing N4-Schiff base macrocycle (CuL) on carbonaceous materials, i. e. multi-walled carbon nanotube (CNT) and graphene oxide (GO), via non-covalent interaction and investigated their HER performance. It was found that CuL/GO exhibited higher HER activity than CuL/CNT, possibly due to its significantly larger amount of CuL immobilized onto GO. In addition, CuL/GO showed satisfactory HER performance in a neutral (pH 7) NaCl electrolyte solution. Notably, the performances of CuL/GO were boosted up when performed in natural seawater sample with the faradaic efficiency of 70 % and 3 times higher amount of H2 at -0.6 V vs reversible hydrogen electrode (RHE), in comparison to the HER in a NaCl electrolyte. Furthermore, it possessed a low overpotential of 139 mV at -10 mA/cm2. This demonstrated the potential use of CuL/GO as an effective HER catalyst in seawater for further sustainable development.
Collapse
Affiliation(s)
| | - Methasit Juthathan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Patchanita Thamyongkit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pannee Leeladee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Peng X, Zhang M, Qin H, Han J, Xu Y, Li W, Zhang XP, Zhang W, Apfel UP, Cao R. Switching Electrocatalytic Hydrogen Evolution Pathways through Electronic Tuning of Copper Porphyrins. Angew Chem Int Ed Engl 2024; 63:e202401074. [PMID: 38311965 DOI: 10.1002/anie.202401074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/06/2024]
Abstract
The electronic structure of metal complexes plays key roles in determining their catalytic features. However, controlling electronic structures to regulate reaction mechanisms is of fundamental interest but has been rarely presented. Herein, we report electronic tuning of Cu porphyrins to switch pathways of the hydrogen evolution reaction (HER). Through controllable and regioselective β-oxidation of Cu porphyrin 1, we synthesized analogues 2-4 with one or two β-lactone groups in either a cis or trans configuration. Complexes 1-4 have the same Cu-N4 core site but different electronic structures. Although β-oxidation led to large anodic shifts of reductions, 1-4 displayed similar HER activities in terms of close overpotentials. With electrochemical, chemical and theoretical results, we show that the catalytically active species switches from a CuI species for 1 to a Cu0 species for 4. This work is thus significant to present mechanism-controllable HER via electronic tuning of catalysts.
Collapse
Affiliation(s)
- Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Mengchun Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenzi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
11
|
Cen JH, Xie QH, Guo GH, Gao LJ, Liao YH, Zhong XP, Liu HY. Azide-modified corrole phosphorus complexes for endoplasmic reticulum-targeted fluorescence bioimaging and effective cancer photodynamic therapy. Eur J Med Chem 2024; 265:116102. [PMID: 38176359 DOI: 10.1016/j.ejmech.2023.116102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Study on corrole photosensitizers (PSs) for photodynamic therapy (PDT) has made remarkable progress. Targeted delivery of PSs is of great significance for enhancing therapeutic efficiency, decreasing the dosage, and reducing systemic toxicity during PDT. The development of PSs that can be specifically delivered to the subcellular organelle is still an attractive and challenging work. Herein, we synthesize a series of azide-modified corrole phosphorus and gallium complex PSs, in which phosphorus corrole 2-P could not only precisely target the endoplasmic reticulum (ER) with a Pearson correlation coefficient (PCC) up to 0.92 but also possesses the highest singlet oxygen quantum yields (ΦΔ = 0.75). This renders it remarkable PDT activity at a very low dosage (IC50 = 23 nM) towards HepG2 tumor cell line while ablating solid tumors in vivo with excellent biosecurity. Furthermore, 2-P exhibits intense red fluorescence (ΦF = 0.25), outstanding photostability, and a large Stokes shift (190 nm), making it a promising fluorescent probe for ER. This study provides a clinically potential photosensitizer for cancer photodynamic therapy and a promising ER fluorescent probe for bioimaging.
Collapse
Affiliation(s)
- Jing-He Cen
- School of Chemistry and Chemical Engineering, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Qi-Hu Xie
- Department of Plastic Surgery and Burns, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Geng-Hong Guo
- Department of Plastic Surgery and Burns, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Long-Jiang Gao
- School of Chemistry and Chemical Engineering, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Yu-Hui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
| | - Xiao-Ping Zhong
- Department of Plastic Surgery and Burns, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
12
|
Jiao X, Tang X, Li J, Li C, Liu Q, Wei Z. Stable Lithium-Sulfur Batteries Ensured by GeS 2 and α-S 8 Lattice Matching During the Charge Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304780. [PMID: 37480181 DOI: 10.1002/smll.202304780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 07/23/2023]
Abstract
The charge process of lithium-sulfur batteries (LSBs) is a process in which molecular polarity decreases and the volume shrinks gradually, which is the process most likely to cause lithium polysulfides (LiPSs) loss and interfacial collapse. In this work, GeS2 is utilized, whose (111) lattice plane exactly matches with the (113) lattice of α-S8 , to solve these problems. GeS2 can regulate the interconversion-deposition behavior of S-species during the charge process. Soluble LiPSs can be spontaneously adsorbed on the GeS2 surface, then obtain electrons and eventually convert to α-S8 molecules. More importantly, the α-S8 molecules will crystallize uniformly along the (111) lattice plane of GeS2 to maintain a stable cathode-electrolyte interface. Therefore, outstanding charge/discharge LSBs are successfully accomplished.
