1
|
Masero F, Mougel V. Chemical and redox non-innocence in low-valent molybdenum β diketonate complexes: novel pathways for CO 2 and CS 2 activation. Chem Sci 2024:d4sc03496a. [PMID: 39345770 PMCID: PMC11429171 DOI: 10.1039/d4sc03496a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
The investigation of fundamental properties of low-valent molybdenum complexes bearing anionic ligands is crucial for elucidating the molybdenum's role in critical enzymatic systems involved in the transformation of small molecules, including the nitrogenase's iron molybdenum cofactor, FeMoco. The β-diketonate ligands in [Mo(acac)3] (acac = acetylacetonate), one of the earliest low-valent Mo complexes reported, provide a robust anionic platform to stabilize Mo in its +III oxidation state. This complex played a key role in demonstrating the potential of low-valent molybdenum for small molecule activation, serving as the starting material for the preparation of the first reported molybdenum dinitrogen complex. Surprisingly however, given this fact and the widespread use of β-diketonate ligands in coordination chemistry, only a very limited number of low-valent Mo β-diketonate complexes have been reported. To address this gap, we explored the redox behavior of homoleptic molybdenum tris-β-diketonate complexes, employing a tertiary butyl substituted diketonate ligand (dipivaloylmethanate, tBudiket) to isolate and fully characterize the corresponding Mo complexes across three consecutive oxidation states (+IV, +III, +II). We observed marked reactivity of the most reduced congener with heterocumulenes CE2 (E = O, S), yet with very distinct outcomes. Specifically, CO2 stoichiometrically carboxylates one of the β-diketonate ligands, while in the presence of excess CS2, catalytic reductive dimerization to tetrathiooxalate occurs. Through the isolation and characterization of reaction products and intermediates, we demonstrate that the observed reactivity results from the chemical non-innocence of the β-diketonate ligands, which facilitates the formation of a common ligand-bound intermediate, [Mo( tBudiket)2( tBudiket·CE2)]1- (E = O, S). The stability of this proposed intermediate dictates the specific reduction products observed, highlighting the relevance of the chemically non-innocent nature of β-diketonate ligands.
Collapse
Affiliation(s)
- Fabio Masero
- Laboratory of Inorganic Chemistry (LAC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich Vladimir-Prelog Weg 2 8093 Zurich Switzerland
| | - Victor Mougel
- Laboratory of Inorganic Chemistry (LAC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich Vladimir-Prelog Weg 2 8093 Zurich Switzerland
| |
Collapse
|
2
|
Cai HX, Wang J, Guo YR, Pan QJ. Weak Bimetal Coupling-Assisted MN 4 Catalyst for Enhanced Carbon Dioxide Reduction Reaction. Inorg Chem 2024; 63:6734-6742. [PMID: 38570330 DOI: 10.1021/acs.inorgchem.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The design of multimetal catalysts holds immense significance for efficient CO2 capture and its conversion into economically valuable chemicals. Herein, heterobimetallic catalysts (MiMo)L were exploited for the CO2 reduction reactions (CO2RR) using relativistic density functional theory (DFT). The octadentate Pacman-like polypyrrolic ligand (H4L) accommodates two metal ions (Mo, W, Nd, and U) inside (Mi) and outside (Mo) its month, rendering a weak bimetal coupling-assisted MN4 catalytically active site. Adsorption reactions have access to energetically stable coordination modes of -OCO, -OOC, and -(OCO)2, where the donor atom(s) are marked in bold. Among all of the species, (UiMoo)L releases the most energy. Along CO2RR, it favors to produce CO. The high-efficiency CO2 reduction is attributed to the size matching of U with the ligand mouth and the effective manipulation of the electron density of both ligand and bimetals. The mechanism in which heterobimetals synergetically capture and reduce CO2 has been postulated. This establishes a reference in elaborating on the complicated heterogeneous catalysis.
Collapse
Affiliation(s)
- Hong-Xue Cai
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Juan Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
3
|
Wang JW, Luo ZM, Yang G, Gil-Sepulcre M, Kupfer S, Rüdiger O, Ouyang G. Highly efficient electrocatalytic CO 2 reduction by a Cr III quaterpyridine complex. Proc Natl Acad Sci U S A 2024; 121:e2319288121. [PMID: 38527206 PMCID: PMC10998623 DOI: 10.1073/pnas.2319288121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/07/2024] [Indexed: 03/27/2024] Open
Abstract
Design tactics and mechanistic studies both remain as fundamental challenges during the exploitations of earth-abundant molecular electrocatalysts for CO2 reduction, especially for the rarely studied Cr-based ones. Herein, a quaterpyridyl CrIII catalyst is found to be highly active for CO2 electroreduction to CO with 99.8% Faradaic efficiency in DMF/phenol medium. A nearly one order of magnitude higher turnover frequency (86.6 s-1) over the documented Cr-based catalysts (<10 s-1) can be achieved at an applied overpotential of only 190 mV which is generally 300 mV lower than these precedents. Such a high performance at this low driving force originates from the metal-ligand cooperativity that stabilizes the low-valent intermediates and serves as an efficient electron reservoir. Moreover, a synergy of electrochemistry, spectroelectrochemistry, electron paramagnetic resonance, and quantum chemical calculations allows to characterize the key CrII, CrI, Cr0, and CO-bound Cr0 intermediates as well as to verify the catalytic mechanism.
