1
|
Sato F, Alejandra HPL, Takemae H, Inagaki NF, Ito T, Tera M. Enhancing Cell Aggregation and Migration via Double-Click Cross-Linking with Azide-Modified Hyaluronic Acid. Bioconjug Chem 2024; 35:1318-1323. [PMID: 39213494 DOI: 10.1021/acs.bioconjchem.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We present a novel approach to the formation of cell aggregates by employing click chemistry with water-soluble zwitterionic dibenzo cyclooctadiyne (WS-CODY) and azide-modified hyaluronic acid (HA-N3) as a linker to facilitate rapid and stable cell aggregation. By optimizing the concentrations of HA-N3 and WS-CODY, we achieved efficient cross-linking between azide-modified cell surfaces and HA-N3, generating cell aggregates within 10 min, and the resulting aggregates remained stable for up to 5 days, with cell viability maintained at approximately 80%. Systematic experiments revealed that a stoichiometric balance between HA-N3 and WS-CODY is important for effective cross-linking, highlighting the roles of both cell-surface azide modification and HA in the aggregate formation. We also investigated the genetic basis of altered cell behavior within these aggregates. Transcriptome analysis (RNA-seq) of aggregates postcultivation revealed a marked fluctuation of genes associated with 'cell migration' and 'cell adhesion', including notable changes in the expression of HYAL1, ICAM-1, CEACAM5 and RHOB. These findings suggest that HA-N3-mediated cell aggregation can induce intrinsic cellular responses that not only facilitate cell aggregate formation but also modulate cell-matrix interactions. We term this phenomenon 'chemo-resilience', The simplicity and efficacy of this click chemistry-based approach suggest it may have broad applicability for forming cell aggregates and modulating cell-matrix interactions in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Fumiya Sato
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Hernandez Paniagua Liliana Alejandra
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Natsuko F Inagaki
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masayuki Tera
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
2
|
Wang JX, Zhang PL, Gopala L, Lv JS, Lin JM, Zhou CH. A Unique Hybridization Route to Access Hydrazylnaphthalimidols as Novel Structural Scaffolds of Multitargeting Broad-Spectrum Antifungal Candidates. J Med Chem 2024; 67:8932-8961. [PMID: 38814290 DOI: 10.1021/acs.jmedchem.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This study developed a class of novel structural antifungal hydrazylnaphthalimidols (HNs) with multitargeting broad-spectrum potential via multicomponent hybridization to confront increasingly severe fungal invasion. Some prepared HNs exhibited considerable antifungal potency; especially nitrofuryl HN 4a (MIC = 0.001 mM) exhibited a potent antifungal activity against Candida albicans, which is 13-fold higher than that of fluconazole. Furthermore, nitrofuryl HN 4a displayed low cytotoxicity, hemolysis and resistance, as well as a rapid fungicidal efficacy. Preliminary mechanistic investigations revealed that nitrofuryl HN 4a could inhibit lactate dehydrogenase to decrease metabolic activity and promote the accumulation of reactive oxygen species, leading to oxidative stress. Moreover, nitrofuryl HN 4a did not exhibit membrane-targeting ability; it could embed into DNA to block DNA replication but could not cleave DNA. These findings implied that HNs are promising as novel structural scaffolds of potential multitargeting broad-spectrum antifungal candidates for treating fungal infection.
