1
|
Pu W, Wan S, Zhou Q, Gong Y, Fu X, Mu G, Zhang G, Wang C. Copper-Catalyzed Intramolecular Decarboxylative C(sp2)-Heteroatom Cross-Couplings: Mechanism Insights and Synthetic Applications. J Org Chem 2024; 89:11939-11949. [PMID: 39177441 DOI: 10.1021/acs.joc.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Decarboxylative C(sp2)-heteroatom cross-coupling reactions hold extraordinary potential for the sustainable preparation of biologically active scaffolds. Herein, we report a copper sulfate/1,10-phenathroline catalytic system for the decarboxylative intramolecular C(sp2)-O, C(sp2)-S, and C(sp2)-N coupling reactions leading to the construction of a series of benzo[b]furans, benzo[b]thiophenes, and indole derivatives from the corresponding coumarins, thiocoumarins, or quinolones, respectively. Our mechanistic study based on benzo[b]furan formation suggests a three-step process of the transformations, which consists of (i) base-mediated hydrolytic ring opening of coumarin, (ii) copper-oxygen co-initiated radical decarboxylation, and (iii) copper-catalyzed C-heteroatom cross coupling. Application of this method in the total synthesis of egonol, a bioactive natural product, was demonstrated successfully, with an overall yield of 51.7%.
Collapse
Affiliation(s)
- Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Shunli Wan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanqiu Gong
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Guanmin Mu
- Orient Baolin Technology Development (Beijing) Co., Ltd., Beijing 100000, China
| | - Guolin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
2
|
Guo Y, Lin G, Zhang M, Xu J, Song Q. Photo-induced decarboxylative C-S bond formation to access sterically hindered unsymmetric S-alkyl thiosulfonates and SS-alkyl thiosulfonates. Nat Commun 2024; 15:7313. [PMID: 39181875 PMCID: PMC11344762 DOI: 10.1038/s41467-024-51334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Due to the high reactivity and versatility of benzenesulfonothioates, significant advancements have been made in constructing C-S bonds. However, there are certain limitations in the synthesis of S-thiosulfonates and SS-thiosulfonates, especially when dealing with substantial steric hindrance, which poses a significant challenge. Herein, we present an innovative approach for assembling unsymmetric S-thiosulfonates and unsymmetric SS-thiosulfonates through the integration of dual copper/photoredox catalysis. Moreover, we also realized the one-pot strategy by directly using carboxylic acids as raw materials by in-situ activation of them to access S-thiosulfonates and SS-thiosulfonates without further purification and presynthesis of NHPI esters. The envisaged synthesis and utilization of these reagents are poised to pioneer an innovative pathway for fabricating a versatile spectrum of mono-, di-, and polysulfide compounds. Furthermore, they introduce a class of potent sulfenylating reagents, empowering the synthesis of intricate unsymmetrical disulfides that were previously challenging to access.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Guotao Lin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Mengjie Zhang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, 350108, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
3
|
Denkler LM, Aladahalli Shekar M, Ngan TSJ, Wylie L, Abdullin D, Engeser M, Schnakenburg G, Hett T, Pilz FH, Kirchner B, Schiemann O, Kielb P, Bunescu A. A General Iron-Catalyzed Decarboxylative Oxygenation of Aliphatic Carboxylic Acids. Angew Chem Int Ed Engl 2024; 63:e202403292. [PMID: 38735849 DOI: 10.1002/anie.202403292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
We report an iron-catalyzed decarboxylative C(sp3)-O bond-forming reaction under mild, base-free conditions with visible light irradiation. The transformation uses readily available and structurally diverse carboxylic acids, iron photocatalyst, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) derivatives as oxygenation reagents. The process exhibits a broad scope in acids possessing a wide range of stereoelectronic properties and functional groups. The developed reaction was applied to late-stage oxygenation of a series of bio-active molecules. The reaction leverages the ability of iron complexes to generate carbon-centered radicals directly from carboxylic acids by photoinduced carboxylate-to-iron charge transfer. Kinetic, electrochemical, EPR, UV/Vis, HRMS, and DFT studies revealed that TEMPO has a triple role in the reaction: as an oxygenation reagent, an oxidant to turn over the Fe-catalyst, and an internal base for the carboxylic acid deprotonation. The obtained TEMPO adducts represent versatile synthetic intermediates that were further engaged in C-C and C-heteroatom bond-forming reactions using commercial organo-photocatalysts and nucleophilic reagents.
Collapse
Affiliation(s)
- Luca Mareen Denkler
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Meghana Aladahalli Shekar
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Tak Shing Jason Ngan
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Dinar Abdullin
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Tobias Hett
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
| | - Frank Hendrik Pilz
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Olav Schiemann
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Patrycja Kielb
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Ala Bunescu
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
4
|
Le L, Zeng H, Zhou W, Tang N, Yin SF, Kambe N, Qiu R. Catalyst-Free, Zn-Mediated Decarboxylative Coupling of Chlorostibines to Access Alkylstibines with Stable C(sp 3)-Sb Bonds. Org Lett 2024; 26:6018-6023. [PMID: 38968445 DOI: 10.1021/acs.orglett.4c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Herein, decarboxylative C(sp3)-Sb coupling of aliphatic carboxylic acid derivatives with chlorostibines to access alkylstibines has been achieved. This catalyst-, ligand-, and base-free approach using zinc as a reductant affords various kinds of benzyldiarylstibines and other monoalkyldiarylstibines and tolerates various functional groups, including chlorine, bromine, hydroxyl, amide, sulfone, and cyano groups. The late-stage modification and the gram-scale experiments illustrate its potential application.
