1
|
Yang S, Qiu CY, Hu H, Jiang Y, Chen M. Visible-Light-Driven Synthesis of N-Alkyl α-Amino Acid Derivatives from Unactivated Alkyl Bromides and In Situ Generated Imines. Org Lett 2024; 26:8416-8423. [PMID: 39311501 DOI: 10.1021/acs.orglett.4c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
One-pot, multicomponent reactions are known for their green and efficient nature. We report a novel three-component reaction of alkyl amines, alkyl glyoxylates, and unactivated alkyl bromides under visible-light-induced palladium catalysis, yielding N-alkyl unnatural α-amino acid derivatives. This method offers mild conditions, broad substrate scope, and excellent functional group tolerance without requiring stoichiometric organometallic reagents. The approach has promising applications in protein engineering and drug discovery.
Collapse
Affiliation(s)
- Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Chao-Ying Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Hao Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yan Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
2
|
Wang H, Wang YB, Zhan YF, Zhu YT, Jiang Y, Yang S, Chen M. Copper-Catalyzed Oxidative α-Double Bond Construction in α-Amino Carbonyl Compounds via Homocoupling with Arylamine Release. Org Lett 2024; 26:8128-8133. [PMID: 39287097 DOI: 10.1021/acs.orglett.4c03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Herein, we present a copper-catalyzed method for oxidative α-double bond formation in α-amino ketone compounds using DTBP as the oxidant. This process, involving homocoupling of α-amino radicals and arylamine release, efficiently produces a series of enaminone skeletons. The strategy has a broad substrate scope and functional group tolerance. In particular, arylamines bearing electron-rich substituents exhibit a pronounced reactivity. This approach facilitates the synthesis of diverse enaminones, enabling the efficient construction of nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Huan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yi-Bin Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan-Fang Zhan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yi-Ting Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Dang X, Li Z, Shang J, Zhang C, Wang C, Xu Z. Photoinduced C(sp 3)-H Bicyclopentylation Enabled by an Electron Donor-Acceptor Complex-Mediated Chemoselective Three-Component Radical Relay. Angew Chem Int Ed Engl 2024; 63:e202400494. [PMID: 38598042 DOI: 10.1002/anie.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
The photoredox electron donor-acceptor (EDA) complex-mediated radical coupling reaction has gained prominence in the field of organic synthesis, finding widespread application in two-component coupling reactions. However, EDA complex-promoted multi-component reactions are not well developed with only a limited number of examples have been reported. Herein, we report a photoinduced and EDA complex-promoted highly chemoselective three-component radical arylalkylation of [1.1.1]propellane, which allows the direct functionalization of C(sp3)-H with bicyclo[1.1.1]pentanes (BCP)-aryl groups under mild conditions. A variety of unnatural α-amino acids, featuring structurally diversified 1,3-disubstituted BCP moieties, were synthesized in a single-step process. Notably, leveraging the high tension release of [1.1.1]propellane, the highly unstable transient aryl radical undergoes rapid conversion into a relatively stable tertiary alkyl transient radical, and consequently, the competing side-reaction of two-component coupling was entirely suppressed. The strategic use of this transient radical conversion approach would be useful for the design of diverse EDA complex-mediated multi-component reactions. It is noteworthy that the highly chemoselective late-stage incorporation of the 1,3-disubstituted BCP pharmacophores into peptides was achieved both in liquid-phase and solid-phase reactions. This advancement is anticipated to have significant application potential in the future development of peptide drugs.
Collapse
Affiliation(s)
- Xiaobo Dang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zhixuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Jinlong Shang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Chenyang Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
- Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, China
- Technology & Engineering Institute of Lanzhou University, Gongyuan Road, Baiyin, 730900, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
- Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, China
| |
Collapse
|
4
|
Kong P, Ye Y, Zhang X, Bao X, Huo C. Alkylation of Glycine Derivatives through a Synergistic Single-Electron Transfer and Halogen-Atom Transfer Process. Org Lett 2024; 26:7507-7513. [PMID: 39207059 DOI: 10.1021/acs.orglett.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Here, we present a versatile method for forming C(sp3)-C(sp3) bonds, enabling the synthesis of a range of natural and non-natural amino acids. This approach utilizes readily available glycine derivatives and alkyl iodides, combining single-electron transfer and halogen-atom transfer processes. The utility of this step-economic and redox-economic C(sp3)-C(sp3) bond formation is further highlighted in the late-stage site-selective modifications of the glycine residue in short peptides.
