1
|
Pritzl RM, Fahle N, Witthaut K, Wendl S, Schnick W. CaLi 2PN 3 - A Quaternary Chain-Type Nitridophosphate by Medium-Pressure Synthesis. Chemistry 2024; 30:e202402521. [PMID: 39037573 DOI: 10.1002/chem.202402521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Nitridophosphates are in the focus of current research interest due to their structural versatility and properties, such as ion conductivity, ultra-incompressibility and luminescent properties when doped with suitable activator ions. Multinary representatives often require thorough investigation due to the competition with the thermodynamically more stable binary and ternary compounds. Another point of concern is the synthetic control of structural details, which is usually limited by conventional bottom-up syntheses. In this study, we report on the synthesis and characterization of the quaternary nitridophosphate CaLi2PN3. Various synthesis protocols were used for the preparation of CaLi2PN3, including the novel nitridophosphate double salt approach. The crystal structure was solved and refined from single-crystal X-ray diffraction data and confirmed by Rietveld refinement, solid-state NMR spectroscopy, EDX measurements and low-cost crystallographic calculations. The experimental results were corroborated by DFT calculations, which revealed the electronic band structure. Formation energy calculations allowed conclusions to be drawn about the stability in comparison to the initial ternary nitridophosphates. The synthesis of CaLi2PN3 exemplifies the enormous potential of medium-pressure syntheses in the field of nitridophosphate research. Furthermore, the presented new synthesis route allows a certain degree of structural control, which is a promising addition to previous synthesis strategies in nitridophosphate chemistry.
Collapse
Affiliation(s)
- Reinhard M Pritzl
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| | - Nadine Fahle
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| | - Kristian Witthaut
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| | - Sebastian Wendl
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
2
|
Ambach SJ, Pritzl RM, Bhat S, Farla R, Schnick W. Nitride Synthesis under High-Pressure, High-Temperature Conditions: Unprecedented In Situ Insight into the Reaction. Inorg Chem 2024; 63:3535-3543. [PMID: 38324917 DOI: 10.1021/acs.inorgchem.3c04433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
High-pressure, high-temperature (HP/HT) syntheses are essential for modern high-performance materials. Phosphorus nitride, nitridophosphate, and more generally nitride syntheses benefit greatly from HP/HT conditions. In this contribution, we present the first systematic in situ investigation of a nitridophosphate HP/HT synthesis using the reaction of zinc nitride Zn3N2 and phosphorus(V) nitride P3N5 to the nitride semiconductor Zn2PN3 as a case study. At a pressure of 8 GPa and temperatures up to 1300 °C, the reaction was monitored by energy-dispersive powder X-ray diffraction (ED-PXRD) in a large-volume press at beamline P61B at DESY. The experiments investigate the general behavior of the starting materials under extreme conditions and give insight into the reaction. During cold compression and subsequent heating, the starting materials remain crystalline above their ambient-pressure decomposition points, until a sufficient minimum temperature is reached and the reaction starts. The reaction proceeds via ion diffusion at grain boundaries with an exponential decay in the reaction rate. Raising the temperature above the minimum required value quickly completes the reaction and initiates single-crystal growth. After cooling and decompression, which did not influence the resulting product, the recovered sample was analyzed by energy-dispersive X-ray (EDX) spectroscopy.
Collapse
Affiliation(s)
- Sebastian J Ambach
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Reinhard M Pritzl
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Shrikant Bhat
- Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Robert Farla
- Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
3
|
Dialer M, Pointner MM, Strobel P, Schmidt PJ, Schnick W. (Dis)Order and Luminescence in Silicon-Rich (Si,P)-N Network Sr 5Si 7P 2N 16:Eu 2. Inorg Chem 2024; 63:1480-1487. [PMID: 38154029 DOI: 10.1021/acs.inorgchem.3c04109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
In this work, we present the synthesis, characterization, and optical properties of Sr5Si7P2N16:Eu2+, the first tetrahedral (Si,P)-N network in which Si occupies more than 50% of the tetrahedra. While past studies have shown progress with anionic (Si,P)-N networks, the potential of silicon-rich compounds remains untapped. The synthesized compound Sr5Si7P2N16 exhibits a unique mixture of substitutional order and positional disorder within its network. The analytical challenges posed by the similarities between Si4+ and P5+, along with the network's disorder, were overcome by combining single-crystal X-ray diffraction and scanning transmission electron microscopy EDX mapping. Low-cost crystallographic calculations provided additional insights into the identification of tetrahedral occupations in mixed networks. Luminescence investigations on Sr5Si7P2N16:Eu2+ revealed yellow emission, adding to the known blue, green, and orange emission maxima of Sr-(Si,P)-N networks, highlighting the variability of such compounds.