Collapse
Affiliation(s)
- Liyuan Le
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Huifan Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wenjun Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Niu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- College of Science, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Nobuaki Kambe
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
5
|
Yu Q, Zhou D, Yu P, Song C, Ze Tan, Li J. Silver-Catalyzed Decarboxylative Nitrooxylation of Aliphatic Carboxylic Acids. Org Lett 2024; 26:5856-5861. [PMID: 38950381 DOI: 10.1021/acs.orglett.4c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Here, we present a silver-catalyzed decarboxylative nitrooxylation via a radical-based approach. The substrate scope of this reaction prototype extends to nonactivated primary and secondary carboxylic acids. This protocol provides a practical method for the synthesis of an unprecedented family of organic nitrates and exhibits wide functional group compatibility. Preliminary mechanistic studies reveal that a high-valent silver(II) nitrate complex is a versatile NO3 resource pool, allowing for facile C-O bond formation.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Donglin Zhou
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Pingping Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Chunlan Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Ze Tan
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Jiakun Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
6
|
Gan XC, Zhang B, Dao N, Bi C, Pokle M, Kan L, Collins MR, Tyrol CC, Bolduc PN, Nicastri M, Kawamata Y, Baran PS, Shenvi R. Carbon quaternization of redox active esters and olefins by decarboxylative coupling. Science 2024; 384:113-118. [PMID: 38574151 PMCID: PMC11452921 DOI: 10.1126/science.adn5619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
The synthesis of quaternary carbons often requires numerous steps and complex conditions or harsh reagents that act on heavily engineered substrates. This is largely a consequence of conventional polar-bond retrosynthetic disconnections that in turn require multiple functional group interconversions, redox manipulations, and protecting group chemistry. Here, we report a simple catalyst and reductant combination that converts two types of feedstock chemicals, carboxylic acids and olefins, into tetrasubstituted carbons through quaternization of radical intermediates. An iron porphyrin catalyst activates each substrate by electron transfer or hydrogen atom transfer, and then combines the fragments using a bimolecular homolytic substitution (SH2) reaction. This cross-coupling reduces the synthetic burden to procure numerous quaternary carbon---containing products from simple chemical feedstocks.
Collapse
Affiliation(s)
- Xu-cheng Gan
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Benxiang Zhang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Nathan Dao
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Cheng Bi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Maithili Pokle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Liyan Kan
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Michael R. Collins
- Oncology Medicinal Chemistry Department, Pfizer Pharmaceuticals, 10770 Science Center Drive, CA, 92122, United States
| | - Chet C. Tyrol
- Pfizer Medicine Design, 445 Eastern Point Road, Groton, CT, 06340, United States
| | | | | | - Yu Kawamata
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Ryan Shenvi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| |
Collapse
|
7
|
Zhang M, Liu L, Tan Y, Jing Y, Liu Y, Wang Z, Wang Q. Decarboxylative Radical Sulfilimination via Photoredox, Copper, and Brønsted Base Catalysis. Angew Chem Int Ed Engl 2024; 63:e202318344. [PMID: 38126567 DOI: 10.1002/anie.202318344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Sulfilimines, the aza-variants of sulfoxides, are key structural motifs in natural products, pharmaceuticals, and agrochemicals; and sulfilimine synthesis is therefore important in organic chemistry. However, methods for radical sulfilimination remain elusive, and as a result, the structural diversity of currently available sulfilimines is limited. Herein, we report the first protocol for decarboxylative radical sulfilimination reactions between sulfenamides and N-hydroxyphthalimide esters of primary, secondary, and tertiary alkyl carboxylic acids, which were achieved via a combination of photoredox, copper, and Brønsted base catalysis. This novel protocol provided a wide variety of sulfilimines, in addition to serving as an efficient route for the synthesis of S-alkyl/S-aryl homocysteine sulfilimines and S-(4-methylphenyl) homocysteine sulfoximine. Moreover, it could be used for late-stage introduction of a sulfilimine group into structurally complex molecules, thereby avoiding the need to preserve labile organosulfur moieties through multistep synthetic sequences. A mechanism involving photocatalytic substrate transformation and copper-mediated C(sp3 )-S bond formation is proposed.
Collapse
Affiliation(s)
- Mingjun Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lixia Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuhao Tan
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yue Jing
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ziwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300071, P. R. China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
8
|
Wang PZ, Chen JR, Xiao WJ. Emerging Trends in Copper-Promoted Radical-Involved C-O Bond Formations. J Am Chem Soc 2023; 145:17527-17550. [PMID: 37531466 DOI: 10.1021/jacs.3c04879] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The C-O bond is ubiquitous in biologically active molecules, pharmaceutical agents, and functional materials, thereby making it an important functional group. Consequently, the development of C-O bond-forming reactions using catalytic strategies has become an increasingly important research topic in organic synthesis because more conventional methods involving strong base and acid have many limitations. In contrast to the ionic-pathway-based methods, copper-promoted radical-mediated C-O bond formation is experiencing a surge in research interest owing to a renaissance in free-radical chemistry and photoredox catalysis. This Perspective highlights and appraises state-of-the-art techniques in this burgeoning research field. The contents are organized according to the different reaction types and working models.