Collapse
Affiliation(s)
- Xun Jiao
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoxia Tang
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Jinrui Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Cunpu Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
- Suining Lithium Battery Research Institute of Chongqing University (SLiBaC), Sichuan, 629000, China
| | - Qingfei Liu
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
- Suining Lithium Battery Research Institute of Chongqing University (SLiBaC), Sichuan, 629000, China
| |
Collapse
|
13
|
Biemolt J, Meeus EJ, de Zwart FJ, de Graaf J, Laan PCM, de Bruin B, Burdyny T, Rothenberg G, Yan N. Creating Conjugated C-C Bonds between Commercial Carbon Electrode and Molecular Catalyst for Oxygen Reduction to Hydrogen Peroxide. CHEMSUSCHEM 2023; 16:e202300841. [PMID: 37470203 DOI: 10.1002/cssc.202300841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Immobilizing molecular catalysts on electrodes is vital for electrochemical applications. However, creating robust electrode-catalyst interactions while maintaining good catalytic performance and rapid electron transfer is challenging. Here, without introducing any foreign elements, we show a bottom-up synthetic approach of constructing the conjugated C-C bond between the commercial Vulcan carbon electrode and an organometallic catalyst. Characterization results from FTIR, XPS, aberration-corrected TEM and EPR confirmed the successful and uniform heterogenization of the complex. The synthesized Vulcan-LN4 -Co catalyst is highly active and selective in the oxygen reduction reaction in neutral media, showing an 80 % hydrogen peroxide selectivity and a 0.72 V (vs. RHE) onset potential which significantly outperformed the homogenous counterpart. Based on single-crystal XRD and NMR data, we built a model for density functional theory calculations which showed a nearly optimal binding energy for the *OOH intermediate. Our results show that the direct conjugated C-C bonding is an effective approach for heterogenizing molecular catalysts on carbon, opening new opportunities for employing molecular catalysts in electrochemical applications.
Collapse
Affiliation(s)
- Jasper Biemolt
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Eva J Meeus
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Felix J de Zwart
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Jeen de Graaf
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Petrus C M Laan
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Thomas Burdyny
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Gadi Rothenberg
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Ning Yan
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
- School of Physics and Technology, Wuhan University, 430072, Wuhan, P. R. China
| |
Collapse
|
14
|
Peng X, Han J, Li X, Liu G, Xu Y, Peng Y, Nie S, Li W, Li X, Chen Z, Peng H, Cao R, Fang Y. Electrocatalytic hydrogen evolution with a copper porphyrin bearing meso-( o-carborane) substituents. Chem Commun (Camb) 2023; 59:10777-10780. [PMID: 37593777 DOI: 10.1039/d3cc03104g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A newly designed copper complex of 5,15-bis(pentafluorophenyl)-10,20-bis(o-carborane)porphyrin (1) was synthesized and tested for the electrocatalytic hydrogen evolution reaction (HER). In acetonitrile, 1 was much more efficient than Cu 5,15-bis(pentafluorophenyl)-10,20-diphenylporphyrin (2) for electrocatalytic HER by shifting the catalytic wave to the anodic direction by 190 mV. In aqueous media, 1 also outperformed 2 by achieving higher current densities under smaller overpotentials. This enhancement was attributed to the aromatic and the strong electron-withdrawing properties of o-carborane groups. This work is significant to address the crucial effects of meso-(o-carborane) substituents of metal porphyrins on boosting the electrocatalytic HER.
Collapse
Affiliation(s)
- Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Guijun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuxin Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Shuai Nie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wenzi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinrui Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhuo Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
15
|
Ren BP, Yang G, Lv ZY, Liu ZY, Zhang H, Si LP, Liu HY. First application of Sn (IV) corrole as electrocatalyst in hydrogen evolution reaction. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
16
|
Barman K, Askarova G, Jia R, Hu G, Mirkin MV. Efficient Voltage-Driven Oxidation of Water and Alcohols by an Organic Molecular Catalyst Directly Attached to a Carbon Electrode. J Am Chem Soc 2023; 145:5786-5794. [PMID: 36862809 DOI: 10.1021/jacs.2c12775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The integration of heterogeneous electrocatalysis and molecular catalysis is a promising approach to designing new catalysts for the oxygen evolution reaction (OER) and other processes. We recently showed that the electrostatic potential drop across the double layer contributes to the driving force for electron transfer between a dissolved reactant and a molecular catalyst immobilized directly on the electrode surface. Here, we report high current densities and low onset potentials for water oxidation attained using a metal-free voltage-assisted molecular catalyst (TEMPO). Scanning electrochemical microscopy (SECM) was used to analyze the products and determine faradic efficiencies for the generation of H2O2 and O2. The same catalyst was employed for efficient oxidations of butanol, ethanol, glycerol, and H2O2. DFT calculations show that the applied voltage alters the electrostatic potential drop between TEMPO and the reactant as well as chemical bonding between them, thereby increasing the reaction rate. These results suggest a new route for designing next-generation hybrid molecular/electrocatalysts for OER and alcohol oxidations.