Collapse
Affiliation(s)
- Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Zhi-Mei Luo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Guangjun Yang
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena07743, Germany
| | - Marcos Gil-Sepulcre
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena07743, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| |
Collapse
|
4
|
Cobb SJ, Rodríguez‐Jiménez S, Reisner E. Connecting Biological and Synthetic Approaches for Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202310547. [PMID: 37983571 PMCID: PMC11497245 DOI: 10.1002/anie.202310547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Electrocatalytic CO2 reduction has developed into a broad field, spanning fundamental studies of enzymatic 'model' catalysts to synthetic molecular catalysts and heterogeneous gas diffusion electrodes producing commercially relevant quantities of product. This diversification has resulted in apparent differences and a disconnect between seemingly related approaches when using different types of catalysts. Enzymes possess discrete and well understood active sites that can perform reactions with high selectivity and activities at their thermodynamic limit. Synthetic small molecule catalysts can be designed with desired active site composition but do not yet display enzyme-like performance. These properties of the biological and small molecule catalysts contrast with heterogeneous materials, which can contain multiple, often poorly understood active sites with distinct reactivity and therefore introducing significant complexity in understanding their activities. As these systems are being better understood and the continuously improving performance of their heterogeneous active sites closes the gap with enzymatic activity, this performance difference between heterogeneous and enzymatic systems begins to close. This convergence removes the barriers between using different types of catalysts and future challenges can be addressed without multiple efforts as a unified picture for the biological-synthetic catalyst spectrum emerges.
Collapse
Affiliation(s)
- Samuel J. Cobb
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
5
|
Burgmayer SJN, Kirk ML. Advancing Our Understanding of Pyranopterin-Dithiolene Contributions to Moco Enzyme Catalysis. Molecules 2023; 28:7456. [PMID: 38005178 PMCID: PMC10673323 DOI: 10.3390/molecules28227456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The pyranopterin dithiolene ligand is remarkable in terms of its geometric and electronic structure and is uniquely found in mononuclear molybdenum and tungsten enzymes. The pyranopterin dithiolene is found coordinated to the metal ion, deeply buried within the protein, and non-covalently attached to the protein via an extensive hydrogen bonding network that is enzyme-specific. However, the function of pyranopterin dithiolene in enzymatic catalysis has been difficult to determine. This focused account aims to provide an overview of what has been learned from the study of pyranopterin dithiolene model complexes of molybdenum and how these results relate to the enzyme systems. This work begins with a summary of what is known about the pyranopterin dithiolene ligand in the enzymes. We then introduce the development of inorganic small molecule complexes that model aspects of a coordinated pyranopterin dithiolene and discuss the results of detailed physical studies of the models by electronic absorption, resonance Raman, X-ray absorption and NMR spectroscopies, cyclic voltammetry, X-ray crystallography, and chemical reactivity.
Collapse
Affiliation(s)
| | - Martin L. Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
6
|
Fate of an SCS-pincer Mo complex beyond the electrodriven CO2 reduction reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
7
|
Photocatalytic CO 2 reduction with aminoanthraquinone organic dyes. Nat Commun 2023; 14:1087. [PMID: 36841825 PMCID: PMC9968311 DOI: 10.1038/s41467-023-36784-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
The direct utilization of solar energy to convert CO2 into renewable chemicals remains a challenge. One essential difficulty is the development of efficient and inexpensive light-absorbers. Here we show a series of aminoanthraquinone organic dyes to promote the efficiency for visible light-driven CO2 reduction to CO when coupled with an Fe porphyrin catalyst. Importantly, high turnover numbers can be obtained for both the photosensitizer and the catalyst, which has not been achieved in current light-driven systems. Structure-function study performed with substituents having distinct electronic effects reveals that the built-in donor-acceptor property of the photosensitizer significantly promotes the photocatalytic activity. We anticipate this study gives insight into the continued development of advanced photocatalysts for solar energy conversion.
Collapse
|
8
|
Formate Dehydrogenase Mimics as Catalysts for Carbon Dioxide Reduction. Molecules 2022; 27:molecules27185989. [PMID: 36144724 PMCID: PMC9506188 DOI: 10.3390/molecules27185989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
Formate dehydrogenases (FDH) reversibly catalyze the interconversion of CO2 to formate. They belong to the family of molybdenum and tungsten-dependent oxidoreductases. For several decades, scientists have been synthesizing structural and functional model complexes inspired by these enzymes. These studies not only allow for finding certain efficient catalysts but also in some cases to better understand the functioning of the enzymes. However, FDH models for catalytic CO2 reduction are less studied compared to the oxygen atom transfer (OAT) reaction. Herein, we present recent results of structural and functional models of FDH.
Collapse
|
9
|
Armstrong CG, Potter M, Malcomson T, Hogue RW, Armstrong SM, Kerridge A, Toghill KE. Exploring the Electrochemistry of Iron Dithiolene and Its Potential for Electrochemical Homogeneous Carbon Dioxide Reduction. ChemElectroChem 2022; 9:e202200610. [PMID: 36246849 PMCID: PMC9546257 DOI: 10.1002/celc.202200610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this work, the dithiolene complex iron(III) bis-maleonitriledithiolene [Fe(mnt)2] is characterised and evaluated as a homogeneous CO2 reduction catalyst. Electrochemically the Fe(mnt)2 is reduced twice to the trianionic Fe(mnt)2 3- state, which is correspondingly found to be active towards CO2. Interestingly, the first reduction event appears to comprise overlapping reversible couples, attributed to the presence of both a dimeric and monomeric form of the dithiolene complex. In acetonitrile Fe(mnt)2 demonstrates a catalytic response to CO2 yielding typical two-electron reduction products: H2, CO and CHOOH. The product distribution and yield were governed by the proton source. Operating with H2O as the proton source gave only H2 and CO as products, whereas using 2,2,2-trifluoroethanol gave 38 % CHOOH faradaic efficiency with H2 and CO as minor products.