Collapse
Affiliation(s)
- Peng-Zi Wang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| | - Wen-Jing Xiao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Zhang G, Pei Y, Wang J, Zhu X, Li Z, Zhao F, Wu J. Copper-Catalyzed Asymmetric Cyanation of Propargylic Radicals via Direct Decarboxylation of Propargylic Carboxylic Acids. Org Lett 2023. [PMID: 37384561 DOI: 10.1021/acs.orglett.3c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Chiral propargylic cyanides are often used as small-molecule feedstocks for the introduction of chiral centers into various valuable products and complex molecules. Here, we have developed a highly atom-economical strategy for the chiral copper complex-catalyzed synthesis of chiral propargylic cyanides. Propargylic radicals can be smoothly obtained by direct decarboxylation of the propargylic carboxylic acids without preactivation. The reactions show excellent selectivity and functional group compatibility. Gram-scale reaction and several conversion reactions from chiral propargylic cyanide have demonstrated the synthetic value of this strategy.
Collapse
Affiliation(s)
- Guang'an Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yonghong Pei
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Junwei Wang
- High and New Technology Research Center, Henan Academy of Sciences, Zhengzhou, Henan 450002, P. R. China
| | - Xinyu Zhu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zhongxian Li
- High and New Technology Research Center, Henan Academy of Sciences, Zhengzhou, Henan 450002, P. R. China
| | - Fengqian Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Junliang Wu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
10
|
Stanton MP, Hoover JM. Copper-Catalyzed Decarboxylative Elimination of Carboxylic Acids to Styrenes. J Org Chem 2023; 88:1713-1719. [PMID: 36662592 PMCID: PMC10032571 DOI: 10.1021/acs.joc.2c02705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A copper-catalyzed decarboxylative elimination reaction of (hetero)aromatic propionic acids to vinyl (hetero)arenes has been developed. This method furnishes alkenes from carboxylic acids without the need for stochiometric Pb or Ag additives or expensive or specialized photocatalysts. A series of mechanistic experiments indicate that the reaction proceeds via benzylic deprotonation and subsequent radical decarboxylation; a pathway that is distinct from the single-electron-transfer mechanisms implicated in related decarboxylative elimination reactions.
Collapse
Affiliation(s)
- Michael P Stanton
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jessica M Hoover
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
11
|
Baeza Cinco MÁ, Wu G, Telser J, Hayton TW. Structural and Spectroscopic Characterization of a Zinc-Bound N-Oxyphthalimide Radical. Inorg Chem 2022; 61:13250-13255. [PMID: 35972238 DOI: 10.1021/acs.inorgchem.2c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermolysis of a 1:1:1 mixture of MeLH (MeL = {(2,6-iPr2C6H3)NC(Me)}2CH), N-hydroxyphthalimide (HOPth), and diethylzinc in toluene at 77 °C provided [MeLZn(OPth)] (1) in good yield after workup. The subsequent reduction of 1 with 1.3 equiv of KC8 and 1 equiv of 2.2.2-cryptand, in tetrahydrofuran, provided [K(2.2.2-cryptand)][MeLZn(OPth)] (2) in 74% yield after workup. Characterization of 2 via X-ray crystallography and electron paramagnetic resonance spectroscopy reveals the presence of an S = 1/2 radical on the N-oxyphthalimide ligand. Importantly, these data represent the first structural and spectroscopic confirmation of the redox activity of a metal-bound N-oxyphthalimide fragment, expanding the range of structurally characterized redox-active ligands.
Collapse
Affiliation(s)
- Miguel Á Baeza Cinco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93016, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93016, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, 430 South Michigan Avenue. Chicago, Illinois 60605-1394, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93016, United States
| |
Collapse
|
12
|
Park SH, Jang J, Shin K, Kim H. Electrocatalytic Radical-Polar Crossover Hydroetherification of Alkenes with Phenols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Steve H Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jieun Jang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwangmin Shin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
13
|
Shennan BDA, Berheci D, Crompton JL, Davidson TA, Field JL, Williams BA, Dixon DJ. Branching out: redox strategies towards the synthesis of acyclic α-tertiary ethers. Chem Soc Rev 2022; 51:5878-5929. [PMID: 35770619 DOI: 10.1039/d1cs00669j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acyclic α-tertiary ethers represent a highly prevalent functionality, common to high-value bioactive molecules, such as pharmaceuticals and natural products, and feature as crucial synthetic handles in their construction. As such their synthesis has become an ever-more important goal in synthetic chemistry as the drawbacks of traditional strong base- and acid-mediated etherifications have become more limiting. In recent years, the generation of highly reactive intermediates via redox approaches has facilitated the synthesis of highly sterically-encumbered ethers and accordingly these strategies have been widely applied in α-tertiary ether synthesis. This review summarises and appraises the state-of-the-art in the application of redox strategies enabling acyclic α-tertiary ether synthesis.