Collapse
Affiliation(s)
- Jin-Xin Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lavanya Gopala
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jing-Song Lv
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Jian-Mei Lin
- Department of Infections, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
3
|
Copp W, Karimi A, Yang T, Guarné A, Luedtke NW. Fluorescent molecular rotors detect O6-methylguanine dynamics and repair in duplex DNA. Chem Commun (Camb) 2024; 60:1156-1159. [PMID: 38190113 DOI: 10.1039/d3cc04782b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alkylation at the O6 position of guanine is a common and highly mutagenic form of DNA damage. Direct repair of O6-alkylguanines by the "suicide" enzyme O6-methylguanine DNA methyltransferase (MGMT, AGT, AGAT) maintains genome stability and inhibits carcinogenesis. In this study, a fluorescent analogue of thymidine containing trans-stilbene (tsT) is quenched by O6-methylguanine residues in the opposite strand of DNA by molecular dynamics that propagate through the duplex with as much as ∼9 Å of separation. Increased fluorescence of tsT or the cytosine analogue tsC resulting from MGMT-mediated DNA repair were distinguishable from non-covalent DNA-protein binding following protease digest. To our knowledge, this is the first study utilizing molecular rotor base analogues to detect DNA damage and repair activities in duplex DNA.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry, McGill University, H3A-0B8 Montreal, Canada
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
| | - Ashkan Karimi
- Department of Chemistry, McGill University, H3A-0B8 Montreal, Canada
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
| | - Tianxiao Yang
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
- Department of Biochemistry, McGill University, H3G 1Y6 Montreal, Canada
| | - Alba Guarné
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
- Department of Biochemistry, McGill University, H3G 1Y6 Montreal, Canada
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, H3A-0B8 Montreal, Canada
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, H3A-1A3 Montreal, Canada
| |
Collapse
|
4
|
Šlachtová V, Chovanec M, Rahm M, Vrabel M. Bioorthogonal Chemistry in Cellular Organelles. Top Curr Chem (Cham) 2023; 382:2. [PMID: 38103067 PMCID: PMC10725395 DOI: 10.1007/s41061-023-00446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
While bioorthogonal reactions are routinely employed in living cells and organisms, their application within individual organelles remains limited. In this review, we highlight diverse examples of bioorthogonal reactions used to investigate the roles of biomolecules and biological processes as well as advanced imaging techniques within cellular organelles. These innovations hold great promise for therapeutic interventions in personalized medicine and precision therapies. We also address existing challenges related to the selectivity and trafficking of subcellular dynamics. Organelle-targeted bioorthogonal reactions have the potential to significantly advance our understanding of cellular organization and function, provide new pathways for basic research and clinical applications, and shape the direction of cell biology and medical research.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Marek Chovanec
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Michal Rahm
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Milan Vrabel
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
5
|
Zielke FM, Rutjes FPJT. Recent Advances in Bioorthogonal Ligation and Bioconjugation. Top Curr Chem (Cham) 2023; 381:35. [PMID: 37991570 PMCID: PMC10665463 DOI: 10.1007/s41061-023-00445-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
The desire to create biomolecules modified with functionalities that go beyond nature's toolbox has resulted in the development of biocompatible and selective methodologies and reagents, each with different scope and limitations. In this overview, we highlight recent advances in the field of bioconjugation from 2016 to 2023. First, (metal-mediated) protein functionalization by exploiting the specific reactivity of amino acids will be discussed, followed by novel bioorthogonal reagents for bioconjugation of modified biomolecules.
Collapse
Affiliation(s)
- Florian M Zielke
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Bilodeau DA, Margison KD, Masoud SS, Nakajima M, Pezacki JP. Mechanistic Analysis of Bioorthogonal Double Strain-Promoted Alkyne-Nitrone Cycloadditions Involving Dibenzocyclooctadiyne. ACS Chem Biol 2023; 18:2430-2438. [PMID: 37852229 DOI: 10.1021/acschembio.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The reactions of nitrones with cyclooctadiynes were studied to establish the relative rates of sequential reactions and to determine the limits and scope of this bioorthogonal chemistry. We have established the second-order rate constants for the consecutive additions of a variety of nitrones onto diyne and studied the structure-activity relationships via Hammett plots. Results show that the addition of the second nitrone to the monointermediate occurs significantly faster than the first, with both reactions being faster than analogous reactions with azides. Computational chemistry supports these observations. The rate of second addition increases with electron-deficient nitrones, as demonstrated by a large rho value of 2.08, suggesting that the reaction rate can be controlled by nitrone selectivity. To further investigate the kinetic parameters of the reaction, dinitrone monomers containing cyclic and diaryl-nitrones were designed for use in oligomerization applications. Oligomerization was used as a probe to test the limits of the reactivity and attempt to isolate monocycloaddition products. The oligomer formed from a cyclic nitrone reacts faster, and detailed MALDI mass spectrometry analysis shows that monoaddition products exist only transiently and are not isolatable. These studies inform on the scope and limits of this chemistry in a variety of applications. We successfully demonstrated bacterial cell wall labeling using heterogeneous dual cycloadditions involving nitrone and azide dipoles, where the nitrone was the faster reacting partner on the bacterial cell surface.