Collapse
Affiliation(s)
- Koushik Barman
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
| | - Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Rui Jia
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Guoxiang Hu
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
17
|
Jiang J, Wu Y, Chen H, Wan Z, Ding D, Xia L, Guo X, Yu P. Annealing and electrochemically activated amorphous ribbons: Surface nanocrystallization and oxidation effects enhanced for oxygen evolution performance. J Colloid Interface Sci 2023; 633:303-313. [PMID: 36459935 DOI: 10.1016/j.jcis.2022.11.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Annealing and cyclic voltammetry (CV) are essential for the activation of amorphous alloy ribbons. Various amorphous alloy ribbons have been activated in the fields of environmental catalysts using either annealing or CV. However, the combination of the two methods for improving the oxygen evolution reaction (OER) performance has rarely been reported. This combination is expected to significantly improve the OER performance of amorphous ribbons. Here, we developed an "annealing +CV-activation" integrated strategy to treat a free-standing NiFeBSiP ribbon, which as an efficient and stable oxygen-evolving electrode. The "annealing +CV-activation" strategy induces the nanocrystallization and oxidation effects on the surface of the NiFeBSiP ribbon. The effects significantly increase the electron transfer ability, the Ni/Fe/P oxidation state and the surface area of the NiFeBSiP ribbon, which consequently leads to enhancing the OER performance. As a result, the treated ribbon exhibits a low overpotential of 269 mV at 10 mA cm-2 and a small Tafel slope of 40.5 mV dec-1, which are much better than the OER performance of the as-spun ribbon. The enhanced OER performance of the NiFeBSiP ribbon demonstrates the significant and promising effect of the "annealing +CV-activation" integrated strategy for designing high-efficiency amorphous alloy ribbons electrocatalysts.
Collapse
Affiliation(s)
- Junying Jiang
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Yong Wu
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Hongguo Chen
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Zhuqing Wan
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Ding Ding
- Institute of Materials & Laboratory for Microstructure, Shanghai University, Shanghai 200072, China
| | - Lei Xia
- Institute of Materials & Laboratory for Microstructure, Shanghai University, Shanghai 200072, China
| | - Xiaolong Guo
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Peng Yu
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
18
|
Substituent effects in carbon-nanotube-supported diiron monophosphine complexes for hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Kumar A, Zhang G, Liu W, Sun X. Electrocatalysis and activity descriptors with metal phthalocyanines for energy conversion reactions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Chaturvedi A, McCarver GA, Sinha S, Hix EG, Vogiatzis KD, Jiang J. A PEGylated Tin Porphyrin Complex for Electrocatalytic Proton Reduction: Mechanistic Insights into Main‐Group‐Element Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206325. [DOI: 10.1002/anie.202206325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ashwin Chaturvedi
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Gavin A. McCarver
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | - Soumalya Sinha
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Elijah G. Hix
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | | | - Jianbing Jiang
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| |
Collapse
|
21
|
Michalke J, Faust K, Bögl T, Bartling S, Rockstroh N, Topf C. Mild and Efficient Heterogeneous Hydrogenation of Nitroarenes Facilitated by a Pyrolytically Activated Dinuclear Ni(II)-Ce(III) Diimine Complex. Int J Mol Sci 2022; 23:ijms23158742. [PMID: 35955876 PMCID: PMC9369285 DOI: 10.3390/ijms23158742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
We communicate the assembly of a solid, Ce-promoted Ni-based composite that was applied as catalyst for the hydrogenation of nitroarenes to afford the corresponding organic amines. The catalytically active material described herein was obtained through pyrolysis of a SiO2-pellet-supported bimetallic Ni-Ce complex that was readily synthesized prior to use from a MeO-functionalized salen congener, Ni(OAc)2·4 H2O, and Ce(NO3)3·6 H2O. Rewardingly, the requisite ligand for the pertinent solution phase precursor was accessible upon straightforward and time-saving imine condensation of ortho-vanillin with 1,3-diamino-2,2′-dimethylpropane. The introduced catalytic protocol is operationally simple in that the whole reaction set-up is quickly put together on the bench without the need of cumbersome handling in a glovebox or related containment systems. Moreover, the advantageous geometry and compact-sized nature of the used pellets renders the catalyst separation and recycling exceptionally easy.
Collapse
Affiliation(s)
- Jessica Michalke
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
- Institute of Inorganic Chemistry, Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Kirill Faust
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Thomas Bögl
- Department of Analytical Chemistry, Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Stephan Bartling
- Leibniz Institute for Catalysis, University of Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Nils Rockstroh
- Leibniz Institute for Catalysis, University of Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Christoph Topf
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
- Correspondence:
| |
Collapse
|
22
|
Liang Z, Guo H, Lei H, Cao R. Co porphyrin-based metal-organic framework for hydrogen evolution reaction and oxygen reduction reaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Zhou XT, Yu HY, Li Y, Wu HB, Ji HB. Manganese porphyrin-mediated aerobic epoxidation of propylene with isoprene: A new strategy for simultaneously preparing propylene epoxide and isoprene monoxide. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Phipps CA, Hofsommer DT, Toda MJ, Nkurunziza F, Shah B, Spurgeon JM, Kozlowski PM, Buchanan RM, Grapperhaus CA. Ligand-Centered Hydrogen Evolution with Ni(II) and Pd(II)DMTH. Inorg Chem 2022; 61:9792-9800. [PMID: 35687329 DOI: 10.1021/acs.inorgchem.2c01326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we report a pair of electrocatalysts for the hydrogen evolution reaction (HER) based on the noninnocent ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-pyridinehydrazone) (H2DMTH, H2L1). The neutral complexes NiL1 and PdL1 were synthesized and characterized by spectroscopic and electrochemical methods. The complexes contain a non-coordinating, basic hydrazino nitrogen that is protonated during the HER. The pKa of this nitrogen was determined by spectrophotometric titration in acetonitrile to be 12.71 for NiL1 and 13.03 for PdL1. Cyclic voltammograms of both NiL1 and PdL1 in acetonitrile exhibit diffusion-controlled, reversible ligand-centered events at -1.83 and -1.79 V (vs ferrocenium/ferrocene) for NiL1 and PdL1, respectively. A quasi-reversible, ligand-centered event is observed at -2.43 and -2.34 V for NiL1 and PdL1, respectively. The HER activity in acetonitrile was evaluated using a series of neutral and cationic acids for each catalyst. Kinetic isotope effect (KIE) studies suggest that the precatalytic event observed is associated with a proton-coupled electron transfer step. The highest turnover frequency values observed were 6150 s-1 at an overpotential of 0.74 V for NiL1 and 8280 s-1 at an overpotential of 0.44 V for PdL1. Density functional theory (DFT) computations suggest both complexes follow a ligand-centered HER mechanism where the metals remain in the +2 oxidation state.