Collapse
Affiliation(s)
- Benjamin D A Shennan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Diana Berheci
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jessica L Crompton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Timothy A Davidson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Joshua L Field
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Benedict A Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
14
|
Xi D, Lu C, Jing D, Zheng K. Carbothiolation of Styrenes by Visible‐Light‐Induced Thiyl Radicals: C3‐Functionalization of Benzofuran‐2(3H)‐ones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dailin Xi
- Sichuan University Chemistry 610064 Chengdu CHINA
| | - Cong Lu
- Sichuan University Chemistry 610064 Chengdu CHINA
| | - Dong Jing
- Sichuan University Chemistry 610064 Chengdu CHINA
| | - Ke Zheng
- Sichuan University College of Chemistry wangjiang road 29# 610064 chengdu CHINA
| |
Collapse
|
15
|
Guan Z, Zhong X, Ye Y, Li X, Cong H, Yi H, Zhang H, Huang Z, Lei A. Selective radical cascade (4+2) annulation with olefins towards the synthesis of chroman derivatives via organo-photoredox catalysis. Chem Sci 2022; 13:6316-6321. [PMID: 35733882 PMCID: PMC9159083 DOI: 10.1039/d2sc00903j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/21/2022] [Indexed: 12/02/2022] Open
Abstract
Due to the importance of chroman frameworks in medicinal chemistry, the development of novel synthetic methods for these structures is gaining increasing interest of chemists. Reported here is a new (4 + 2) radical annulation approach for the construction of these functional six-membered frameworks via photocatalysis. Featuring mild reaction conditions, the protocol allows readily available N-hydroxyphthalimide esters and electron-deficient olefins to be converted into a wide range of valuable chromans in a highly selective manner. Moreover, the present strategy can be used in the late-stage functionalization of natural product derivatives and biologically active compounds, which demonstrated the potential application. This method is complementary to the traditional Diels–Alder [4 + 2] cycloaddition reaction of ortho-quinone methides and electron-rich dienophiles, since electron-deficient dienophiles were smoothly transformed into the desired chromans. We have developed a (4 + 2) radical annulation approach for the synthesis of diverse chromans. This method is complementary to the traditional Diels–Alder [4 + 2] annulation of ortho-quinone methides and electron-rich dienophiles.![]()
Collapse
Affiliation(s)
- Zhipeng Guan
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Xingxing Zhong
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Yayu Ye
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Xiangwei Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Hengjiang Cong
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Heng Zhang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Zhiliang Huang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| |
Collapse
|
16
|
Hu HW, Zhang C, Yang YM, Deng HQ, Tang ZY. Photocatalytic decarboxylative alkylation of electron-rich heteroarenes with alkyl N-hydroxyphthalimide esters. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Go SY, Chung H, Shin SJ, An S, Youn JH, Im TY, Kim JY, Chung TD, Lee HG. A Unified Synthetic Strategy to Introduce Heteroatoms via Electrochemical Functionalization of Alkyl Organoboron Reagents. J Am Chem Soc 2022; 144:9149-9160. [PMID: 35575552 DOI: 10.1021/jacs.2c03213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on systematic electrochemical analysis, an integrated synthetic platform of C(sp3)-based organoboron compounds was established for the introduction of heteroatoms. The electrochemically mediated bond-forming strategy was shown to be highly effective for the functionalization of sp3-hybridized carbon atoms with significant steric hindrance. Moreover, virtually all the nonmetallic heteroatoms could be utilized as reaction partners using one unified protocol. The observed reactivity stems from the two consecutive single-electron oxidations of the substrate, which eventually generates an extremely reactive carbocation as the key intermediate. The detailed reaction profile could be elucidated through multifaceted electrochemical studies. Ultimately, a new dimension in the activation strategies for organoboron compounds was accomplished through the electrochemically driven reaction development.
Collapse
Affiliation(s)
- Su Yong Go
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Hyunho Chung
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Samuel Jaeho Shin
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Sohee An
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Ju Hyun Youn
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Tae Yeong Im
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do 16229 Republic of Korea
| | - Hong Geun Lee
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Utilization of photocatalysts in decarboxylative coupling of carboxylic N-hydroxyphthalimide (NHPI) esters. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
20
|
Zhang Z, Xu Y, Zhang Q, Fang S, Sun H, Ou W, Su C. Semi-heterogeneous photo-Cu-dual-catalytic cross-coupling reactions using polymeric carbon nitrides. Sci Bull (Beijing) 2022; 67:71-78. [DOI: 10.1016/j.scib.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 02/02/2023]
|
21
|
Dai PF, Wang YP, Qu JP, Kang YB. tert-Butyl Nitrite as a Twofold Hydrogen Abstractor for Dehydrogenative Coupling of Aldehydes with N-Hydroxyimides. Org Lett 2021; 23:9360-9364. [PMID: 34816715 DOI: 10.1021/acs.orglett.1c03434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetically practical transition metal/catalyst/halogen-free dehydrogenative coupling of aldehydes with N-hydroxyimides promoted solely by tert-butyl nitrite under mild conditions was developed. tert-Butyl nitrite generates two radicals (tBuO and NO) and thus works as a twofold hydrogen abstractor. A diverse array of N-hydroxyimide esters were prepared from either aliphatic or aromatic aldehydes. Benzoyl-substituted aldehydes such as 2-oxo-2-phenylacetaldehyde are also suitable.