Collapse
Affiliation(s)
- Marwin Dialer
- Department of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, Munich 81377, Germany
| | - Monika M Pointner
- Department of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, Munich 81377, Germany
| | - Philipp Strobel
- Lumileds Phosphor Center Aachen, Lumileds Germany GmbH, Philipsstrasse 8, Aachen 52068, Germany
| | - Peter J Schmidt
- Lumileds Phosphor Center Aachen, Lumileds Germany GmbH, Philipsstrasse 8, Aachen 52068, Germany
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, Munich 81377, Germany
| |
Collapse
|
4
|
Ceppatelli M, Scelta D, Serrano-Ruiz M, Dziubek K, Izquierdo-Ruiz F, Recio JM, Garbarino G, Svitlyk V, Mezouar M, Peruzzini M, Bini R. High-Pressure and High-Temperature Chemistry of Phosphorus and Nitrogen: Synthesis and Characterization of α- and γ-P 3N 5. Inorg Chem 2022; 61:12165-12180. [PMID: 35881069 PMCID: PMC9374155 DOI: 10.1021/acs.inorgchem.2c01190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The direct chemical reactivity between phosphorus and
nitrogen
was induced under high-pressure and high-temperature conditions (9.1
GPa and 2000–2500 K), generated by a laser-heated diamond anvil
cell and studied by synchrotron X-ray diffraction, Raman spectroscopy,
and DFT calculations. α-P3N5 and γ-P3N5 were identified as reaction products. The structural
parameters and vibrational frequencies of γ-P3N5 were characterized as a function of pressure during room-temperature
compression and decompression to ambient conditions, determining the
equation of state of the material up to 32.6 GPa and providing insight
about the lattice dynamics of the unit cell during compression, which
essentially proceeds through the rotation of the PN5 square
pyramids and the distortion of the PN4 tetrahedra. Although
the identification of α-P3N5 demonstrates
for the first time the direct synthesis of this compound from the
elements, its detection in the outer regions of the laser-heated area
suggests α-P3N5 as an intermediate step
in the progressive nitridation of phosphorus toward the formation
of γ-P3N5 with increasing coordination
number of P by N from 4 to 5. No evidence of a higher-pressure phase
transition was observed, excluding the existence of predicted structures
containing octahedrally hexacoordinated P atoms in the investigated
pressure range. The α-
and γ-P3N5 phosphorus
nitride polymorphs have been obtained by direct chemical reactivity
between phosphorus and molecular nitrogen under high pressure (9.1
GPa) and high-temperature (2000−2500 K) conditions, generated
using a laser heated diamond anvil cell. Insights on the reaction
mechanism, involving the preliminary formation of α-P3N5, and on the structural properties of γ-P3N5 have been evinced by synchrotron X-ray diffraction,
Raman spectroscopy and DFT calculations.
Collapse
Affiliation(s)
- Matteo Ceppatelli
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy.,ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Demetrio Scelta
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy.,ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Manuel Serrano-Ruiz
- ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Kamil Dziubek
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Fernando Izquierdo-Ruiz
- Malta-Consolider Team and Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería, 8, 33006 Oviedo, España.,Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - J Manuel Recio
- Malta-Consolider Team and Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería, 8, 33006 Oviedo, España
| | - Gaston Garbarino
- ESRF, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Volodymyr Svitlyk
- ESRF, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Mohamed Mezouar
- ESRF, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Maurizio Peruzzini
- ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Roberto Bini
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy.,ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy.,Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
5
|
Eisenburger L, Weippert V, Paulmann C, Johrendt D, Oeckler O, Schnick W. Discovery of Two Polymorphs of TiP
4
N
8
Synthesized from Binary Nitrides. Angew Chem Int Ed Engl 2022; 61:e202202014. [PMID: 35179291 PMCID: PMC9310718 DOI: 10.1002/anie.202202014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Indexed: 12/04/2022]
Abstract
TiP4N8 was obtained from the binary nitrides TiN and P3N5 upon addition of NH4F as a mineralizer at 8 GPa and 1400 °C. An intricate interplay of disorder and polymorphism was elucidated by in situ temperature‐dependent single‐crystal X‐ray diffraction, STEM‐HAADF, and the investigation of annealed samples. This revealed two polymorphs, which consist of dense networks of PN4 tetrahedra (degree of condensation κ=0.5) and either augmented triangular TiN7 prisms or triangular TiN6 prisms for α‐ and β‐TiP4N8, respectively. The structures of TiP4N8 exhibit body‐centered tetragonal (bct) framework topology. DFT calculations confirm the measured band gaps of α‐ and β‐TiP4N8 (1.6–1.8 eV) and predict the thermochemistry of the polymorphs in agreement with the experiments.