Collapse
Affiliation(s)
- Didier A Bilodeau
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Kaitlyn D Margison
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Shadi Sedghi Masoud
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Masaya Nakajima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
7
|
Li Y, Ling Y, Loehr MO, Chaabane S, Cheng OW, Zhao K, Wu C, Büscher M, Weber J, Stomakhine D, Munker M, Pientka R, Christ SB, Dobbelstein M, Luedtke NW. DNA templated Click Chemistry via 5-vinyl-2'-deoxyuridine and an acridine-tetrazine conjugate induces DNA damage and apoptosis in cancer cells. Life Sci 2023; 330:122000. [PMID: 37541577 DOI: 10.1016/j.lfs.2023.122000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
AIMS Click Chemistry is providing valuable tools to biomedical research, but its direct use in therapies remains nearly unexplored. For cancer treatment, nucleoside analogues (NA) such as 5-vinyl-2'-deoxyuridine (VdU) can be metabolically incorporated into cancer cell DNA and subsequently "clicked" to form a toxic product. The inverse electron-demand Diels-Alder (IEDDA) reaction between VdU and an acridine-tetrazine conjugate (PINK) has previously been used to label cell nuclei of cultured cells. Here, we report tandem usage of VdU and PINK to induce cytotoxicity. MAIN METHODS Cell lines were subsequently treated with VdU and PINK, and cell viability was measured via well confluency and 3D tumor spheroid assays. DNA damage and apoptosis were evaluated using Western Blotting and cell cycle analysis by flow cytometry. Double stranded DNA break (DSB) formation was measured using the comet assay. Apoptosis was assessed by fluorescent detection of externalized phosphatidylserine residues. KEY FINDINGS We report that the combination of VdU and PINK synergistically induces cytotoxicity in cultured human cells. The combination of VdU and PINK strongly reduced cell viability in 2D and 3D cultured cancer cells. Mechanistically, the compounds induced DNA damage through DSB formation, which leads to S-phase accumulation and apoptosis. SIGNIFICANCE The combination of VdU and PINK represents a novel and promising DNA-templated "click" approach for cancer treatment via selective induction of DNA damage.
Collapse
Affiliation(s)
- Yizhu Li
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany.
| | - Yurong Ling
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Morten O Loehr
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada
| | - Sabrina Chaabane
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Oh Wan Cheng
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Kaifeng Zhao
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada
| | - Chao Wu
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Moritz Büscher
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Jana Weber
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Daria Stomakhine
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada
| | - Marina Munker
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Ronja Pientka
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Sarah B Christ
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal H3G 1Y6, Canada
| |
Collapse
|
8
|
Neitz H, Bessi I, Kuper J, Kisker C, Höbartner C. Programmable DNA Interstrand Crosslinking by Alkene-Alkyne [2 + 2] Photocycloaddition. J Am Chem Soc 2023; 145:9428-9433. [PMID: 37071840 DOI: 10.1021/jacs.3c01611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Covalent crosslinking of DNA strands provides a useful tool for medical, biochemical, and DNA nanotechnology applications. Here we present a light-induced interstrand DNA crosslinking reaction using the modified nucleoside 5-phenylethynyl-2'-deoxyuridine (PhedU). The crosslinking ability of PhedU was programmed by base pairing and by metal ion interaction at the Watson-Crick base pairing site. Rotation to intrahelical positions was favored by hydrophobic stacking and enabled an unexpected photochemical alkene-alkyne [2 + 2] cycloaddition within the DNA duplex, resulting in efficient formation of a PhedU dimer after short irradiation times of a few seconds. A PhedU-dimer-containing DNA was shown to efficiently bind a helicase complex, but the covalent crosslink completely prevented DNA unwinding, suggesting possible applications in biochemistry or structural biology.