Collapse
Affiliation(s)
- Peng-Fei Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi-Ping Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 514] [Impact Index Per Article: 171.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
23
|
Zheng M, Gao K, Qin H, Li G, Lu H. Metal-to-Ligand Ratio-Dependent Chemodivergent Asymmetric Synthesis. Angew Chem Int Ed Engl 2021; 60:22892-22899. [PMID: 34405932 DOI: 10.1002/anie.202108617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Indexed: 11/05/2022]
Abstract
Chemodivergent asymmetric synthesis was achieved by tuning the metal-to-ligand ratio in an organometallic catalytic system. Using N-(aroyloxy)phthalimide as the precursor of either an oxygen-centered aroyloxy radical or a nitrogen-centered phthalimidyl radical, enantioselective oxocyanation or aminocyanation of alkenes was achieved separately through a dual photoredox and copper catalysis. The metal-to-ligand ratio can exert chemoselective control while retaining the high enantiopurity of divergent products. Both reactions proceed efficiently with catalyst loading as low as 0.2 mol % and can be performed on a gram scale without loss of chemoselectivity or enantioselectivity. Chemodivergent asymmetric 1,5-aminocyanation or 1,5-oxocyanation of vinylcyclopropane can also be realized by this protocol. Mechanistic investigations involving electron paramagnetic resonance (EPR) experiments were performed to shed light on the stereochemical and chemodivergent results.
Collapse
Affiliation(s)
- Min Zheng
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Ke Gao
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Haitao Qin
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
24
|
Zheng M, Gao K, Qin H, Li G, Lu H. Metal‐to‐Ligand Ratio‐Dependent Chemodivergent Asymmetric Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Min Zheng
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Ke Gao
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Haitao Qin
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas 79409-1061 USA
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
25
|
Zhu X, Fu H. Photocatalytic cross-couplings via the cleavage of N-O bonds. Chem Commun (Camb) 2021; 57:9656-9671. [PMID: 34472551 DOI: 10.1039/d1cc03598c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
N-(Acyloxy)phthalimide and oxime derivatives containing N-O bonds are important chemicals and synthetic intermediates, and visible light photoredox reductions of the N-O bonds provide carbon- or nitrogen-centered radicals for N-(acyloxy)phthalimide derivatives and iminyl radicals for oxime derivatives. This feature article summarises the recent progress in the visible light photoredox organic reactions, including decarboxylative addition reactions, alkylation, allylation, alkenylation, alkynylation, arylation, heteroarylation and cascade annulation of N-(acyloxy)phthalimide derivatives through the formation of carbon-carbon bonds, decarboxylative borylation, amination, oxygenation, sulfuration, selenylation, fluorination and iodination of N-(acyloxy)phthalimide derivatives through the formation of carbon-heteroatom bonds, and additions to arenes and alkenes, hydrogen atom transfer and the cleavage of α-carbon-carbon bonds via the iminyl radical intermediates for oxime derivatives.
Collapse
Affiliation(s)
- Xianjin Zhu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
26
|
Zhao B, Hammond GB, Xu B. Aromatic Ketone-Catalyzed Photochemical Synthesis of Imidazo-isoquinolinone Derivatives. J Org Chem 2021; 86:12851-12861. [PMID: 34436893 DOI: 10.1021/acs.joc.1c01486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have developed an efficient photocatalytic decarboxylative radical addition/cyclization strategy to synthesize imidazo-isoquinolinone derivatives using inexpensive aromatic ketone photocatalysts. This method not only tolerates a wide range of functional groups but also works well for both alkyl and aryl radicals.
Collapse
Affiliation(s)
- Bin Zhao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Bo Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
27
|
Mao R, Bera S, Turla AC, Hu X. Copper-Catalyzed Intermolecular Functionalization of Unactivated C(sp 3)-H Bonds and Aliphatic Carboxylic Acids. J Am Chem Soc 2021; 143:14667-14675. [PMID: 34463489 DOI: 10.1021/jacs.1c05874] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intermolecular functionalization of C(sp3)-H bonds and aliphatic carboxylic acids enables the efficient synthesis of high value-added organic compounds from readily available starting materials. Although methods involving hydrogen atom transfer have been developed for such functionalization, these methods either work for only activated C(sp3)-H bonds or bring in a narrow set of functional groups. Here we describe a Cu-catalyzed process for the diverse functionalization of both unactivated C(sp3)-H bonds and aliphatic carboxylic acids. The process is enabled by the trapping of alkyl radicals generated through hydrogen atom abstraction by arylsulfonyl-based SOMO-philes, which introduces a large array of C, N, S, Se, and halide-based functional groups. The chemoselectivity can be switched from C-H functionalization to decarboxylative functionalization by matching the bond dissociation energy of the hydrogen atom transfer reagent with that of the target C-H or O-H bond.
Collapse
Affiliation(s)
- Runze Mao
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland
| | - Srikrishna Bera
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland
| | - Aurélya Christelle Turla
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland
| |
Collapse
|
28
|
Sarkar S, Sahoo T, Sen C, Ghosh SC. Copper(II) mediated ortho C-H alkoxylation of aromatic amines using organic peroxides: efficient synthesis of hindered ethers. Chem Commun (Camb) 2021; 57:8949-8952. [PMID: 34486598 DOI: 10.1039/d1cc01803e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of hindered alkyl aryl ether derivatives (R-O-Ar) remains a huge challenge and highly desirable in organic and medicinal chemistry because extensive substitution on the ether bond prevents the undesired metabolic process and thus avoids rapid degradation in vivo. Herein, we report an unprecedented hindered alkoxylation of picolinamide attached aromatic amines using economic copper salt and organic peroxide to get highly desirable α-tertiary alkyl aryl ethers.