Collapse
Affiliation(s)
- Craig G. Armstrong
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUnited Kingdom
| | - Mark Potter
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUnited Kingdom
| | - Thomas Malcomson
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUnited Kingdom
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterManchesterM13 9PLUnited Kingdom
| | - Ross W. Hogue
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUnited Kingdom
- Leiden Institute of ChemistryLIC/Energy & SustainabilityGorlaeus LaboratoriesEinsteinweg 552333 CCLeiden
| | | | - Andrew Kerridge
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUnited Kingdom
| | - Kathryn E. Toghill
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUnited Kingdom
| |
Collapse
|
10
|
Gates C, Varnum H, Getty C, Loui N, Chen J, Kirk ML, Yang J, Nieter Burgmayer SJ. Protonation and Non-Innocent Ligand Behavior in Pyranopterin Dithiolene Molybdenum Complexes. Inorg Chem 2022; 61:13728-13742. [PMID: 36000991 PMCID: PMC10544801 DOI: 10.1021/acs.inorgchem.2c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex [TEA][Tp*MoIV(O)(S2BMOPP)] (1) [TEA = tetraethylammonium, Tp* = tris(3,5-dimethylpyrazolyl)hydroborate, and BMOPP = 6-(3-butynyl-2-methyl-2-ol)-2-pivaloyl pterin] is a structural analogue of the molybdenum cofactor common to all pyranopterin molybdenum enzymes because it possesses a pyranopterin-ene-1,2-dithiolate ligand (S2BMOPP) that exists primarily in the ring-closed pyrano structure as a resonance hybrid of ene-dithiolate and thione-thiolate forms. Compound 1, the protonated [Tp*MoIV(O)(S2BMOPP-H)] (1-H) and one-electron-oxidized [Tp*MoV(O)(S2BMOPP)] [1-Mo(5+)] species have been studied using a combination of electrochemistry, electronic absorption, and electron paramagnetic resonance (EPR) spectroscopy. Additional insight into the nature of these molecules has been derived from electronic structure computations. Differences in dithiolene C-S bond lengths correlate with relative contributions from both ene-dithiolate and thione-thiolate resonance structures. Upon protonation of 1 to form 1-H, large spectroscopic changes are observed with transitions assigned as Mo(xy) → pyranopterin metal-to-ligand charge transfer and dithiolene → pyranopterin intraligand charge transfer, respectively, and this underscores a dramatic change in electronic structure between 1 and 1-H. The changes in electronic structure that occur upon protonation of 1 are also reflected in a large >300 mV increase in the Mo(V/IV) redox potential for 1-H, resulting from the greater thione-thiolate resonance contribution and decreased charge donation that stabilize the Mo(IV) state in 1-H with respect to one-electron oxidation. EPR spin Hamiltonian parameters for one-electron-oxidized 1-Mo(5+) and uncyclized [Tp*MoV(O)(S2BDMPP)] [3-Mo(5+)] [BDMPP = 6-(3-butynyl-2,2-dimethyl)-2-pivaloyl pterin] are very similar to each other and to those of [Tp*MoVO(bdt)] (bdt = 1,2-ene-dithiolate). This indicates that the dithiolate form of the ligand dominates at the Mo(V) level, consistent with the demand for greater S → Mo charge donation and a corresponding increase in Mo-S covalency as the oxidation state of the metal is increased. Protonation of 1 represents a simple reaction that models how the transfer of a proton from neighboring acidic amino acid residues to the Mo cofactor at a nitrogen atom within the pyranopterin dithiolene (PDT) ligand in pyranopterin molybdenum enzymes can impact the electronic structure of the Mo-PDT unit. This work also illustrates how pyran ring-chain tautomerization drives changes in resonance contributions to the dithiolene chelate and may adjust the reduction potential of the Mo ion.
Collapse
Affiliation(s)
- Cassandra Gates
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Haley Varnum
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Catherine Getty
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Natalie Loui
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Ju Chen
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | | |
Collapse
|
11
|
Zhao YM, Wang X, Guo ZY, Li H, Zhang JT, Xie MH. Cu-Catalyzed Diarylthiolation of Ynones with Aryl Iodides and Elemental Sulfur: An Access to Tetrasubstituted ( Z)-1,2-Bis(arylthio)alkenes and Benzo[ b][1,4]dithiines. J Org Chem 2022; 87:11796-11804. [PMID: 35993485 DOI: 10.1021/acs.joc.2c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper-catalyzed three-component reaction of ynones, aryl iodides, and elemental sulfur via a syn-addition process is established. The reaction features operational practicality, broad substrate scope, and readily accessible scale-up synthesis by affording a series of (Z)-1,2-bis(arylthio)alkenes in good to excellent yield. Moreover, benzo[b][1,4]dithiines can be also constructed efficiently by using 1,2-diiodobenzene as the coupling partner.