Collapse
Affiliation(s)
- Hermann Neitz
- Institute of Organic Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Irene Bessi
- Institute of Organic Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jochen Kuper
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Caroline Kisker
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
9
|
Kitagawa K, Okuma N, Yoshinaga M, Takemae H, Sato F, Sato S, Nakabayashi S, Yoshikawa HY, Suganuma M, Luedtke N, Matsuzaki T, Tera M. Ion-Pair-Enhanced Double-Click Driven Cell Adhesion and Altered Expression of Related Genes. Bioconjug Chem 2023. [PMID: 36763006 DOI: 10.1021/acs.bioconjchem.2c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Bio-orthogonal ligations that crosslink living cells with a substrate or other cells require high stability and rapid kinetics to maintain the nature of target cells. In this study, we report water-soluble cyclooctadiyne (WS-CODY) derivatives that undergo an ion-pair enhanced double-click reaction. The cationic side chain of WS-CODY accelerated the kinetics on the azide-modified cell surface due to proximity effect. Cationic WS-CODY was able to crosslink azide-modified, poorly adherent human lung cancer PC-9 cells not only to azide-grafted glass substrates but also to other cells within 5-30 min. We discovered that cell-substrate crosslinking induced the ITGA5 gene expression, whereas cell-cell crosslinking induced the CTNNA1 gene, according to the adhesion partner. Ion-pair-enhanced WS-CODY can be applied to a wide range of cells with established azide modifications and is expected to provide a powerful tool to regulate cell-substrate and cell-cell interactions.
Collapse
Affiliation(s)
- Kohei Kitagawa
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Nao Okuma
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Moeka Yoshinaga
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Fumiya Sato
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Shoma Sato
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Seiichiro Nakabayashi
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Hiroshi Y Yoshikawa
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Future Innovation, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masami Suganuma
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Nathan Luedtke
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Takahisa Matsuzaki
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Future Innovation, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masayuki Tera
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
10
|
Loehr MO, Luedtke NW. A Kinetic and Fluorogenic Enhancement Strategy for Labeling of Nucleic Acids. Angew Chem Int Ed Engl 2022; 61:e202112931. [PMID: 35139255 DOI: 10.1002/anie.202112931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/21/2022]
Abstract
Chemical modification of nucleic acids in living cells can be sterically hindered by tight packing of bioorthogonal functional groups in chromatin. To address this limitation, we report here a dual enhancement strategy for nucleic acid-templated reactions utilizing a fluorogenic intercalating agent capable of undergoing inverse electron-demand Diels-Alder (IEDDA) reactions with DNA containing 5-vinyl-2'-deoxyuridine (VdU) or RNA containing 5-vinyl-uridine (VU). Reversible high-affinity intercalation of a novel acridine-tetrazine conjugate "PINK" (KD =5±1 μM) increases the reaction rate of tetrazine-alkene IEDDA on duplex DNA by 60 000-fold (590 M-1 s-1 ) as compared to the non-templated reaction. At the same time, loss of tetrazine-acridine fluorescence quenching renders the reaction highly fluorogenic and detectable under no-wash conditions. This strategy enables live-cell dynamic imaging of acridine-modified nucleic acids in dividing cells.
Collapse
Affiliation(s)
- Morten O Loehr
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3A 0B8, Canada
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3A 0B8, Canada.,Department of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
11
|
Loehr MO, Luedtke NW. A Kinetic and Fluorogenic Enhancement Strategy for Labeling of Nucleic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Morten O. Loehr
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec, H3A 0B8 Canada
| | - Nathan W. Luedtke
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec, H3A 0B8 Canada
- Department of Pharmacology and Therapeutics McGill University 3655 Prom. Sir William Osler Montréal Québec H3G 1Y6 Canada
| |
Collapse
|
12
|
Abdelhady AM, Onizuka K, Ishida K, Yajima S, Mano E, Nagatsugi F. Rapid Alkene-Alkene Photo-Cross-Linking on the Base-Flipping-Out Field in Duplex DNA. J Org Chem 2022; 87:2267-2276. [PMID: 34978198 DOI: 10.1021/acs.joc.1c01498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Specific chemical reactions by enzymes acting on a nucleobase are realized by flipping the target base out of the helix. Similarly, artificial oligodeoxynucleotides (ODNs) can also induce the base flipping and a specific chemical reaction. We now report an easily prepared and unique structure-providing photo-cross-linking reaction by taking advantage of the base-flipping-out field formed by alkene-type base-flipping-inducing artificial bases. Two 3-arylethenyl-5-methyl-2-pyridone nucleosides with the Ph or An group were synthesized and incorporated into the ODNs. We found that the two Ph derivatives provided the cross-linked product in a high yield only by a 10 s photoirradiation when their alkenes overlap each other in the duplex DNA. The highly efficient reaction enabled forming a cross-linked product even when using the duplex with a low Tm value.