Collapse
Affiliation(s)
- Christine A Phipps
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Dillon T Hofsommer
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Francois Nkurunziza
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | - Bhoomi Shah
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Robert M Buchanan
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Craig A Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
25
|
Wang Y, Song D, Li J, Shi Q, Zhao J, Hu Y, Zeng F, Wang N. Covalent Metalloporphyrin Polymer Coated on Carbon Nanotubes as Bifunctional Electrocatalysts for Water Splitting. Inorg Chem 2022; 61:10198-10204. [PMID: 35737475 DOI: 10.1021/acs.inorgchem.2c01415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metalloporphyrins have exhibited excellent electrocatalytic activities for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). In order to improve the efficiency and conductivity, these molecular catalysts need to be immobilized on conductive electrode materials. Herein, a facile "one-pot" strategy was developed to coat a covalent metalloporphyrin polymer on a carbon nanotube (CNT) as bifunctional catalysts [denoted as MTIPP@CNTs, H2TIPP = 5,10,15,20-tetra(4-(imidazole-1-yl)phenyl)porphyrin)] for water splitting in alkaline solution. MTIPP@CNTs have shown excellent electrocatalytic activities for both the HER and OER when metalloporphyrin's central metal is optimized as well as the amount of catalysts that is loaded on the CNT. The overpotential (η10) of NiTIPP@CNT-2 for the OER is only 320 mV at a current density of 10 mA cm-2 in 1.0 M KOH, and CoTIPP@CNT-1 exhibited an excellent electrocatalytic activity for the HER (η10 = 450 mV for 10 mA cm-2). Furthermore, the remarkable bifunctional electrocatalytic performance (a cell voltage of 2.04 V with a current density of 10 mA cm-2) was also explored in the overall water splitting test.
Collapse
Affiliation(s)
- Yujia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Dengmeng Song
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Qing Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Jiale Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Yanping Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
26
|
Chaturvedi A, McCarver GA, Sinha S, Hix EG, Vogiatzis KD, Jiang JJ. A PEGylated Tin‐Porphyrin Complex for Electrocatalytic Proton Reduction: Mechanistic Insights into Main‐Group Element Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ashwin Chaturvedi
- University of Cincinnati Chemistry 312 College Dr. 45221 Cincinnati UNITED STATES
| | - Gavin A McCarver
- UT Knoxville: The University of Tennessee Knoxville Chemistry UNITED STATES
| | | | - Elijah G Hix
- UT Knoxville: The University of Tennessee Knoxville Chemistry UNITED STATES
| | - Konstantinos D Vogiatzis
- UT Knoxville: The University of Tennessee Knoxville Chemistry Buehler Hall1420 Circle Dr. 37996 Knoxville UNITED STATES
| | - Jianbing Jimmy Jiang
- University of Cincinnati Chemistry 312 College Dr. 45221 Cincinnati UNITED STATES
| |
Collapse
|
27
|
Peng WY, Lan J, Zhu ZM, Si LP, Zhang H, Zhan SZ, Liu HY. Synthesis of metal (Ga, Co and Fe) 5,15-bis(pentafluorophenyl)-10-ethoxycarbonylcorrole and their electrocatalytic hydrogen evolution activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Xu S, Ding Y, Du J, Zhu Y, Liu G, Wen Z, Liu X, Shi Y, Gao H, Sun L, Li F. Immobilization of Iron Phthalocyanine on Pyridine-Functionalized Carbon Nanotubes for Efficient Nitrogen Reduction Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Suxian Xu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou 310024, China
| | - Jian Du
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Yong Zhu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Guoquan Liu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Zhibing Wen
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Xiao Liu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Yongbin Shi
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Hua Gao
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou 310024, China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Fei Li
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
29
|
Li X, Lei H, Xie L, Wang N, Zhang W, Cao R. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Acc Chem Res 2022; 55:878-892. [PMID: 35192330 DOI: 10.1021/acs.accounts.1c00753] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) are involved in biological and artificial energy conversions. H-H and O-O bond formation/cleavage are essential steps in these reactions. In nature, intermediates involved in the H-H and O-O bond formation/cleavage are highly reactive and short-lived, making their identification and investigation difficult. In artificial catalysis, the realization of these reactions at considerable rates and close to their thermodynamic reaction equilibria remains a challenge. Therefore, the elucidation of the reaction mechanisms and structure-function relationships is of fundamental significance to understand these reactions and to develop catalysts.This Account describes our recent investigations on catalytic HER, OER, and ORR with metalloporphyrins and derivatives. Metalloporphyrins are used in nature for light harvesting, energy conversion, electron transfer, O2 