Collapse
Affiliation(s)
- Yi-Ming Zhao
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xu Wang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zi-Yi Guo
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hang Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Ji-Tan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Mei-Hua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
12
|
Pätsch S, Correia JV, Elvers BJ, Steuer M, Schulzke C. Inspired by Nature-Functional Analogues of Molybdenum and Tungsten-Dependent Oxidoreductases. Molecules 2022; 27:molecules27123695. [PMID: 35744820 PMCID: PMC9227248 DOI: 10.3390/molecules27123695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Throughout the previous ten years many scientists took inspiration from natural molybdenum and tungsten-dependent oxidoreductases to build functional active site analogues. These studies not only led to an ever more detailed mechanistic understanding of the biological template, but also paved the way to atypical selectivity and activity, such as catalytic hydrogen evolution. This review is aimed at representing the last decade’s progress in the research of and with molybdenum and tungsten functional model compounds. The portrayed systems, organized according to their ability to facilitate typical and artificial enzyme reactions, comprise complexes with non-innocent dithiolene ligands, resembling molybdopterin, as well as entirely non-natural nitrogen, oxygen, and/or sulfur bearing chelating donor ligands. All model compounds receive individual attention, highlighting the specific novelty that each provides for our understanding of the enzymatic mechanisms, such as oxygen atom transfer and proton-coupled electron transfer, or that each presents for exploiting new and useful catalytic capability. Overall, a shift in the application of these model compounds towards uncommon reactions is noted, the latter are comprehensively discussed.
Collapse
|
13
|
Gao B, Jiang T, Yang R, Yan Q, Liu X, Xie Q, Zhang X. Palladium-Catalyzed Highly Chemo- and Stereoselective Bisthiolation of Terminal Alkynes with Allyl Phenyl Sulfides via C-S Bond Cleavage. J Org Chem 2022; 87:7895-7904. [PMID: 35666286 DOI: 10.1021/acs.joc.2c00545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile and general method for palladium-catalyzed stereoselective bisthiolation of terminal alkynes with allyl phenyl sulfides has been developed. The scope and versatility of the reaction have been demonstrated, and a broad range of substrates bearing electron-donating and -withdrawing groups on the aromatic rings were all compatible with this reaction, providing the desired (Z)-1,2-dithio-1-alkenes in moderate to good yields. Preliminary mechanistic studies demonstrated that the sulfur source of the desired products may be successively incorporated into alkynes via C-S bond cleavage of two molecules of allyl phenyl sulfides and ruled out the possibility of vinyl sulfides, alkynyl sulfides, and disulfide intermediates being involved in this reaction.
Collapse
Affiliation(s)
- Bao Gao
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Tao Jiang
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Ruiting Yang
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Qian Yan
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xiaojun Liu
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Qiumin Xie
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xiuli Zhang
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| |
Collapse
|
14
|
Reddy RJ, Kumari AH, Sharadha N, Krishna GR. Solvent-Driven Mono- and Bis-sulfenylation of ( E)-β-Iodovinyl Sulfones with Thiols for Flexible Synthesis of 1,2-Thiosulfonylalkenes and 1,2-Dithioalkenes. J Org Chem 2022; 87:3934-3951. [PMID: 35245070 DOI: 10.1021/acs.joc.1c02444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nature of solvent is a key factor for stereoselective mono- and bis-thiolation of (E)-β-iodovinyl sulfones with thiols under basic conditions. A novel and unprecedented vicinal bisthiolation of (E)-β-iodovinyl sulfones with thiols under the influence of K2CO3/DMSO at room temperature for quick assembly of (E)-1,2-dithio-1-alkenes is presented. Solvent-induced stereoselective monosulfenylation of (E)-β-iodovinyl sulfones with thiols has also been established for the synthesis of both (E)- and (Z)-1,2-thiosulfonylethenes in MeCN and MeOH, respectively. Moreover, K2CO3-mediated desulfonylative-sulfenylation of (Z)-1,2-thiosulfonylethenes with thiols in DMSO furnished unsymmetrical (Z)-1,2-dithio-1-alkenes for the first time. The solvent-dependent versatile reactivity of (E)-β-iodovinyl sulfones has been successfully explored to provide a set of (E)-/(Z)-1,2-dithio-1-alkenes and (E)-/(Z)-1,2-thiosulfonyl-1-alkenes in good to high yields with excellent stereoselectivities. Notably, this operationally simple process utilizes a broad substrate scope with good functional group tolerance and compatibility. The efficacy of the process has been proven for gram-scale reactions, and plausible mechanistic models are outlined on the basis of experimental results and control experiments.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Nunavath Sharadha
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Gamidi Rama Krishna
- X-ray Crystallography, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
15
|
Rajeshwaree B, Ali A, Mir AQ, Grover J, Lahiri GK, Dutta A, Maiti D. Group 6 transition metal-based molecular complexes for sustainable catalytic CO2 activation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01378e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO2 activation is one of the key steps towards CO2 mitigation. In this context, the group 6 transition metal-based molecular catalysts can lead the way.