Collapse
Affiliation(s)
- Peng Kong
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xin Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
5
|
Yuan M, Lou M, Li G, Qi X. Triflic Anhydride Promoted Decarboxylative Functionalization of α-Amino Acids. Org Lett 2024; 26:7382-7386. [PMID: 39177205 DOI: 10.1021/acs.orglett.4c02589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The decarboxylation of naturally abundant amino acids, followed by subsequent inter- or intramolecular reaction cascades, enables the rapid synthesis of a variety of diverse and high-value amine derivatives. Previous methods have relied heavily on transition metals, involved tedious procedures, or required harsh conditions. Herein, we present a novel reaction cascade for the decarboxylation and nucleophilic functionalization of α-amino acids. This method is characterized by being transition-metal-free, convenient to operate, environmentally friendly and having mild conditions.
Collapse
Affiliation(s)
- Mingyue Yuan
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
- National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - Mingliang Lou
- National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - Gen Li
- National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - Xiangbing Qi
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
- National Institute of Biological Sciences, Beijing 102206, People's Republic of China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
6
|
Guo Y, Lin G, Zhang M, Xu J, Song Q. Photo-induced decarboxylative C-S bond formation to access sterically hindered unsymmetric S-alkyl thiosulfonates and SS-alkyl thiosulfonates. Nat Commun 2024; 15:7313. [PMID: 39181875 PMCID: PMC11344762 DOI: 10.1038/s41467-024-51334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Due to the high reactivity and versatility of benzenesulfonothioates, significant advancements have been made in constructing C-S bonds. However, there are certain limitations in the synthesis of S-thiosulfonates and SS-thiosulfonates, especially when dealing with substantial steric hindrance, which poses a significant challenge. Herein, we present an innovative approach for assembling unsymmetric S-thiosulfonates and unsymmetric SS-thiosulfonates through the integration of dual copper/photoredox catalysis. Moreover, we also realized the one-pot strategy by directly using carboxylic acids as raw materials by in-situ activation of them to access S-thiosulfonates and SS-thiosulfonates without further purification and presynthesis of NHPI esters. The envisaged synthesis and utilization of these reagents are poised to pioneer an innovative pathway for fabricating a versatile spectrum of mono-, di-, and polysulfide compounds. Furthermore, they introduce a class of potent sulfenylating reagents, empowering the synthesis of intricate unsymmetrical disulfides that were previously challenging to access.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Guotao Lin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Mengjie Zhang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, 350108, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
7
|
Yang Z, Liu J, Xie L. Stabilized Carbon-Centered Radical-Mediated Carbosulfenylation of Styrenes: Modular Synthesis of Sulfur-Containing Glycine and Peptide Derivatives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402428. [PMID: 38852190 PMCID: PMC11304285 DOI: 10.1002/advs.202402428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/27/2024] [Indexed: 06/11/2024]
Abstract
Sulfur-containing amino acids and peptides play critical roles in organisms. Thiol-ene reactions between the thiol residues of L-cysteine and the alkenyl fragments in the designed coupling partners serve as primary tools for constructing C─S bonds in the synthesis of unnatural sulfur-containing amino acid derivatives. These reactions are favored due to the preference for hydrogen transfer from thiol to β-sulfanyl carbon radical intermediates. In this paper, the study proposes utilizing carbon-centered radicals stabilized by the capto-dative effect, generated under photocatalytic conditions from N-aryl glycine derivatives. The aim is to compete with the thiol hydrogen, enabling radical C─C bond formation with β-sulfanyl carbon radicals. This protocol is robust in the presence of air and water, offers significant potential as a modular and efficient platform for synthesizing sulfur-containing amino acids and modifying peptides, particularly with abundant disulfides and styrenes.