activation, and peroxide degradation. Synthetic metal porphyrin complexes are shown to be active for these reactions. We focused on exploring metalloporphyrins to study reaction mechanisms and structure-function relationships because they have stable and tunable structures and characteristic spectroscopic properties.For HER, we identified three H-H bond formation mechanisms and established the correlation between these processes and metal hydride electronic structures. Importantly, we provided direct experimental evidence for the bimetallic homolytic H-H bond formation mechanism by using sterically bulky porphyrins. Homolytic HER has been long proposed but rarely verified because the coupling of active hydride intermediates occurs spontaneously and quickly, making their detection challenging. By blocking the bimolecular mechanism through steric effects, we stabilized and characterized the NiIII-H intermediate and verified homolytic HER by comparing the reaction behaviors of Ni porphyrins with and without steric effects. We therefore provided an unprecedented example to control homolytic versus heterolytic HER mechanisms through tuning steric effects of molecular catalysts.For the OER, the water nucleophilic attack (WNA) on high-valent terminal Mn-oxo has been proposed for the O-O bond formation in natural and artificial water oxidation. By using Mn tris(pentafluorophenyl)corrole, we identified MnV(O) and MnIV-peroxo intermediates in chemical and electrochemical OER and provided direct experimental evidence for the Mn-based WNA mechanism. Moreover, we demonstrated several catalyst design strategies to enhance the WNA rate, including the pioneering use of protective axial ligands. By studying Cu porphyrins, we proposed a bimolecular coupling mechanism between two metal-hydroxide radicals to form O-O bonds. Note that late-transition metals do not likely form terminal metal-oxo/oxyl.For the ORR, we presented several strategies to improve activity and selectivity, including providing rapid electron transfer, using electron-donating axial ligands, introducing hydrogen-bonding interactions, constructing dinuclear cooperation, and employing porphyrin-support domino catalysis. Importantly, we used Co porphyrin atropisomers to realize both two-electron and four-electron ORR, representing an unparalleled example to control ORR selectivity by tuning only steric effects without modifying molecular and/or electronic structures.Lastly, we developed several strategies to graft metalloporphyrins on various electrode materials through different covalent bonds. The molecular-engineered materials exhibit boosted electrocatalytic performance, highlighting promising applications of molecular electrocatalysis. Taken together, this Account demonstrates the benefits of exploring metalloporphyrins for the HER, OER, and ORR. The knowledge learned herein is valuable for the development of porphyrin-based catalysts and also other molecular and material catalysts for small molecule activation reactions.
Collapse
Affiliation(s)
- Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Ni Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
30
|
Cartagena S, Calderón JA. High performance of electrochemically modified-polypropylene electrodes for alkaline water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Chen K, Zhang W, Bai Y, Gong W, Zhang N, Long R, Xiong Y. Boosting electrochemical hydrogen evolution by coupling anodically oxidative dehydrogenation of benzylamine to benzonitrile. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Yao Y, He J, Ma L, Wang J, Peng L, Zhu X, Li K, Qu M. Self-supported Co 9S 8-Ni 3S 2-CNTs/NF electrode with superwetting multistage micro-nano structure for efficient bifunctional overall water splitting. J Colloid Interface Sci 2022; 616:287-297. [PMID: 35219194 DOI: 10.1016/j.jcis.2022.02.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
Electrochemical water splitting for hydrogen production using cost-effective and high-efficiency electrocatalysts in alkaline electrolytes is of great significance for solving energy crisis and environmental pollution. Herein, we reported a superhydrophilic and underwater superaerophobic multistage layered micro-nano structure ofCo9S8-Ni3S2-CNTs/NF on nickel foam (NF) prepared by a simple one-step hydrothermal procedure. Particularly, the multistage layered micro-nano structure makes the electrode superhydrophilic and superaerophobic, which can facilitate the exposure of active sites, accelerate the tansfer of electrolyte and the release of gas bubbles. Consequently, the rough electrode demonstrated excellent catalytic performance in alkaline condition, which only need a low overpotential 127 mV for oxygen evolution reaction (OER) and 243 mV for hydrogen evolution reaction (HER) at 10 mA cm-2 and can keep a long durability for 10 h at 10 mA cm-2. In addition, the production of hydrogen in an electrolytic water device with Co9S8-Ni3S2-CNTs/NF as bifunctional electrode prowered by the electricity derived from solar and wind energy in laboratory condition was artificially simulated. This work represents a perspective in improving the electrocatalytic performance of water splitting by structure and wettability regulation and opens a new avenue for clean energy generation.