Collapse
Affiliation(s)
- Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kei Ishida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Sayaka Yajima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
13
|
Zhou H, Li Y, Wang S, Wang L, Wang R. Tracking of Nascent Deoxynucleic Acids Enable by Incorporation of Uridine Variant with 2 Prime Azidomethyl Tag and Click Chemistry. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021; 9:628. [PMID: 34073038 PMCID: PMC8229351 DOI: 10.3390/biomedicines9060628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | | |
Collapse
|
15
|
Makio N, Sakata Y, Kuribara T, Adachi K, Hatakeyama Y, Meguro T, Igawa K, Tomooka K, Hosoya T, Yoshida S. (Hexafluoroacetylacetonato)copper(I)-cycloalkyne complexes as protected cycloalkynes. Chem Commun (Camb) 2020; 56:11449-11452. [PMID: 32852507 DOI: 10.1039/d0cc05182a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A protection method for cycloalkynes by the formation of (hexafluoroacetylacetonato)copper(i)-cycloalkyne complexes is disclosed. Various complexes having functional groups were efficiently prepared, which are easily purified by silica-gel column chromatography. Selective click reactions were realized through the complexation of cycloalkynes with copper.
Collapse
Affiliation(s)
- Naoaki Makio
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomoko Kuribara
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Keisuke Adachi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yasutomo Hatakeyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
16
|
Kuba M, Kraus T, Pohl R, Hocek M. Nucleotide-Bearing Benzylidene-Tetrahydroxanthylium Near-IR Fluorophore for Sensing DNA Replication, Secondary Structures and Interactions. Chemistry 2020; 26:11950-11954. [PMID: 32633433 PMCID: PMC7361531 DOI: 10.1002/chem.202003192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Thymidine triphosphate bearing benzylidene-tetrahydroxanthylium near-IR fluorophore linked to the 5-methyl group via triazole was synthesized through the CuAAC reaction and was used for polymerase synthesis of labelled DNA probes. The fluorophore lights up upon incorporation to DNA (up to 348-times) presumably due to interactions in major groove and the fluorescence further increases in the single-stranded oligonucleotide. The labelled dsDNA senses binding of small molecules and proteins by a strong decrease of fluorescence. The nucleotide was used as a light-up building block in real-time PCR for detection of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Miroslav Kuba
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
17
|
Ganz D, Harijan D, Wagenknecht HA. Labelling of DNA and RNA in the cellular environment by means of bioorthogonal cycloaddition chemistry. RSC Chem Biol 2020; 1:86-97. [PMID: 34458750 PMCID: PMC8341813 DOI: 10.1039/d0cb00047g] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Labelling of nucleic acids as biologically important cellular components is a crucial prerequisite for the visualization and understanding of biological processes. Efficient bioorthogonal chemistry and in particular cycloadditions fullfill the requirements for cellular applications. The broadly applied Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC), however, is limited to labellings in vitro and in fixed cells due to the cytotoxicity of copper salts. Currently, there are three types of copper-free cycloadditions used for nucleic acid labelling in the cellular environment: (i) the ring-strain promoted azide-alkyne cycloaddition (SPAAC), (ii) the "photoclick" 1,3-dipolar cycloadditions, and (iii) the Diels-Alder reactions with inverse electron demand (iEDDA). We review only those building blocks for chemical synthesis on solid phase of DNA and RNA and for enzymatic DNA and RNA preparation, which were applied for labelling of DNA and RNA in situ or in vivo, i.e. in the cellular environment, in fixed or in living cells, by the use of bioorthogonal cycloaddition chemistry. Additionally, we review the current status of orthogonal dual and triple labelling of DNA and RNA in vitro to demonstrate their potential for future applications in situ or in vivo.