Collapse
Affiliation(s)
- Zihui Yang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Jia Liu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Lan‐Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| |
Collapse
|
8
|
Hota SK, Singh G, Murarka S. Direct C-H alkylation of 3,4-dihydroquinoxaline-2-ones with N-(acyloxy)phthalimides via radical-radical cross coupling. Chem Commun (Camb) 2024; 60:6268-6271. [PMID: 38808396 DOI: 10.1039/d4cc01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We present an organophotoredox-catalyzed direct Csp3-H alkylation of 3,4-dihydroquinoxalin-2-ones employing N-(acyloxy)pthalimides to provide corresponding products in good yields. A broad spectrum of NHPI esters (1°, 2°, 3°, and sterically encumbered) participates in the photoinduced alkylation of a variety of 3,4-dihydroquinoxalin-2-ones. In general, mild conditions, broad scope with good functional group tolerance, and scalability are the salient features of this direct alkylation process.
Collapse
Affiliation(s)
- Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Gulshan Singh
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| |
Collapse
|
9
|
Lin R, Shan Y, Li Y, Wei X, Zhang Y, Lin Y, Gao Y, Fang W, Zhang JJ, Wu T, Cai L, Chen Z. Organo-Photoredox Catalyzed gem-Difluoroallylation of Glycine and Glycine Residue in Peptides. J Org Chem 2024; 89:4056-4066. [PMID: 38449357 DOI: 10.1021/acs.joc.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
An organo-photoredox catalyzed gem-difluoroallylation of glycine with α-trifluoromethyl alkenes via direct C(sp3)-H functionalization of glycine and C-F bond activation of α-trifluoromethyl alkenes has been described. As a consequence, a broad range of gem-difluoroalkene-containing unnatural amino acids are afforded in moderate to excellent yields. This reaction exhibits multiple merits such as readily available starting materials, broad substrate scope, and mild reaction conditions. The feasibility of this reaction has been highlighted by the late-stage modification of several peptides as well as the improved in vitro antifungal activity of compound 3v toward Valsa mali compared to that with commercial azoxystrobin.
Collapse
Affiliation(s)
- Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yujie Shan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yiman Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Lab for Biomass Chemical Utilization, Nanjing, Jiangsu 210042, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
10
|
Wang W, Xuan L, Chen Q, Fan R, Zhao F, Dong J, Wang H, Yan Q, Zhou H, Chen FE. Copper-Catalyzed Asymmetric Remote C(sp 3)-H Alkylation of N-Fluorocarboxamides with Glycine Derivatives and Peptides. J Am Chem Soc 2024; 146:6307-6316. [PMID: 38381876 DOI: 10.1021/jacs.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Saturated hydrocarbon bonds are ubiquitous in organic molecules; to date, the selective functionalization of C(sp3)-H bonds continues to pose a notorious difficulty, thereby garnering significant attention from the synthetic chemistry community. During the past several decades, a wide array of powerful new methodologies has been developed to enantioselectively modify C(sp3)-H bonds that is successfully applied in asymmetric formation of diverse bonds, including C-C, C-N, and C-O bonds; nevertheless, the asymmetric C(sp3)-H alkylation is elusive and, therefore, far less explored. In this work, we report a direct and robust strategy to construct highly valuable enantioenriched unnatural α-amino acid (α-AA) cognates and peptides by a copper-catalyzed enantioselective remote C(sp3)-H alkylation of N-fluorocarboxamides and readily accessible glycine esters under ambient conditions. The key to success lies in the optically active Cu catalyst generated through the coordination of glycine derivatives to enantiopure bisphosphine/Cu(I) species, which is beneficial to the single electronic reduction of N-fluorocarboxamides and the subsequent stereodetermining alkylation. More importantly, all types (primary, secondary, tertiary, and even α-oxy) of δ-C(sp3)-H bonds could be site- and stereospecifically activated by the kinetically favored 1,5-hydrogen atom transfer (1,5-HAT) step.