Collapse
Affiliation(s)
- Lucien Eisenburger
- Department of Chemistry University of Munich Butenandtstraße 5–13 81377 Munich Germany
| | - Valentin Weippert
- Department of Chemistry University of Munich Butenandtstraße 5–13 81377 Munich Germany
| | - Carsten Paulmann
- Mineralogisch-Petrographisches Institut Universität Hamburg Grindelallee 48 20146 Hamburg Germany
| | - Dirk Johrendt
- Department of Chemistry University of Munich Butenandtstraße 5–13 81377 Munich Germany
| | - Oliver Oeckler
- Institute for Mineralogy Crystallography and Materials Science Leipzig University Scharnhorststraße 20 04275 Leipzig Germany
| | - Wolfgang Schnick
- Department of Chemistry University of Munich Butenandtstraße 5–13 81377 Munich Germany
| |
Collapse
|
6
|
Eisenburger L, Weippert V, Paulmann C, Johrendt D, Oeckler O, Schnick W. Discovery of Two Polymorphs of TiP4N8 Synthesized from Binary Nitrides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lucien Eisenburger
- Universitat München: Ludwig-Maximilians-Universitat Munchen Chemistry Butenandtstr. 5-13 81377 Munich GERMANY
| | - Valentin Weippert
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen Chemistry Butenandtstr. 5-13 81377 Munich GERMANY
| | - Carsten Paulmann
- Universität Hamburg: Universitat Hamburg Mineralogisch-Petrographisches Institut Grindelallee 48 20146 Hamburg GERMANY
| | - Dirk Johrendt
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen Chemie Butenandtstr. 5-13 81377 Munich GERMANY
| | - Oliver Oeckler
- Leipzig University Institute for Mineralogy, Crystallography and Materials Science Scharnhorststraße 20 04275 Leipzig GERMANY
| | - Wolfgang Schnick
- Ludwig-Maximilians-Universitat Munchen Department Chemie Butenandtstr. 5-13 81377 München GERMANY
| |
Collapse
|
7
|
Eisenburger L, Oeckler O, Schnick W. High-Pressure High-Temperature Synthesis of Mixed Nitridosilicatephosphates and Luminescence of AESiP 3 N 7 :Eu 2+ (AE=Sr, Ba). Chemistry 2021; 27:4461-4465. [PMID: 33464635 PMCID: PMC7986791 DOI: 10.1002/chem.202005495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Indexed: 01/04/2023]
Abstract
Tetrahedra-based nitrides with network structures have emerged as versatile materials with a broad spectrum of properties and applications. Both nitridosilicates and nitridophosphates are well-known examples of such nitrides that upon doping with Eu2+ exhibit intriguing luminescence properties, which makes them attractive for applications. Nitridosilicates and nitridophosphates show manifold structural variability; however, no mixed nitridosilicatephosphates except SiPN3 and SiP2N4NH have been described so far. The compounds AESiP3 N7 (AE=Sr, Ba) were synthesized by a high-pressure high-temperature approach using the multianvil technique (8 GPa, 1400-1700 °C) starting from the respective alkaline earth azides and the binary nitrides P3 N5 and Si3 N4 . The latter were activated by NH4 F, probably acting as a mineralizing agent. SrSiP3 N7 and BaSiP3 N7 were obtained as single crystals. They crystallized in the barylite-1O (M=Sr) and barylite-2O structure types (M=Ba), respectively, with P and Si being occupationally disordered. Cation disorder was further supported by solid-state NMR spectroscopy and energy-dispersive X-ray spectroscopy (EDX) mapping of BaSiP3 N7 with atomic resolution. Upon doping with Eu2+ , both compounds showed blue emission under UV excitation.