Collapse
Affiliation(s)
- Souvik Sarkar
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar-364002, Gujarat, India.
| | - Tapan Sahoo
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar-364002, Gujarat, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chiranjit Sen
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar-364002, Gujarat, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar-364002, Gujarat, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
29
|
Guo Y, Luo Y, Mu S, Xu J, Song Q. Photoinduced Decarboxylative Phosphorothiolation of N-Hydroxyphthalimide Esters. Org Lett 2021; 23:6729-6734. [PMID: 34410131 DOI: 10.1021/acs.orglett.1c02300] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A visible-light-induced protocol for the synthesis of phosphorothioates is developed by employing the Ir-catalyzed decarboxylative phosphorothiolation of N-hydroxyphthalimide esters. This novel synthesis method utilizes carboxylic acids as raw material, which is stable, cheap, and commercially available. Scope studies show that this reaction has good compatibility of functional groups. Notably, both the synthesis of steric hindrance phosphorothioates and the later modification of some bioactive compounds are successfully achieved.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Ying Luo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Shiqiang Mu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
30
|
Planas F, Costantini M, Montesinos-Magraner M, Himo F, Mendoza A. Combined Experimental and Computational Study of Ruthenium N-Hydroxyphthalimidoyl Carbenes in Alkene Cyclopropanation Reactions. ACS Catal 2021; 11:10950-10963. [PMID: 34504736 PMCID: PMC8419840 DOI: 10.1021/acscatal.1c02540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/05/2021] [Indexed: 01/14/2023]
Abstract
A combined experimental-computational approach has been used to study the cyclopropanation reaction of N-hydroxyphthalimide diazoacetate (NHPI-DA) with various olefins, catalyzed by a ruthenium-phenyloxazoline (Ru-Pheox) complex. Kinetic studies show that the better selectivity of the employed redox-active NHPI diazoacetate is a result of a much slower dimerization reaction compared to aliphatic diazoacetates. Density functional theory calculations reveal that several reactions can take place with similar energy barriers, namely, dimerization of the NHPI diazoacetate, cyclopropanation (inner-sphere and outer-sphere), and a previously unrecognized migratory insertion of the carbene into the phenyloxazoline ligand. The calculations show that the migratory insertion reaction yields an unconsidered ruthenium complex that is catalytically competent for both the dimerization and cyclopropanation, and its relevance is assessed experimentally. The stereoselectivity of the reaction is argued to stem from an intricate balance between the various mechanistic scenarios.
Collapse
Affiliation(s)
| | | | - Marc Montesinos-Magraner
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Abraham Mendoza
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
31
|
Correia JTM, Santos MS, Pissinati EF, da Silva GP, Paixão MW. Recent Advances on Photoinduced Cascade Strategies for the Synthesis of N-Heterocycles. CHEM REC 2021; 21:2666-2687. [PMID: 34288377 DOI: 10.1002/tcr.202100160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
Over the last decade, visible-light photocatalysis has proved to be a powerful tool for the construction of N-heterocyclic frameworks, important constituents of natural products, insecticides, pharmacologically relevant therapeutic agents and catalysts. This account highlights recent developments and established methods towards the photocatalytic cascades for preparation of different classes of N-heterocycles, giving emphasis on our contribution to the field.
Collapse
Affiliation(s)
- José Tiago M Correia
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Marilia S Santos
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Emanuele F Pissinati
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Gustavo P da Silva
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Márcio W Paixão
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| |
Collapse
|
32
|
Guin S, Majee D, Samanta S. Recent Advances in Visible‐Light‐Driven Photocatalyzed γ‐Cyanoalkylation Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Soumitra Guin
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Debashis Majee
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Sampak Samanta
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| |
Collapse
|
33
|
Li RH, Zhao YL, Shang QK, Geng Y, Wang XL, Su ZM, Li GF, Guan W. Photocatalytic C(sp 3)–O/N Cross-Couplings by NaI–PPh 3/CuBr Cooperative Catalysis: Computational Design and Experimental Verification. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | | | - Zhong-Min Su
- College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | | | | |
Collapse
|
34
|
Zeng Z, Feceu A, Sivendran N, Gooßen LJ. Decarboxylation‐Initiated Intermolecular Carbon‐Heteroatom Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhongyi Zeng
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Abigail Feceu
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nardana Sivendran
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Lukas J. Gooßen
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
35
|
Yang W, Zhao W, Li R, Li C. Homogeneous Palladium-Catalyzed Selective Reduction of 2,2′-Biphenols Using HCO2H as Hydrogen Source. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1337-5153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractAn efficient homogeneous palladium-catalyzed selective deoxygenation of 2,2′-biphenols by reduction of aryl triflates with HCO2H as the hydrogen source is reported. This protocol complements the current method based on heterogeneous Pd/C-catalyzed hydrogenation with hydrogen gas. This process provided the reduction products in good to excellent yields, which could be readily converted to various synthetically useful molecules, especially ligands for catalytic synthesis.