Collapse
Affiliation(s)
- B. Rajeshwaree
- Chemistry Department, IIT Bombay, Powai, Mumbai-400076, India
| | - Afsar Ali
- Chemistry Discipline, IIT Gandhinagar, Palaj, Gandhinagar-382355, India
| | - Ab Qayoom Mir
- Chemistry Discipline, IIT Gandhinagar, Palaj, Gandhinagar-382355, India
| | - Jagrit Grover
- Chemistry Department, IIT Bombay, Powai, Mumbai-400076, India
| | | | - Arnab Dutta
- Chemistry Department, IIT Bombay, Powai, Mumbai-400076, India
- Interdisciplinary Programme in Climate Studies, IIT Bombay, Powai, Mumbai-400076, India
| | - Debabrata Maiti
- Chemistry Department, IIT Bombay, Powai, Mumbai-400076, India
- Interdisciplinary Programme in Climate Studies, IIT Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
16
|
Liu M, Nazemi A, Taylor MG, Nandy A, Duan C, Steeves AH, Kulik HJ. Large-Scale Screening Reveals That Geometric Structure Matters More Than Electronic Structure in the Bioinspired Catalyst Design of Formate Dehydrogenase Mimics. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael G. Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam H. Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Li Y, Gomez-Mingot M, Fogeron T, Fontecave M. Carbon Dioxide Reduction: A Bioinspired Catalysis Approach. Acc Chem Res 2021; 54:4250-4261. [PMID: 34761916 DOI: 10.1021/acs.accounts.1c00461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While developed in a number of directions, bioinspired catalysis has been explored only very recently for CO2 reduction, a challenging reaction of prime importance in the context of the energetic transition to be built up. This approach is particularly relevant because nature teaches us that CO2 reduction is possible, with low overpotentials, high rates, and large selectivity, and gives us unique clues to design and discover new interesting molecular catalysts. Indeed, on the basis of our relatively advanced understanding of the structures and mechanisms of the active sites of fascinating metalloenzymes such as formate dehydrogenases (FDHs) and CO dehydrogenases (CODHs), it is possible to design original, active, selective, and stable molecular catalysts using the bioinspired approach. These metalloenzymes use fascinating metal centers: in FDHs, a Mo(W) mononuclear ion is coordinated by four sulfur atoms provided by a specific organic ligand, molybdopterin (MPT), containing a pyranopterin heterocycle (composed of a pyran ring fused with a pterin unit) and two sulfhydryl groups for metal chelation; in CODHs, catalytic activity depends on either a unique nickel-iron-sulfur cluster or a dinuclear Mo-Cu complex in which the Mo ion is chelated by an MPT ligand. As a consequence, the novel class of catalysts, designed by bioinspiration, consists of mononuclear Mo, W, and Ni and as well as dinuclear Mo-Cu and Ni-Fe complexes in which the metal ions are coordinated by sulfur ligands, more specifically, dithiolene chelates mimicking the natural MPT cofactor. In general, their activity is evaluated in electrochemical systems (cyclic voltammetry and bulk electrolysis) or in photochemical systems (in the presence of a photosensitizer and a sacrificial electron donor) in solution. This research is multidisciplinary because it implies detailed biochemical, functional, and structural characterization of the inspiring enzymes together with synthetic organic and organometallic chemistry and molecular catalysis studies. The most important achievements in this direction, starting from the first report of a catalytically active biomimetic bis-dithiolene-Mo complex in 2015, are discussed in this Account, highlighting the challenging issues associated with synthesis of such sophisticated ligands and molecular catalysts as well as the complexity of reaction mechanisms. While the very first active biomimetic catalysts require further improvement, in terms of performance, they set the stage in which molecular chemistry and enzymology can synergistically cooperate for a better understanding of why nature has selected these sites and for developing highly active catalysts.
Collapse
Affiliation(s)
- Yun Li
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Maria Gomez-Mingot
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Thibault Fogeron
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
18
|
Yuan H, Cheng B, Lei J, Jiang L, Han Z. Promoting photocatalytic CO 2 reduction with a molecular copper purpurin chromophore. Nat Commun 2021; 12:1835. [PMID: 33758178 PMCID: PMC7987958 DOI: 10.1038/s41467-021-21923-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/11/2021] [Indexed: 11/09/2022] Open
Abstract
CO2 reduction through artificial photosynthesis represents a prominent strategy toward the conversion of solar energy into fuels or useful chemical feedstocks. In such configuration, designing highly efficient chromophores comprising earth-abundant elements is essential for both light harvesting and electron transfer. Herein, we report that a copper purpurin complex bearing an additional redox-active center in natural organic chromophores is capable to shift the reduction potential 540 mV more negative than its organic dye component. When this copper photosensitizer is employed with an iron porphyrin as the catalyst and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as the sacrificial reductant, the system achieves over 16100 turnover number of CO from CO2 with a 95% selectivity (CO vs H2) under visible-light irradiation, which is among the highest reported for a homogeneous noble metal-free system. This work may open up an effective approach for the rational design of highly efficient chromophores in artificial photosynthesis.
Collapse
Affiliation(s)
- Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Banggui Cheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jingxiang Lei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Long Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
19
|
Molybdenum-Containing Metalloenzymes and Synthetic Catalysts for Conversion of Small Molecules. Catalysts 2021. [DOI: 10.3390/catal11020217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The energy deficiency and environmental problems have motivated researchers to develop energy conversion systems into a sustainable pathway, and the development of catalysts holds the center of the research endeavors. Natural catalysts such as metalloenzymes have maintained energy cycles on Earth, thus proving themselves the optimal catalysts. In the previous research results, the structural and functional analogs of enzymes and nano-sized electrocatalysts have shown promising activities in energy conversion reactions. Mo ion plays essential roles in natural and artificial catalysts, and the unique electrochemical properties render its versatile utilization as an electrocatalyst. In this review paper, we show the current understandings of the Mo-enzyme active sites and the recent advances in the synthesis of Mo-catalysts aiming for high-performing catalysts.