Collapse
Affiliation(s)
- Lucien Eisenburger
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Oliver Oeckler
- Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststraße 20, 04275, Leipzig, Germany
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
8
|
Wendl S, Zipkat M, Strobel P, Schmidt PJ, Schnick W. Synthesis of Nitride Zeolites in a Hot Isostatic Press. Angew Chem Int Ed Engl 2021; 60:4470-4473. [PMID: 33201554 PMCID: PMC7985876 DOI: 10.1002/anie.202012722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 11/08/2022]
Abstract
The recently introduced nitridophosphate synthesis in a hot isostatic press (HIP) enabled simple access to large‐scale product quantities starting from exclusively commercially available starting materials. Herein, we show that this method is suitable for the synthesis of highly condensed functional nitridophosphates, as well. Hence, the syntheses of the nitridophosphate zeolites Ba3P5N10X (X=Cl, Br) are presented as proof of concept for this innovative access. Furthermore, samples of unprecedented Sr3P5N10X (X=Cl, Br) were prepared and characterized to demonstrate the advantages of this synthetic approach over commonly used methods. Luminescence investigations on Eu2+‐doped samples of AE3P5N10X (AE=Sr, Ba; X=Cl, Br) were carried out and characteristics of observed emission bands are discussed.
Collapse
Affiliation(s)
- Sebastian Wendl
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, 81377, München, Germany
| | - Mirjam Zipkat
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, 81377, München, Germany
| | - Philipp Strobel
- Lumileds Phosphor Center Aachen, Lumileds (Germany) GmbH, Philipsstr. 8, 52068, Aachen, Germany
| | - Peter J Schmidt
- Lumileds Phosphor Center Aachen, Lumileds (Germany) GmbH, Philipsstr. 8, 52068, Aachen, Germany
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
9
|
Wendl S, Zipkat M, Strobel P, Schmidt PJ, Schnick W. Synthesis of Nitride Zeolites in a Hot Isostatic Press. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sebastian Wendl
- Department of Chemistry University of Munich (LMU) Butenandtstr. 5–13 81377 München Germany
| | - Mirjam Zipkat
- Department of Chemistry University of Munich (LMU) Butenandtstr. 5–13 81377 München Germany
| | - Philipp Strobel
- Lumileds Phosphor Center Aachen Lumileds (Germany) GmbH Philipsstr. 8 52068 Aachen Germany
| | - Peter J. Schmidt
- Lumileds Phosphor Center Aachen Lumileds (Germany) GmbH Philipsstr. 8 52068 Aachen Germany
| | - Wolfgang Schnick
- Department of Chemistry University of Munich (LMU) Butenandtstr. 5–13 81377 München Germany
| |
Collapse
|
10
|
Wendl S, Seidl L, Schüler P, Schnick W. Post‐Synthetic Modification: Systematic Study on a Simple Access to Nitridophosphates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sebastian Wendl
- Department of Chemistry Ludwig Maximilians University Munich Butenandtstr. 5–13 81377 München Germany
| | - Lisa Seidl
- Department of Chemistry Ludwig Maximilians University Munich Butenandtstr. 5–13 81377 München Germany
| | - Patrick Schüler
- Department of Chemistry Ludwig Maximilians University Munich Butenandtstr. 5–13 81377 München Germany
| | - Wolfgang Schnick
- Department of Chemistry Ludwig Maximilians University Munich Butenandtstr. 5–13 81377 München Germany
| |
Collapse
|
11
|
Wendl S, Seidl L, Schüler P, Schnick W. Post-Synthetic Modification: Systematic Study on a Simple Access to Nitridophosphates. Angew Chem Int Ed Engl 2020; 59:23579-23582. [PMID: 32941701 PMCID: PMC7756662 DOI: 10.1002/anie.202011835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 11/18/2022]
Abstract
Nitridophosphates are a well‐studied class of nitrides with diverse materials properties, such as luminescence or ion conductivity. Despite the growing interest in this compound class, their synthesis mostly works through direct combination of starting materials. Herein, we present a systematic study on a promising method for post‐synthetic modification by treating pre‐synthesized nitridophosphates with halides under elevated pressures and temperatures. Herein, we focus on the applicability of this approach to P/N compounds with different degrees of condensation. Accordingly, BaP2N4, Ba3P5N10Br, SrH4P6N12, CaP8N14, and Ca2PN3 are investigated as model compounds for framework‐, layer‐, and chain‐type nitridophosphates. The formation of structurally related, as well as, completely unrelated compounds, compared to the starting materials, shows the great potential of the approach, which increases the synthetic possibilities for nitridophosphates significantly.