Collapse
Affiliation(s)
- Wei Wang
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Liangming Xuan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qinlin Chen
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Rundong Fan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fei Zhao
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jianghu Dong
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hui Zhou
- College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
11
|
Liu H, Sun G, Zhang Y, Li Y, Dong B, Gao B. Acid-Catalyzed Highly Enantioselective Synthesis of α-Amino Acid Derivatives from Sulfinamides and Alkynes. Org Lett 2024; 26:1601-1606. [PMID: 38373161 DOI: 10.1021/acs.orglett.3c04158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
An enantioselective difunctionalization of activated alkynes using chiral sulfinamide reagents is developed. It is an atom and chirality transfer process that allows for the modular synthesis of optically active α-amino acid derivatives under mild conditions. The reaction proceeds through an acid-catalyzed [2,3]-sigmatropic rearrangement mechanism with predictable stereochemistry and a broad scope.
Collapse
Affiliation(s)
- Herui Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Guangwu Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yuchao Zhang
- Institute of Basic Medicine and Cancer (IBMC) Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yongxi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Baobiao Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Bing Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
12
|
De Jesus IS, Vélez JAC, Pissinati EF, Correia JTM, Rivera DG, Paixao MW. Recent Advances in Photoinduced Modification of Amino Acids, Peptides, and Proteins. CHEM REC 2024; 24:e202300322. [PMID: 38279622 DOI: 10.1002/tcr.202300322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Indexed: 01/28/2024]
Abstract
The chemical modification of biopolymers like peptides and proteins is a key technology to access vaccines and pharmaceuticals. Similarly, the tunable derivatization of individual amino acids is important as they are key building blocks of biomolecules, bioactive natural products, synthetic polymers, and innovative materials. The high diversity of functional groups present in amino acid-based molecules represents a significant challenge for their selective derivatization Recently, visible light-mediated transformations have emerged as a powerful strategy for achieving chemoselective biomolecule modification. This technique offers numerous advantages over other methods, including a higher selectivity, mild reaction conditions and high functional-group tolerance. This review provides an overview of the most recent methods covering the photoinduced modification for single amino acids and site-selective functionalization in peptides and proteins under mild and even biocompatible conditions. Future challenges and perspectives are discussed beyond the diverse types of photocatalytic transformations that are currently available.
Collapse
Affiliation(s)
- Iva S De Jesus
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Jeimy A C Vélez
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Emanuele F Pissinati
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Jose Tiago M Correia
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Daniel G Rivera
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana Zapata & G, Havana, 10400, Cuba
| | - Márcio W Paixao
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
13
|
Azpilcueta-Nicolas CR, Lumb JP. Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters. Beilstein J Org Chem 2024; 20:346-378. [PMID: 38410775 PMCID: PMC10896223 DOI: 10.3762/bjoc.20.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Due to their ease of preparation, stability, and diverse reactivity, N-hydroxyphthalimide (NHPI) esters have found many applications as radical precursors. Mechanistically, NHPI esters undergo a reductive decarboxylative fragmentation to provide a substrate radical capable of engaging in diverse transformations. Their reduction via single-electron transfer (SET) can occur under thermal, photochemical, or electrochemical conditions and can be influenced by a number of factors, including the nature of the electron donor, the use of Brønsted and Lewis acids, and the possibility of forming charge-transfer complexes. Such versatility creates many opportunities to influence the reaction conditions, providing a number of parameters with which to control reactivity. In this perspective, we provide an overview of the different mechanisms for radical reactions involving NHPI esters, with an emphasis on recent applications in radical additions, cyclizations and decarboxylative cross-coupling reactions. Within these reaction classes, we discuss the utility of the NHPI esters, with an eye towards their continued development in complexity-generating transformations.
Collapse
Affiliation(s)
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
14
|
Tian Y, Bu X, Wang L, E J, Shi L, Tian H, Yang X, Fu H, Zhao Z. Visible Light-Driven Flexible Synthesis of α-Alkylated Glycine Derivatives Catalyzed by Reusable Covalent Organic Frameworks. J Org Chem 2024; 89:1657-1668. [PMID: 38241608 DOI: 10.1021/acs.joc.3c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Herein, we report a heterogeneous visible light-driven preparation of α-alkylated glycine derivatives. This approach employed a β-ketoenamine-linked covalent organic framework (2D-COF-4) as the heterogeneous photocatalyst and N-hydroxy phthalimide (NHPI) esters as the alkyl radical sources. Numerous glycine derivatives, including dipeptides, were precisely and efficiently alkylated under visible light-driven reaction conditions. Based on the excellent photoactivity and organic reaction compatibility of 2D-COF-4, this alkylation could proceed flexibly in a green solvent (ethanol) without any other additives. The photocatalyst and phthalimide were fruitfully recycled with a simple workup procedure, revealing a high ecoscale value and low environmental factor (E-factor).