Collapse
|
20
|
Deng Z, Ji J, Xing M, Zhang J. The role of oxygen defects in metal oxides for CO 2 reduction. NANOSCALE ADVANCES 2020; 2:4986-4995. [PMID: 36132043 PMCID: PMC9417885 DOI: 10.1039/d0na00535e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/22/2020] [Indexed: 06/14/2023]
Abstract
The abuse of fossil fuels release large amount of CO2, causing intense global warming. Using photoreduction and electroreduction to convert CO2 into highly valuable fuels such as CO and CH4 can effectively solve this problem. However, due to the limited activity and selectivity, pristine catalyst materials cannot meet the requirements of practical applications, which means that some modifications to these catalysts are necessary. In this review, a series of research reports on oxygen defect engineering have been introduced. First, the methods of preparing oxygen defects by heat treatment, doping, and photoinduction combined with influencing factors in the preparation are introduced. Subsequently, common characterization methods of oxygen defects including EPR, Raman, XPS, EXAFS, and HRTEM are summarized. Finally, the mechanisms of introducing oxygen defects to improve CO2 reduction are discussed, and include enhancing light absorption, improving CO2 adsorption and activation, as well as promoting stability of the reaction intermediates. The summary of research on oxygen defects provides guidance for researchers who focus on CO2 reduction and accelerate the realization of its industrial applications in the future.
Collapse
Affiliation(s)
- Zesheng Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jiahui Ji
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
21
|
Das A, Hessin C, Ren Y, Desage-El Murr M. Biological concepts for catalysis and reactivity: empowering bioinspiration. Chem Soc Rev 2020; 49:8840-8867. [PMID: 33107878 DOI: 10.1039/d0cs00914h] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological systems provide attractive reactivity blueprints for the design of challenging chemical transformations. Emulating the operating mode of natural systems may however not be so easy and direct translation of structural observations does not always afford the anticipated efficiency. Metalloenzymes rely on earth-abundant metals to perform an incredibly wide range of chemical transformations. To do so, enzymes in general have evolved tools and tricks to enable control of such reactivity. The underlying concepts related to these tools are usually well-known to enzymologists and bio(inorganic) chemists but may be a little less familiar to organometallic chemists. So far, the field of bioinspired catalysis has greatly focused on the coordination sphere and electronic effects for the design of functional enzyme models but might benefit from a paradigm shift related to recent findings in biological systems. The goal of this review is to bring these fields closer together as this could likely result in the development of a new generation of highly efficient bioinspired systems. This contribution covers the fields of redox-active ligands, entatic state reactivity, energy conservation through electron bifurcation, and quantum tunneling for C-H activation.
Collapse
Affiliation(s)
- Agnideep Das
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France.
| | | | | | | |
Collapse
|
22
|
Pitchaimani J, Ni SF, Dang L. Metal dithiolene complexes in olefin addition and purification, small molecule adsorption, H2 evolution and CO2 reduction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213398] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Bo Y, Gao C, Xiong Y. Recent advances in engineering active sites for photocatalytic CO 2 reduction. NANOSCALE 2020; 12:12196-12209. [PMID: 32501466 DOI: 10.1039/d0nr02596h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The photocatalytic conversion of green-house gas CO2 into high value-added carbonaceous fuels and chemicals through harvesting solar energy is a great promising strategy for simultaneously tackling global environmental issues and the energy crisis. Considering the vital role of active sites in determining the activity and selectivity in photocatalytic CO2 reduction reactions, great efforts have been directed toward engineering active sites for fabricating efficient photocatalysts. This review highlights recent advances in the strategies for engineering active sites on surfaces and in open frameworks toward photocatalytic CO2 reduction, referring to surface vacancies, doped heteroatoms, functional groups, loaded metal nanoparticles, crystal facets, heterogeneous/homogeneous single-site catalysts and metal nodes/organic linkers in metal organic frameworks.
Collapse
Affiliation(s)
- Yanan Bo
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), National Synchrotron Radiation Laboratory, and School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | | | | |
Collapse
|
24
|
Mouchfiq A, Todorova TK, Dey S, Fontecave M, Mougel V. A bioinspired molybdenum-copper molecular catalyst for CO 2 electroreduction. Chem Sci 2020; 11:5503-5510. [PMID: 32874493 PMCID: PMC7448372 DOI: 10.1039/d0sc01045f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/08/2020] [Indexed: 11/21/2022] Open
Abstract
A bimetallic Mo–Cu complex inspired by the active site of the carbon monoxide dehydrogenase enzyme mediates the electroreduction of carbon dioxide to formic acid.
Non-noble metal molecular catalysts mediating the electrocatalytic reduction of carbon dioxide are still scarce. This work reports the electrochemical reduction of CO2 to formate catalyzed by the bimetallic complex [(bdt)MoVI(O)S2CuICN]2– (bdt = benzenedithiolate), a mimic of the active site of the Mo–Cu carbon monoxide dehydrogenase enzyme (CODH2). Infrared spectroelectrochemical (IR-SEC) studies coupled with density functional theory (DFT) computations revealed that the complex is only a pre-catalyst, the active catalyst being generated upon reduction in the presence of CO2. We found that the two-electron reduction of [(bdt)MoVI(O)S2CuICN]2– triggers the transfer of the oxo moiety to CO2 forming CO32– and the complex [(bdt)MoIVS2CuICN]2– and that a further one-electron reduction is needed to generate the active catalyst. Its protonation yields a reactive MoVH hydride intermediate which reacts with CO2 to produce formate. These findings are particularly relevant to the design of catalysts from metal oxo precursors.