Collapse
Affiliation(s)
- Sebastian Wendl
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstr. 5-13, 81377, München, Germany
| | - Lisa Seidl
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstr. 5-13, 81377, München, Germany
| | - Patrick Schüler
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstr. 5-13, 81377, München, Germany
| | - Wolfgang Schnick
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
12
|
Wendl S, Mardazad S, Strobel P, Schmidt PJ, Schnick W. HIP to be Square: Simplifying Nitridophosphate Synthesis in a Hot Isostatic Press. Angew Chem Int Ed Engl 2020; 59:18240-18243. [PMID: 32644230 PMCID: PMC7590079 DOI: 10.1002/anie.202008570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 11/07/2022]
Abstract
(Oxo)Nitridophosphates have recently been identified as a promising compound class for application in the field of solid-state lighting. Especially, the latest medium-pressure syntheses under ammonothermal conditions draw attention of the semiconductor and lighting industry on nitridophosphates. In this contribution, we introduce hot isostatic presses as a new type of medium-pressure synthetic tool, further simplifying nitridophosphate synthesis. In a second step, phosphorus nitride was replaced as starting material by red phosphorus, enabling the synthesis of Ca2 PN3 as model compound, starting only from readily available compounds. Moreover, first luminescence investigations on Eu2+ -doped samples reveal Ca2 PN3 :Eu2+ as a promising broad-band red-emitter (λem =650 nm; fwhm=1972 cm-1 ). Besides simple handling, the presented synthetic method offers access to large sample volumes, and the underlying reaction conditions facilitate single-crystal growth, required for excellent optical properties.
Collapse
Affiliation(s)
- Sebastian Wendl
- Department of ChemistryUniversity of Munich (LMU)Butenandtstraße 5–1381377MünchenGermany
| | - Sara Mardazad
- Department of ChemistryUniversity of Munich (LMU)Butenandtstraße 5–1381377MünchenGermany
| | - Philipp Strobel
- Lumileds Phosphor Center AachenLumileds (Germany) GmbHPhilipsstraße 852068AachenGermany
| | - Peter J. Schmidt
- Lumileds Phosphor Center AachenLumileds (Germany) GmbHPhilipsstraße 852068AachenGermany
| | - Wolfgang Schnick
- Department of ChemistryUniversity of Munich (LMU)Butenandtstraße 5–1381377MünchenGermany
| |
Collapse
|
13
|
Wendl S, Mardazad S, Strobel P, Schmidt PJ, Schnick W. HIP to be Square: Simplifying Nitridophosphate Synthesis in a Hot Isostatic Press. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sebastian Wendl
- Department of Chemistry University of Munich (LMU) Butenandtstraße 5–13 81377 München Germany
| | - Sara Mardazad
- Department of Chemistry University of Munich (LMU) Butenandtstraße 5–13 81377 München Germany
| | - Philipp Strobel
- Lumileds Phosphor Center Aachen Lumileds (Germany) GmbH Philipsstraße 8 52068 Aachen Germany
| | - Peter J. Schmidt
- Lumileds Phosphor Center Aachen Lumileds (Germany) GmbH Philipsstraße 8 52068 Aachen Germany
| | - Wolfgang Schnick
- Department of Chemistry University of Munich (LMU) Butenandtstraße 5–13 81377 München Germany
| |
Collapse
|
14
|
Al Fattah MF, Amin MR, Mallmann M, Kasap S, Schnick W, Moewes A. Electronic structure investigation of wide band gap semiconductors-Mg 2PN 3and Zn 2PN 3: experiment and theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:405504. [PMID: 32364135 DOI: 10.1088/1361-648x/ab8f8a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
The research on nitridophosphate materials has gained significant attention in recent years due to the abundance of elements like Mg, Zn, P, and N. We present a detailed study of band gap and electronic structure of M2PN3(M = Mg, Zn), using synchrotron-based soft x-ray spectroscopy measurements as well as density functional theory (DFT) calculations. The experimental N K-edge x-ray emission spectroscopy (XES) and x-ray absorption spectroscopy (XAS) spectra are used to estimate the band gaps, which are compared with our calculations along with the values available in literature. The band gap, which is essential for electronic device applications, is experimentally determined for the first time to be 5.3 ± 0.2 eV and 4.2 ± 0.2 eV for Mg2PN3and Zn2PN3, respectively. The experimental band gaps agree well with our calculated band gaps of 5.4 eV for Mg2PN3and 3.9 eV for Zn2PN3, using the modified Becke-Johnson (mBJ) exchange potential. The states that contribute to the band gap are investigated with the calculated density of states especially with respect to two non-equivalent N sites in the structure. The calculations and the measurements predict that both materials have an indirect band gap. The wide band gap of M2PN3(M = Mg, Zn) could make it promising for the application in photovoltaic cells, high power RF applications, as well as power electronic devices.