Collapse
|
36
|
Liu L, Tang Y, Wang K, Huang T, Chen T. Transition-Metal-Free and Base-Promoted Carbon–Heteroatom Bond Formation via C–N Cleavage of Benzyl Ammonium Salts. J Org Chem 2021; 86:4159-4170. [DOI: 10.1021/acs.joc.0c02992] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Yuanyuan Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Kunyu Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
37
|
Tang ZL, Ouyang XH, Song RJ, Li JH. Decarboxylative C(sp3)–N Cross-Coupling of Diacyl Peroxides with Nitrogen Nucleophiles. Org Lett 2021; 23:1000-1004. [DOI: 10.1021/acs.orglett.0c04203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zi-Liang Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
38
|
Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. Single Electron Transfer-Induced Redox Processes Involving N-(Acyloxy)phthalimides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04756] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| |
Collapse
|
39
|
Gong Y, Zhu Z, Qian Q, Tong W, Gong H. Zn- and Cu-Catalyzed Coupling of Tertiary Alkyl Bromides and Oxalates to Forge Challenging C–O, C–S, and C–N Bonds. Org Lett 2021; 23:1005-1010. [DOI: 10.1021/acs.orglett.0c04206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuxin Gong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Zhaodong Zhu
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Qun Qian
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Weiqi Tong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| |
Collapse
|
40
|
Sakurai S, Kano T, Maruoka K. Cu-Catalyzed O-alkylation of phenol derivatives with alkylsilyl peroxides. Chem Commun (Camb) 2021; 57:81-84. [DOI: 10.1039/d0cc07305a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A Cu-catalyzed O-alkylation of phenol derivatives using alkylsilyl peroxides as alkyl radical precursors is described.
Collapse
Affiliation(s)
- Shunya Sakurai
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Sakyo
- Japan
| | - Taichi Kano
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Sakyo
- Japan
| | - Keiji Maruoka
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Sakyo
- Japan
| |
Collapse
|
41
|
He S, Li H, Chen X, Krylov IB, Terent'ev AO, Qu L, Yu B. Advances of N-Hydroxyphthalimide Esters in Photocatalytic Alkylation Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Zhao ZW, Dong YJ, Geng Y, Li RH, Guan W, Su ZM. Superiority of Iridium Photocatalyst and Role of Quinuclidine in Selective α-C(sp 3)-H Alkylation: Theoretical Insights. J Org Chem 2021; 86:484-492. [PMID: 33295780 DOI: 10.1021/acs.joc.0c02227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent experimental work reported that visible-light photoredox catalysis coupled with primary sulfonamides and electron-deficient alkenes could efficiently construct C-C bonds at the α-position of primary amine derivatives under mild conditions. Here, a systematic study was conducted to explore the non-negligible excited-state single-electron-transfer (SET) processes and the catalytic cycle. Hydrogen atom transfer (HAT) catalysis containing different site-selective functionalization, involved as a critical process during the reaction, was computationally characterized. The superiorities of iridium-based photoredox catalysts in terms of photoabsorption properties, phosphorescence rates, and electron-transfer rates for SET processes were focused on. In addition, the function of quinuclidine in the entire photocatalytic reaction was also probed. These intrinsic properties and detailed insights into the mechanism are supposed to be helpful to the understanding of the C-C bond functionalization reaction and the future application of the iridium-based photoredox catalyst.
Collapse
Affiliation(s)
- Zhi-Wen Zhao
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Yu-Jiao Dong
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Run-Han Li
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China.,School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| |
Collapse
|
43
|
Soltani R, Abdollahi F, Ghaderi A. Light-emitting diode light–enabled denitrative etherification of 4-nitrobenzonitrile under catalyst-free conditions at room temperature. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/1747519820925376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we have developed a catalyst-free procedure for denitrative etherification of electron-deficient nitroarenes. In this method, the reaction failed in the dark but was enabled by white light-emitting diode light (6 W) in the presence of NaOH/dimethylformamide at room temperature with short reaction times. Interestingly, the reaction in the dark is completed almost immediately once a small quantity of water is added to the reaction mixture. Ultraviolet irradiation (λ = 254 nm) was not effective for this reaction to proceed.
Collapse
Affiliation(s)
- Roghaye Soltani
- Department of Chemistry, College of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Fatemeh Abdollahi
- Department of Chemistry, College of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Arash Ghaderi
- Department of Chemistry, College of Sciences, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
44
|
Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chem Soc Rev 2020; 50:766-897. [PMID: 33350402 DOI: 10.1039/d0cs00493f] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The late stage functionalization (LSF) of complex biorelevant compounds is a powerful tool to speed up the identification of structure-activity relationships (SARs) and to optimize ADME profiles. To this end, visible-light photocatalysis offers unique opportunities to achieve smooth and clean functionalization of drugs by unlocking site-specific reactivities under generally mild reaction conditions. This review offers a critical assessment of current literature, pointing out the recent developments in the field while emphasizing the expected future progress and potential applications. Along with paragraphs discussing the visible-light photocatalytic synthetic protocols so far available for LSF of drugs and drug candidates, useful and readily accessible synoptic tables of such transformations, divided by functional groups, will be provided, thus enabling a useful, fast, and easy reference to them.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Zhang W, Wang C, Wang Q. Copper-Catalyzed Decarboxylative Functionalization of Conjugated β,γ-Unsaturated Carboxylic Acids. ACS Catal 2020; 10:13179-13185. [PMID: 34367721 PMCID: PMC8346209 DOI: 10.1021/acscatal.0c03621] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Copper-catalyzed decarboxylative coupling reactions of conjugated β,γ-unsaturated carboxylic acids have been achieved for allylic amination, alkylation, sulfonylation, and phosphinoylation. This approach was effective for a broad scope of amino, alkyl, sulfonyl, and phosphinoyl radical precursors as well as various conjugated β,γ-unsaturated carboxylic acids. These reactions also feature high regioselectivity, good functional group tolerance, and simple operation procedure. Mechanistic studies show that the reaction proceeds via copper-catalyzed electrophilic addition onto an olefin followed by decarboxylation, with radical intermediates involved. These insights present a modular and powerful strategy to access versatilely functionalized allyl-containing skeletons from readily available and stable carboxylic acids.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chengming Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