Collapse
Affiliation(s)
- Yali Yao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jinmei He
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lili Ma
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiaxin Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lei Peng
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xuedan Zhu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Kanshe Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Mengnan Qu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| |
Collapse
|
33
|
Zhou Z, Koide T, Shiota Y, Yano Y, Xu N, Ono T, Shimakoshi H, Yoshizawa K, isaeda Y. Synthesis, redox properties, and catalytic hydrogen gas generation of porphycene cobalt complexes. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s108842462250016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Fang Y, Hou Y, Fu X, Wang X. Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chem Rev 2022; 122:4204-4256. [PMID: 35025505 DOI: 10.1021/acs.chemrev.1c00686] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sunlight-driven water splitting to produce hydrogen fuel has stimulated intensive scientific interest, as this technology has the potential to revolutionize fossil fuel-based energy systems in modern society. The oxygen evolution reaction (OER) determines the performance of overall water splitting owing to its sluggish kinetics with multielectron transfer processing. Polymeric photocatalysts have recently been developed for the OER, and substantial progress has been realized in this emerging research field. In this Review, the focus is on the photocatalytic technologies and materials of polymeric photocatalysts for the OER. Two practical systems, namely, particle suspension systems and film-based photoelectrochemical systems, form two main sections. The concept is reviewed in terms of thermodynamics and kinetics, and polymeric photocatalysts are discussed based on three key characteristics, namely, light absorption, charge separation and transfer, and surface oxidation reactions. A satisfactory OER performance by polymeric photocatalysts will eventually offer a platform to achieve overall water splitting and other advanced applications in a cost-effective, sustainable, and renewable manner using solar energy.
Collapse
Affiliation(s)
- Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
35
|
Zhang W, Meeus EJ, Wang L, Zhang LH, Yang S, de Bruin B, Reek JNH, Yu F. Boosting Electrochemical Oxygen Reduction Performance of Iron Phthalocyanine through Axial Coordination Sphere Interaction. CHEMSUSCHEM 2022; 15:e202102379. [PMID: 34904388 DOI: 10.1002/cssc.202102379] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Precise regulation of the electronic states of catalytic sites through molecular engineering is highly desired to boost catalytic performance. Herein, a facile strategy was developed to synthesize efficient oxygen reduction reaction (ORR) catalysts, based on mononuclear iron phthalocyanine supported on commercially available multi-walled carbon nanotubes that contain electron-donating functional groups (FePc/CNT-R, with "R" being -NH2 , -OH, or -COOH). These functional groups acted as axial ligands that coordinated to the Fe site, confirmed by X-ray photoelectron spectroscopy and synchrotron-radiation-based X-ray absorption fine structure. Experimental results showed that FePc/CNT-NH2 , with the most electron-donating -NH2 axial ligand, exhibited the highest ORR activity with a positive onset potential (Eonset =1.0 V vs. reversible hydrogen electrode) and half-wave potential (E1/2 =0.92 V). This was better than the state-of-the-art Pt/C catalyst (Eonset =1.00 V and E1/2 =0.85 V) under the same conditions. Overall, the functionalized FePc/CNT-R assemblies showed enhanced ORR performance in comparison to the non-functionalized FePc/CNT assembly. The origin of this behavior was investigated using density functional theory calculations, which demonstrated that the coordination of electron-donating groups to FePc facilitated the adsorption and activation of oxygen. This study not only demonstrates a series of advanced ORR electrocatalysts, but also introduces a feasible strategy for the rational design of highly active electrocatalysts for other proton-coupled electron transfer reactions.
Collapse
Affiliation(s)
- Wenlin Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Eva J Meeus
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (The, Netherlands
| | - Lei Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Lu-Hua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Shuangcheng Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (The, Netherlands
| | - Joost N H Reek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (The, Netherlands
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
36
|
Heterogenization of Molecular Water Oxidation Catalysts in Electrodes for (Photo)Electrochemical Water Oxidation. WATER 2022. [DOI: 10.3390/w14030371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Water oxidation is still one of the most important challenges to develop efficient artificial photosynthetic devices. In recent decades, the development and study of molecular complexes for water oxidation have allowed insight into the principles governing catalytic activity and the mechanism as well as establish ligand design guidelines to improve performance. However, their durability and long-term stability compromise the performance of molecular-based artificial photosynthetic devices. In this context, heterogenization of molecular water oxidation catalysts on electrode surfaces has emerged as a promising approach for efficient long-lasting water oxidation for artificial photosynthetic devices. This review covers the state of the art of strategies for the heterogenization of molecular water oxidation catalysts onto electrodes for (photo)electrochemical water oxidation. An overview and description of the main binding strategies are provided explaining the advantages of each strategy and their scope. Moreover, selected examples are discussed together with the the differences in activity and stability between the homogeneous and the heterogenized system when reported. Finally, the common design principles for efficient (photo)electrocatalytic performance summarized.
Collapse
|
37
|
Di Natale C, Gros CP, Paolesse R. Corroles at work: a small macrocycle for great applications. Chem Soc Rev 2022; 51:1277-1335. [PMID: 35037929 DOI: 10.1039/d1cs00662b] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Corrole chemistry has witnessed an impressive boost in studies in the last 20 years, thanks to the possibility of preparing corrole derivatives by simple synthetic procedures. The investigation of a large number of corroles has highlighted some peculiar characteristics of these macrocycles, having features different from those of the parent porphyrins. With this progress in the elucidation of corrole properties, attention has been focused on the potential for the exploitation of corrole derivatives in different important application fields. In some areas, the potential of corroles has been studied in certain detail, for example, the use of corrole metal complexes as electrocatalysts for energy conversion. In some other areas, the field is still in its infancy, such as in the exploitation of corroles in solar cells. Herein, we report an overview of the different applications of corroles, focusing on the studies reported in the last five years.
Collapse
Affiliation(s)
- Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Viale del Politecnico, 00133 Rome, Italy.
| | - Claude P Gros
- Université Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France.