Collapse
Affiliation(s)
- Md Fahim Al Fattah
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Muhammad Ruhul Amin
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Canada
| | - Mathias Mallmann
- Department of Chemistry, University of Munich (LMU), Butenandtstrasse, Munich, Germany
| | - Safa Kasap
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstrasse, Munich, Germany
| | - Alexander Moewes
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
15
|
Vogel S, Bykov M, Bykova E, Wendl S, Kloß SD, Pakhomova A, Chariton S, Koemets E, Dubrovinskaia N, Dubrovinsky L, Schnick W. Boron Phosphorus Nitride at Extremes: PN 6 Octahedra in the High-Pressure Polymorph β-BP 3 N 6. Angew Chem Int Ed Engl 2019; 58:9060-9063. [PMID: 31020764 DOI: 10.1002/anie.201902845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Indexed: 01/12/2023]
Abstract
The high-pressure behavior of non-metal nitrides is of special interest for inorganic and theoretical chemistry as well as materials science, as these compounds feature intriguing elastic properties. The double nitride α-BP3 N6 was investigated by in situ single-crystal X-ray diffraction (XRD) upon cold compression to a maximum pressure of about 42 GPa, and its isothermal bulk modulus at ambient conditions was determined to be 146(6) GPa. At maximum pressure the sample was laser-heated, which resulted in the formation of an unprecedented high-pressure polymorph, β-BP3 N6 . Its structure was elucidated by single-crystal XRD, and can be described as a decoration of a distorted hexagonal close packing of N with B in tetrahedral and P in octahedral voids. Hence, β-BP3 N6 is the first nitride to contain PN6 octahedra, representing the much sought-after proof of principle for sixfold N-coordinated P that has been predicted for numerous high-pressure phases of nitrides.
Collapse
Affiliation(s)
- Sebastian Vogel
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| | - Maxim Bykov
- Bayerisches Geoinstitut (BGI), University of Bayreuth, 95440, Bayreuth, Germany
| | - Elena Bykova
- Deutsches Elektronen-Synchrotron (DESY), 22607, Hamburg, Germany
| | - Sebastian Wendl
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| | - Simon D Kloß
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| | - Anna Pakhomova
- Deutsches Elektronen-Synchrotron (DESY), 22607, Hamburg, Germany
| | - Stella Chariton
- Bayerisches Geoinstitut (BGI), University of Bayreuth, 95440, Bayreuth, Germany
| | - Egor Koemets
- Bayerisches Geoinstitut (BGI), University of Bayreuth, 95440, Bayreuth, Germany
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, University of Bayreuth, 95440, Bayreuth, Germany
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitut (BGI), University of Bayreuth, 95440, Bayreuth, Germany
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
16
|
Vogel S, Bykov M, Bykova E, Wendl S, Kloß SD, Pakhomova A, Chariton S, Koemets E, Dubrovinskaia N, Dubrovinsky L, Schnick W. Boron Phosphorus Nitride at Extremes: PN
6
Octahedra in the High‐Pressure Polymorph β‐BP
3
N
6. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sebastian Vogel
- Department of ChemistryUniversity of Munich (LMU) Butenandtstraße 5–13 81377 Munich Germany
| | - Maxim Bykov
- Bayerisches Geoinstitut (BGI)University of Bayreuth 95440 Bayreuth Germany
| | - Elena Bykova
- Deutsches Elektronen-Synchrotron (DESY) 22607 Hamburg Germany
| | - Sebastian Wendl
- Department of ChemistryUniversity of Munich (LMU) Butenandtstraße 5–13 81377 Munich Germany
| | - Simon D. Kloß
- Department of ChemistryUniversity of Munich (LMU) Butenandtstraße 5–13 81377 Munich Germany
| | - Anna Pakhomova
- Deutsches Elektronen-Synchrotron (DESY) 22607 Hamburg Germany
| | - Stella Chariton
- Bayerisches Geoinstitut (BGI)University of Bayreuth 95440 Bayreuth Germany
| | - Egor Koemets
- Bayerisches Geoinstitut (BGI)University of Bayreuth 95440 Bayreuth Germany
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme ConditionsUniversity of Bayreuth 95440 Bayreuth Germany