46
|
Le Vaillant F, Reijerse EJ, Leutzsch M, Cornella J. Dialkyl Ether Formation at High-Valent Nickel. J Am Chem Soc 2020; 142:19540-19550. [PMID: 33143423 PMCID: PMC7677934 DOI: 10.1021/jacs.0c07381] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/15/2022]
Abstract
In this article, we investigated the I2-promoted cyclic dialkyl ether formation from 6-membered oxanickelacycles originally reported by Hillhouse. A detailed mechanistic investigation based on spectroscopic and crystallographic analysis revealed that a putative reductive elimination to forge C(sp3)-OC(sp3) using I2 might not be operative. We isolated a paramagnetic bimetallic NiIII intermediate featuring a unique Ni2(OR)2 (OR = alkoxide) diamond-like core complemented by a μ-iodo bridge between the two Ni centers, which remains stable at low temperatures, thus permitting its characterization by NMR, EPR, X-ray, and HRMS. At higher temperatures (>-10 °C), such bimetallic intermediate thermally decomposes to afford large amounts of elimination products together with iodoalkanols. Observation of the latter suggests that a C(sp3)-I bond reductive elimination occurs preferentially to any other challenging C-O bond reductive elimination. Formation of cyclized THF rings is then believed to occur through cyclization of an alcohol/alkoxide to the recently forged C(sp3)-I bond. The results of this article indicate that the use of F+ oxidants permits the challenging C(sp3)-OC(sp3) bond formation at a high-valent nickel center to proceed in good yields while minimizing deleterious elimination reactions. Preliminary investigations suggest the involvement of a high-valent bimetallic NiIII intermediate which rapidly extrudes the C-O bond product at remarkably low temperatures. The new set of conditions permitted the elusive synthesis of diethyl ether through reductive elimination, a remarkable feature currently beyond the scope of Ni.
Collapse
Affiliation(s)
- Franck Le Vaillant
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Edward J. Reijerse
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34−36, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
47
|
Synergistic photoredox and copper catalysis by diode-like coordination polymer with twisted and polar copper-dye conjugation. Nat Commun 2020; 11:5384. [PMID: 33097706 PMCID: PMC7584659 DOI: 10.1038/s41467-020-19172-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022] Open
Abstract
Synergistic photoredox and copper catalysis confers new synthetic possibilities in the pharmaceutical field, but is seriously affected by the consumptive fluorescence quenching of Cu(II). By decorating bulky auxiliaries into a photoreductive triphenylamine-based ligand to twist the conjugation between the triphenylamine-based ligand and the polar Cu(II)–carboxylate node in the coordination polymer, we report a heterogeneous approach to directly confront this inherent problem. The twisted and polar Cu(II)–dye conjunction endows the coordination polymer with diode-like photoelectronic behaviours, which hampers the inter- and intramolecular photoinduced electron transfer from the triphenylamine-moiety to the Cu(II) site and permits reversed-directional ground-state electronic conductivity, rectifying the productive loop circuit for synergising photoredox and copper catalysis in pharmaceutically valuable decarboxylative C(sp3)–heteroatom couplings. The well-retained Cu(II) sites during photoirradiation exhibit unique inner-spheric modulation effects, which endow the couplings with adaptability to different types of nucleophiles and radical precursors under concise reaction conditions, and distinguish the multi-olefinic moieties of biointeresting steride derivatives in their late-stage trifluoromethylation-chloration difunctionalisation. Synergistic photoredox–copper catalysis is limited by fluorescence quenching of Cu(II) ions to photoreductive dyes in solution. Here, the authors compromise photoreduction and Cu(II) catalysis by diode-like coordination polymer with twisted Cu(II)–dye conjugation, revealing its vast application vistas.
Collapse
|
48
|
Fu MC, Wang JX, Shang R. Triphenylphosphine-Catalyzed Alkylative Iododecarboxylation with Lithium Iodide under Visible Light. Org Lett 2020; 22:8572-8577. [DOI: 10.1021/acs.orglett.0c03173] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ming-Chen Fu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jia-Xin Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Rui Shang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
49
|
Chen KQ, Wang ZX, Chen XY. Photochemical Decarboxylative C(sp3)–X Coupling Facilitated by Weak Interaction of N-Heterocyclic Carbene. Org Lett 2020; 22:8059-8064. [DOI: 10.1021/acs.orglett.0c03006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kun-Quan Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Crespi S, Fagnoni M. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem Rev 2020; 120:9790-9833. [PMID: 32786419 PMCID: PMC8009483 DOI: 10.1021/acs.chemrev.0c00278] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Alkyl radicals are key intermediates in organic synthesis. Their classic generation from alkyl halides has a severe drawback due to the employment of toxic tin hydrides to the point that "flight from the tyranny of tin" in radical processes was considered for a long time an unavoidable issue. This review summarizes the main alternative approaches for the generation of unstabilized alkyl radicals, using photons as traceless promoters. The recent development in photochemical and photocatalyzed processes enabled the discovery of a plethora of new alkyl radical precursors, opening the world of radical chemistry to a broader community, thus allowing a new era of photon democracy.
Collapse
Affiliation(s)
- Stefano Crespi
- Stratingh
Institute for Chemistry, Center for Systems
Chemistry University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, V. Le Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|