Collapse
Affiliation(s)
- Dorothée Ganz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Dennis Harijan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| |
Collapse
|
18
|
Li Y, Fu H. Bioorthogonal Ligations and Cleavages in Chemical Biology. ChemistryOpen 2020; 9:835-853. [PMID: 32817809 PMCID: PMC7426781 DOI: 10.1002/open.202000128] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Bioorthogonal reactions including the bioorthogonal ligations and cleavages have become an active field of research in chemical biology, and they play important roles in chemical modification and functional regulation of biomolecules. This review summarizes the developments and applications of the representative bioorthogonal reactions including the Staudinger reactions, the metal-mediated bioorthogonal reactions, the strain-promoted cycloadditions, the inverse electron demand Diels-Alder reactions, the light-triggered bioorthogonal reactions, and the reactions of chloroquinoxalines and ortho-dithiophenols.
Collapse
Affiliation(s)
- Youshan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
19
|
Tera M, Luedtke NW. Cross-linking cellular nucleic acids via a target-directing double click reagent. Methods Enzymol 2020; 641:433-457. [PMID: 32713534 DOI: 10.1016/bs.mie.2020.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bioorthogonal ligation reactions are powerful tools for characterizing DNA metabolism, DNA-protein binding interactions, and they even provide new leads for therapeutic strategies. Nucleoside analogs can deliver bioorthogonal functional groups into chromatin via cellular metabolic pathways, however, insufficient phosphorylation by endogenous kinases often limits the efficiency of their incorporation. Even when successfully metabolized into biopolymers, steric hindrance of the modified nucleotide by chromatin can inhibit subsequent click reactions. In this chapter, we describe methods that overcome these limitations. Nucleotide monophosphate triesterers can bypass the need for cellular nucleoside kinase activity and thereby enable efficient incorporation of azide groups into cellular DNA. Steric access to and modification of the azide groups within natively folded chromatin can then be accomplished using a bioorthogonal "intercalating reagent" comprised of a cationic Sondheimer diyne that reversibly intercalates into duplexes where it undergoes tandem, strain-promoted cross-linking of two azides to give DNA-DNA interstrand crosslinks or DNA-fluorophore conjugation, depending on the relative number and spatial orientation of the azide groups in the DNA.
Collapse
Affiliation(s)
- Masayuki Tera
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | | |
Collapse
|
20
|
Krell K, Harijan D, Ganz D, Doll L, Wagenknecht HA. Postsynthetic Modifications of DNA and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions. Bioconjug Chem 2020; 31:990-1011. [DOI: 10.1021/acs.bioconjchem.0c00072] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katja Krell
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dennis Harijan
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dorothée Ganz
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Larissa Doll
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Yoshida S. Sequential conjugation methods based on triazole formation and related reactions using azides. Org Biomol Chem 2020; 18:1550-1562. [PMID: 32016260 DOI: 10.1039/c9ob02698c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent remarkable progress in azide chemistry has realized sequential conjugation methods with selective 1,2,3-triazole formation. On the basis of the diverse reactivities of azides and azidophiles, including terminal alkynes and cyclooctynes, various selective reactions to furnish triazoles and a wide range of platform molecules, such as diynes, diazides, triynes, and triazides, have been developed so far for bis- and tris(triazole) syntheses. This review highlights recent transformations involving selective triazole formation, allowing the efficient preparation of unsymmetric bis- and tris(triazole)s using diverse platform molecules.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
22
|
Miki K, Ohe K. π‐Conjugated Macrocycles Bearing Angle‐Strained Alkynes. Chemistry 2019; 26:2529-2575. [DOI: 10.1002/chem.201904114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/24/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku Kyoto 615–8510 Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku Kyoto 615–8510 Japan
| |
Collapse
|
23
|
Tera M, Luedtke NW. Three-Component Bioorthogonal Reactions on Cellular DNA and RNA. Bioconjug Chem 2019; 30:2991-2997. [DOI: 10.1021/acs.bioconjchem.9b00630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Masayuki Tera
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|