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitut (BGI)University of Bayreuth 95440 Bayreuth Germany
| | - Wolfgang Schnick
- Department of ChemistryUniversity of Munich (LMU) Butenandtstraße 5–13 81377 Munich Germany
| |
Collapse
|
17
|
Wolfgang Schnick. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Wolfgang Schnick. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/anie.201814188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Kloß SD, Schnick W. Nitridophosphate – eine Erfolgsgeschichte der Nitridsynthese. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812791] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Simon D. Kloß
- Department Chemie Ludwig-Maximilians-Universität München (LMU) Butenandtstraße 5–13 81377 München Deutschland
| | - Wolfgang Schnick
- Department Chemie Ludwig-Maximilians-Universität München (LMU) Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
20
|
Kloß SD, Schnick W. Nitridophosphates: A Success Story of Nitride Synthesis. Angew Chem Int Ed Engl 2019; 58:7933-7944. [PMID: 30485618 DOI: 10.1002/anie.201812791] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 11/09/2022]
Abstract
Nitridophosphates and phosphorus nitrides are thoroughly investigated classes of nitrides. During thirty years of research, the methods for their synthesis evolved from the condensation of molecular precursors at moderate temperatures and ambient pressures to state-of-the-art high-pressure and high-temperature processes. Landmark breakthroughs made in recent years led to a comprehension-based proficiency in nitridophosphate synthesis that is illustrated by the large compositional and structural diversity of the nitridophosphates known today. Herein, we review the advances made in synthesis with regard to the prevalent problem of nitride synthesis: the susceptibility of nitride ions to oxidation.
Collapse
Affiliation(s)
- Simon D Kloß
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
21
|
Vogel S, Buda AT, Schnick W. Rivalry under Pressure: The Coexistence of Ambient-Pressure Motifs and Close-Packing in Silicon Phosphorus Nitride Imide SiP 2 N 4 NH. Angew Chem Int Ed Engl 2019; 58:3398-3401. [PMID: 30653792 DOI: 10.1002/anie.201813789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 11/07/2022]
Abstract
Non-metal nitrides such as BN, Si3 N4 , and P3 N5 meet numerous demands on high-performance materials, and their high-pressure polymorphs exhibit outstanding mechanical properties. Herein, we present the silicon phosphorus nitride imide SiP2 N4 NH featuring sixfold coordinated Si. Using the multi-anvil technique, SiP2 N4 NH was obtained by high-pressure high-temperature synthesis at 8 GPa and 1100 °C with in situ formed HCl acting as a mineralizer. Its structure was elucidated by a combination of single-crystal X-ray diffraction and solid-state NMR measurements. Moreover, SiP2 N4 NH was characterized by energy-dispersive X-ray spectroscopy and (temperature-dependent) powder X-ray diffraction. The highly condensed Si/P/N framework features PN4 tetrahedra as well as the rare motif of SiN6 octahedra, and is discussed in the context of ambient-pressure motifs competing with close-packing of nitride anions, representing a missing link in the high-pressure chemistry of non-metal nitrides.
Collapse
Affiliation(s)
- Sebastian Vogel
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| | - Amalina T Buda
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
22
|
Vogel S, Buda AT, Schnick W. Rivalry under Pressure: The Coexistence of Ambient‐Pressure Motifs and Close‐Packing in Silicon Phosphorus Nitride Imide SiP
2
N
4
NH. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sebastian Vogel
- Department of ChemistryUniversity of Munich (LMU) Butenandtstraße 5–13 81377 Munich Germany
| | - Amalina T. Buda
- Department of ChemistryUniversity of Munich (LMU) Butenandtstraße 5–13 81377 Munich Germany
| | - Wolfgang Schnick
- Department of ChemistryUniversity of Munich (LMU) Butenandtstraße 5–13 81377 Munich Germany
| |
Collapse
|