Collapse
Affiliation(s)
- Ahmed Mouchfiq
- Laboratoire de Chimie des Processus Biologiques , UMR 8229 CNRS , Collège de France , Sorbonne Universitè , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05 , France .
| | - Tanya K Todorova
- Laboratoire de Chimie des Processus Biologiques , UMR 8229 CNRS , Collège de France , Sorbonne Universitè , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05 , France .
| | - Subal Dey
- Laboratoire de Chimie des Processus Biologiques , UMR 8229 CNRS , Collège de France , Sorbonne Universitè , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05 , France . .,Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland .
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques , UMR 8229 CNRS , Collège de France , Sorbonne Universitè , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05 , France .
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland .
| |
Collapse
|
25
|
Kamada K, Jung J, Wakabayashi T, Sekizawa K, Sato S, Morikawa T, Fukuzumi S, Saito S. Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid. J Am Chem Soc 2020; 142:10261-10266. [DOI: 10.1021/jacs.0c03097] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kenji Kamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Jieun Jung
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Taku Wakabayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Keita Sekizawa
- Toyota Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute 480-1192, Japan
| | - Shunsuke Sato
- Toyota Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute 480-1192, Japan
| | - Takeshi Morikawa
- Toyota Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute 480-1192, Japan
| | - Shunichi Fukuzumi
- Faculty of Science and Engineering, Meijo University, Nagoya 468-8502, Japan
| | - Susumu Saito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Research Center for Materials Science (RCMS), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
26
|
Ahmed ME, Rana A, Saha R, Dey S, Dey A. Homogeneous Electrochemical Reduction of CO 2 to CO by a Cobalt Pyridine Thiolate Complex. Inorg Chem 2020; 59:5292-5302. [PMID: 32267696 DOI: 10.1021/acs.inorgchem.9b03056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemical and electrochemical reduction of CO2 to value added chemicals entails the development of efficient and selective catalysts. Synthesis, characterization and electrochemical CO2 reduction activity of a air-stable cobalt(III) diphenylphosphenethano-bis(2-pyridinethiolate)chloride [{Co(dppe)(2-PyS)2}Cl, 1-Cl] complex is divulged. The complex reduces CO2 under homogeneous electrocatalytic conditions to produce CO with high Faradaic efficiency (FE > 92%) and selectivity in the presence of water. Through detailed electrochemical investigations, product analysis, and mechanistic investigations supported by theoretical calculations, it is established that complex 1-Cl reduces CO2 in its Co(I) state. A reductive cleavage leads to a dangling protonated pyridine arm which enables facile CO2 binding through a H-bond donation and facilitates the C-O bond cleavage via a directed protonation. A systematic benchmarking of this catalyst indicates that it has a modest overpotential (∼180 mV) and a TOF of ∼20 s-1 for selective reduction of CO2 to CO with H2O as a proton source.
Collapse
Affiliation(s)
- Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| | - Atanu Rana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Kalla, Asansol, Paschim Bardhaman 713340, India
| | - Subal Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
27
|
Liu B, Alegre-Requena JV, Paton RS, Miyake GM. Unconventional Reactivity of Ethynylbenziodoxolone Reagents and Thiols: Scope and Mechanism. Chemistry 2020; 26:2386-2394. [PMID: 31657063 PMCID: PMC7044075 DOI: 10.1002/chem.201904520] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 12/12/2022]
Abstract
1,2-Dithio-1-alkenes are biologically active compounds widely implemented throughout organic synthesis, functional materials, coordination chemistry, and pharmaceuticals. Traditional methods for accessing 1,2-dithio-1-alkenes often demand transition metal catalysts, specialized or air-sensitive ligands, high temperatures, and disulfides (R2 S2 ). Herein, a general and efficient strategy utilizing ethynylbenziodoxolone (EBX) reagents and thiols is presented that results in the formation of 1,2-dithio-1-alkenes with excellent regioselectivity and stereoselectivity through unprecedented reactivity between the EBX and the thiol. This operationally simple procedure utilizes mild conditions, which result in a broad substrate scope and high functional-group tolerance. The observed unexpected reactivity has been rationalized through both experimental results and DFT calculations.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Juan V Alegre-Requena
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
28
|
Li Y, Wen L, Tan T, Lv Y. Sequential Co-immobilization of Enzymes in Metal-Organic Frameworks for Efficient Biocatalytic Conversion of Adsorbed CO 2 to Formate. Front Bioeng Biotechnol 2019; 7:394. [PMID: 31867320 PMCID: PMC6908815 DOI: 10.3389/fbioe.2019.00394] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
The main challenges in multienzymatic cascade reactions for CO2 reduction are the low CO2 solubility in water, the adjustment of substrate channeling, and the regeneration of co-factor. In this study, metal-organic frameworks (MOFs) were prepared as adsorbents for the storage of CO2 and at the same time as solid supports for the sequential co-immobilization of multienzymes via a layer-by-layer self-assembly approach. Amine-functionalized MIL-101(Cr) was synthesized for the adsorption of CO2. Using amine-MIL-101(Cr) as the core, two HKUST-1 layers were then fabricated for the immobilization of three enzymes chosen for the reduction of CO2 to formate. Carbonic anhydrase was encapsulated in the inner HKUST-1 layer and hydrated the released CO2 to HCO3-. Bicarbonate ions then migrated directly to the outer HKUST-1 shell containing formate dehydrogenase and were converted to formate. Glutamate dehydrogenase on the outer MOF layer achieved the regeneration of co-factor. Compared with free enzymes in solution using the bubbled CO2 as substrate, the immobilized enzymes using stored CO2 as substrate exhibited 13.1-times higher of formate production due to the enhanced substrate concentration. The sequential immobilization of enzymes also facilitated the channeling of substrate and eventually enabled higher catalytic efficiency with a co-factor-based formate yield of 179.8%. The immobilized enzymes showed good operational stability and reusability with a cofactor cumulative formate yield of 1077.7% after 10 cycles of reusing.