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
38
|
Li X, Lv B, Zhang X, Jin X, Guo K, Zhou D, Bian H, Zhang W, Apfel U, Cao R. Introducing Water‐Network‐Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xue‐Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
39
|
Liu Z, Lai JW, Yang G, Ren BP, Lv ZY, Si LP, Zhang H, Liu HY. Electrocatalytic Hydrogen Production by CN‑ substituted Cobalt Triaryl Corroles. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00606e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four cobalt corrole complexes bearing 0–3 cyano groups on the para-position of the three meso-phenyl rings of the macrocycle were synthesized, characterized and applied for electrocatalytic H2 production under both...
Collapse
|
40
|
Generation of Cobalt-Containing Nanoparticles on Carbon via Pyrolysis of a Cobalt Corrole and Its Application in the Hydrogenation of Nitroarenes. Catalysts 2021. [DOI: 10.3390/catal12010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We report on the manufacture of a state-of-the-art heterogeneous non-noble metal catalyst, which is based on a molecularly well-defined phosphine-tagged cobalt corrole complex. This precursor compound is readily synthesized from convenient starting materials while the active material is obtained through wet-impregnation of the pertinent metalliferous macrocycle onto carbon black followed by controlled pyrolysis of the loaded carrier material under an inert gas atmosphere. Thus, the obtained composite was then applied in the heterogeneous hydrogenation of various nitroarenes to yield a vast array of valuable aniline derivatives that were conveniently isolated as their hydrochloride salts. The introduced catalytic protocol is robust and user-friendly with the entire assembly of the reaction set-up enabling the conduction of the experiments on the laboratory bench without any protection from air.
Collapse
|
41
|
Li X, Lv B, Zhang XP, Jin X, Guo K, Zhou D, Bian H, Zhang W, Apfel UP, Cao R. Introducing Water-Network-Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angew Chem Int Ed Engl 2021; 61:e202114310. [PMID: 34913230 DOI: 10.1002/anie.202114310] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/10/2022]
Abstract
Proton transfer is vital for many biological and chemical reactions. Hydrogen-bonded water-containing networks are often found in enzymes to assist proton transfer, but similar strategy has been rarely presented by synthetic catalysts. We herein report the Co corrole 1 with an appended crown ether unit and its boosted activity for the hydrogen evolution reaction (HER). Crystallographic and 1H NMR studies proved that the crown ether of 1 can grab water via hydrogen bonds. By using protic acids as proton sources, the HER activity of 1 was largely boosted with added water, while the activity of crown-ether-free analogues showed very small enhancement. Inhibition studies by adding (1) external 18-crown-6-ether to extract water molecules and (2) potassium ion or N-benzyl-n-butylamine to block the crown ether of 1 further confirmed its critical role in assisting proton transfer via grabbed water molecules. This work presents a synthetic example to boost HER through water-containing networks.
Collapse
Affiliation(s)
- Xialiang Li
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Bin Lv
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Xue-Peng Zhang
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Xiaotong Jin
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Kai Guo
- shaanxi normal university, School of Chemistry and Chemical Engineering, CHINA
| | - Dexia Zhou
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Hongtao Bian
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Wei Zhang
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Fakultät fur Chemie und Biochemie, GERMANY
| | - Rui Cao
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an Campus, Number 620 West Chang'an Avenue, Chang'an District, 710119, Xi'an, CHINA
| |
Collapse
|
42
|
Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Synthesis, structural characterization and binding ability of A2B cobalt(III) corroles with pyridine. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Li X, Zhang XP, Guo M, Lv B, Guo K, Jin X, Zhang W, Lee YM, Fukuzumi S, Nam W, Cao R. Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex. J Am Chem Soc 2021; 143:14613-14621. [PMID: 34469154 DOI: 10.1021/jacs.1c05204] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water nucleophilic attack (WNA) on high-valent terminal Mn-oxo species is proposed for O-O bond formation in natural and artificial water oxidation. Herein, we report an electrocatalytic water oxidation reaction with MnIII tris(pentafluorophenyl)corrole (1) in propylene carbonate (PC). O2 was generated at the MnV/IV potential with hydroxide, but a more anodic potential was required to evolve O2 with only water. With a synthetic MnV(O) complex of 1, a second-order rate constant, k2(OH-), of 7.4 × 103 M-1 s-1 was determined in the reaction of the MnV(O) complex of 1 with hydroxide, whereas its reaction with water occurred much more slowly with a k2(H2O) value of 4.4 × 10-3 M-1 s-1. This large reactivity difference of MnV(O) with hydroxide and water is consistent with different electrocatalytic behaviors of 1 with these two substrates. Significantly, during the electrolysis of 1 with water, a MnIV-peroxo species was identified with various spectroscopic methods, including UV-vis, electron paramagnetic resonance, and infrared spectroscopy. Isotope-labeling experiments confirmed that both O atoms of this peroxo species are derived from water, suggesting the involvement of the WNA mechanism in water oxidation by a Mn complex. Density functional theory calculations suggested that the nucleophilic attack of hydroxide on MnV(O) and also WNA to 1e--oxidized MnV(O) are feasibly involved in the catalytic cycles but that direct WNA to MnV(O) is not likely to be the main O-O bond formation pathway in the electrocatalytic water oxidation by 1.