Collapse
Affiliation(s)
- Yan Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Liyin Wen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
29
|
Baráth E, Mejía E. Ein Fest der Wissenschaft inmitten der Natur: Die 54. Bürgenstock‐Konferenz. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eszter Baráth
- Department ChemieZentralforschungsinstitut für KatalyseTechnische Universität München Lichtenbergstraße 4 85748 Garching Deutschland
| | - Esteban Mejía
- Leibniz-Institut für Katalyse (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Deutschland
| |
Collapse
|
30
|
Baráth E, Mejía E. A Celebration of Science amidst Nature: The 54th Bürgenstock Conference. Angew Chem Int Ed Engl 2019; 58:17107-17113. [PMID: 31441577 DOI: 10.1002/anie.201906781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Eszter Baráth
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Esteban Mejía
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
31
|
Lucchino M, Billet A, Versini A, Bavireddi H, Dasari BD, Debieu S, Colombeau L, Cañeque T, Wagner A, Masson G, Taran F, Karoyan P, Delepierre M, Gaillet C, Houdusse A, Britton S, Schmidt F, Florent JC, Belmont P, Monchaud D, Cossy J, Thomas C, Gautier A, Johannes L, Rodriguez R. 2nd PSL Chemical Biology Symposium (2019): At the Crossroads of Chemistry and Biology. Chembiochem 2019; 20:968-973. [PMID: 30803119 DOI: 10.1002/cbic.201900092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 11/07/2022]
Abstract
Chemical Biology is the science of designing chemical tools to dissect and manipulate biology at different scales. It provides the fertile ground from which to address important problems of our society, such as human health and environment.
Collapse
Affiliation(s)
- Marco Lucchino
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Anne Billet
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Antoine Versini
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Harikrishna Bavireddi
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Bhanu-Das Dasari
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Sylvain Debieu
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Ludovic Colombeau
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Tatiana Cañeque
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Alain Wagner
- University of Strasbourg, CNRS UMR 7199, 67401, Illkirch-Graffenstaden, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, 91198, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, 91191, Gif-sur-Yvette, France
| | - Philippe Karoyan
- PSL Université Paris, Sorbonne Université, Ecole Normale Supérieure, CNRS UMR7203, 75005, Paris, France
| | - Muriel Delepierre
- PSL Université Paris, Institut Pasteur, CNRS UMR3528, 75015, Paris, France
| | - Christine Gaillet
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Anne Houdusse
- PSL Université Paris, Institut Curie, CNRS UMR144, 75005, Paris, France
| | | | - Frédéric Schmidt
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Jean-Claude Florent
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Philippe Belmont
- Université Paris Descartes, Faculté de Pharmacie de Paris, CNRS UMR8038, 75006, Paris, France
| | - David Monchaud
- UBFC, Institut de Chimie Moléculaire, CNRS UMR6302, 21078, Dijon, France
| | - Janine Cossy
- PSL Université Paris, ESPCI Paris, CNRS UMR8271, 75231, Paris cedex 05, France
| | - Christophe Thomas
- PSL Université Paris, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Arnaud Gautier
- PSL Université Paris, Sorbonne University, Department of Chemistry, École Normale Supérieure, CNRS, 75005, Paris, France
| | - Ludger Johannes
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| | - Raphaël Rodriguez
- PSL Université Paris, Institut Curie, CNRS UMR3666, INSERM U1143, 75005, Paris, France
| |
Collapse
|
32
|
Bai Y, Zhao J, Feng S, Liang X, Wang C. Light-driven thermocatalytic CO2 reduction over surface-passivated β-Mo2C nanowires: enhanced catalytic stability by light. Chem Commun (Camb) 2019; 55:4651-4654. [DOI: 10.1039/c9cc01479a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As compared to the thermocatalysis without light irradiation, the catalytic stability of P-Mo2C in the light-driven thermocatalysis is significantly improved.
Collapse
Affiliation(s)
- Yujie Bai
- School of Environmental Sciences and Engineering
- Shaanxi University of Science & Technology
- Xian
- China
| | - Jie Zhao
- School of Environmental Sciences and Engineering
- Shaanxi University of Science & Technology
- Xian
- China
| | - Shuaijun Feng
- School of Environmental Sciences and Engineering
- Shaanxi University of Science & Technology
- Xian
- China
| | - Xinxin Liang
- School of Environmental Sciences and Engineering
- Shaanxi University of Science & Technology
- Xian
- China
| | - Chuanyi Wang
- School of Environmental Sciences and Engineering
- Shaanxi University of Science & Technology
- Xian
- China
| |
Collapse
|
33
|
Fogeron T, Retailleau P, Gomez-Mingot M, Li Y, Fontecave M. Nickel Complexes Based on Molybdopterin-like Dithiolenes: Catalysts for CO2 Electroreduction. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00655] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thibault Fogeron
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Pascal Retailleau
- Institut de Chimie
des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, Av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Maria Gomez-Mingot
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|