Collapse
Affiliation(s)
- Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Mian Guo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
45
|
|
46
|
Li Y, Wang N, Lei H, Li X, Zheng H, Wang H, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Zhang XP, Wang HY, Zheng H, Zhang W, Cao R. O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63681-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
48
|
Gil-Sepulcre M, Lindner JO, Schindler D, Velasco L, Moonshiram D, Rüdiger O, DeBeer S, Stepanenko V, Solano E, Würthner F, Llobet A. Surface-Promoted Evolution of Ru-bda Coordination Oligomers Boosts the Efficiency of Water Oxidation Molecular Anodes. J Am Chem Soc 2021; 143:11651-11661. [PMID: 34293261 PMCID: PMC8343522 DOI: 10.1021/jacs.1c04738] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new Ru oligomer of formula {[RuII(bda-κ-N2O2)(4,4'-bpy)]10(4,4'-bpy)}, 10 (bda is [2,2'-bipyridine]-6,6'-dicarboxylate and 4,4'-bpy is 4,4'-bipyridine), was synthesized and thoroughly characterized with spectroscopic, X-ray, and electrochemical techniques. This oligomer exhibits strong affinity for graphitic materials through CH-π interactions and thus easily anchors on multiwalled carbon nanotubes (CNT), generating the molecular hybrid material 10@CNT. The latter acts as a water oxidation catalyst and converts to a new species, 10'(H2O)2@CNT, during the electrochemical oxygen evolution process involving solvation and ligand reorganization facilitated by the interactions of molecular Ru catalyst and the surface. This heterogeneous system has been shown to be a powerful and robust molecular hybrid anode for electrocatalytic water oxidation into molecular oxygen, achieving current densities in the range of 200 mA/cm2 at pH 7 under an applied potential of 1.45 V vs NHE. The remarkable long-term stability of this hybrid material during turnover is rationalized based on the supramolecular interaction of the catalyst with the graphitic surface.
Collapse
Affiliation(s)
- Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ). Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Joachim O Lindner
- Center for Nanosystems Chemistry, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Dorothee Schindler
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lucía Velasco
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Calle Faraday 9, 28049 Madrid, Spain
| | - Dooshaye Moonshiram
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Calle Faraday 9, 28049 Madrid, Spain
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Vladimir Stepanenko
- Center for Nanosystems Chemistry, Theodor-Boveri-Weg, 97074 Würzburg, Germany.,Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eduardo Solano
- NCD-SWEET beamline, ALBA synchrotron light source, Carrer de la Llum, 2, 26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Frank Würthner
- Center for Nanosystems Chemistry, Theodor-Boveri-Weg, 97074 Würzburg, Germany.,Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ). Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quimica, Universitat Autonoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
49
|
Zhong W, Zhuang Z, Zhu Z, Zhou G, Zhu X, Ma L, Xu B, He G, Gu F, Sun F. Photochemical Construction of Ni/CdS Double‐Walled Magnetic Hollow Microspheres with Simultaneously Enhanced Visible‐Light Photocatalytic Activity and Recyclability. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wenyu Zhong
- School of Chemistry South China Normal University Wai Huan West Road Guangzhou 510006 P. R. China
| | - Zefeng Zhuang
- School of Chemistry South China Normal University Wai Huan West Road Guangzhou 510006 P. R. China
| | - Zhimin Zhu
- School of Chemistry South China Normal University Wai Huan West Road Guangzhou 510006 P. R. China
| | - Guangying Zhou
- School of Environment South China Normal University Wai Huan West Road Guangzhou 510006 P. R. China
| | - Ximiao Zhu
- School of Chemistry South China Normal University Wai Huan West Road Guangzhou 510006 P. R. China
| | - Lijun Ma
- School of Chemistry South China Normal University Wai Huan West Road Guangzhou 510006 P. R. China
| | - Bingjia Xu
- School of Chemistry South China Normal University Wai Huan West Road Guangzhou 510006 P. R. China
| | - Guping He
- School of Chemistry South China Normal University Wai Huan West Road Guangzhou 510006 P. R. China
| | - Fenglong Gu
- School of Chemistry South China Normal University Wai Huan West Road Guangzhou 510006 P. R. China
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Wai Huan West Road Guangzhou 510006 P. R. China
| | - Fengqiang Sun
- School of Chemistry South China Normal University Wai Huan West Road Guangzhou 510006 P. R. China
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Wai Huan West Road Guangzhou 510006 P. R. China
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage Wai Huan West Road Guangzhou 510006 P. R. China
| |
Collapse
|
50
|
Timelthaler D, Schöfberger W, Topf C. Selective and Additive-Free Hydrogenation of Nitroarenes Mediated by a DMSO-Tagged Molecular Cobalt Corrole Catalyst. European J Org Chem 2021; 2021:2114-2120. [PMID: 34248412 PMCID: PMC8252576 DOI: 10.1002/ejoc.202100073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Indexed: 12/02/2022]
Abstract
We report on the first cobalt corrole that effectively mediates the homogeneous hydrogenation of structurally diverse nitroarenes to afford the corresponding amines. The given catalyst is easily assembled prior to use from 4-tert-butylbenzaldehyde and pyrrole followed by metalation of the resulting corrole macrocycle with cobalt(II) acetate. The thus-prepared complex is self-contained in that the hydrogenation protocol is free from the requirement for adding any auxiliary reagent to elicit the catalytic activity of the applied metal complex. Moreover, a containment system is not required for the assembly of the hydrogenation reaction set-up as both the autoclave and the reaction vessels are readily charged under a regular laboratory atmosphere.
Collapse
Affiliation(s)
- Daniel Timelthaler
- Institute of Catalysis (INCA)Johannes Kepler University (JKU)4040LinzAustria
| | | | - Christoph Topf
- Institute of Catalysis (INCA)Johannes Kepler University (JKU)4040LinzAustria
| |
Collapse
|