Collapse
Affiliation(s)
- Yao Tian
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Luohe Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Junnan E
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Liangliang Shi
- Tianjin Lisheng Pharmaceutical Co., Ltd., Tianjin 300385, P. R. China
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin300385, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| |
Collapse
|
15
|
Marty C, Allouche EMD, Waser J. Interrupted Polonovski Strategy for the Synthesis of Functionalized Amino Acids and Peptides. Org Lett 2024; 26:456-460. [PMID: 38179927 DOI: 10.1021/acs.orglett.3c03603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The α-functionalization of carbamate-protected hydroxylamine glycine derivatives, acting as imine surrogates via an interrupted Polonovski reaction, is described to access functionalized amino acid derivatives. The addition of C, N, O, and S nucleophiles was achieved in a one-pot procedure in 37% to 92% yield. This method could be extended to dipeptide derivatives for the functionalization of both the C-terminus and N-terminus.
Collapse
Affiliation(s)
- Christine Marty
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, Ch-1015, Lausanne, Switzerland
| | - Emmanuelle M D Allouche
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, Ch-1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, Ch-1015, Lausanne, Switzerland
| |
Collapse
|
16
|
Tan Y, Xiang H, Jin J, He X, Li S, Ye Y. Oxidation/Alkylation of Amino Acids with α-Bromo Carbonyls Catalyzed by Copper and Quick Access to HDAC Inhibitor. J Org Chem 2023; 88:17398-17408. [PMID: 38037667 DOI: 10.1021/acs.joc.3c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
A facile and efficient method was reported for Cu-catalyzed selective α-alkylation processes of amino acids/peptides and α-bromo esters/ketones through a radical-radical coupling pathway. The reaction displays an excellent functional group tolerance and broad substrate scope, allowing access to desired products in moderate to excellent yields. Notably, this method is distinguished by site-specificity and exhibits total selectivity for aryl glycine motifs over other amino acid units. Furthermore, the practicality of this strategy is certified by the efficient synthesis of the novel SAHA phenylalanine-containing analogue (SPACA).
Collapse
Affiliation(s)
- Yuqiong Tan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Jiayan Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Xingrui He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
17
|
Li Y, Lu D, Gong Y. Cobalt(II)-Catalyzed Selective Three-Component Oxyalkylation of N-Aryl Glycinates: A Route to CF 3-Labeled Threonine Analogues. J Org Chem 2023. [PMID: 38033236 DOI: 10.1021/acs.joc.3c01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Glycinates, protected enols, and an electrophilic trifluoromethylating reagent were employed to assemble CF3-labeled threonine analogues through a radical addition cascade. To suppress the competing oxidation of the oxyalkyl radical intermediate, various redox catalysts were evaluated and Co(II) exhibited supreme selectivity control with a proper counterion. A series of glycinate and related peptides were thus successfully modified under Co-catalysis. Mechanistic studies revealed that a N-aryl glycinate could be preferentially oxidized by cobalt over the oxyalkyl radical to generate an imine intermediate, and the key to this selectivity could be ascribed to the prechelation of glycinate, as well as a weakly basic carboxylate counterion.
Collapse
Affiliation(s)
- Yadong Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Dengfu Lu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, 9 Yuexing Third Road, Shenzhen 518063, Guangdong, China
| | - Yuefa Gong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| |
Collapse
|
18
|
Wang S, Gao Y, Hu Y, Zhou J, Chen Z, Liu Z, Zhang Y. Direct annulation between glycine derivatives and thiiranes through photoredox/iron cooperative catalysis. Chem Commun (Camb) 2023; 59:12783-12786. [PMID: 37815520 DOI: 10.1039/d3cc04580c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
A visible-light-induced aerobic oxidative [2+3] cycloaddition reaction between glycine derivatives and thiiranes has been disclosed, which provides an efficient and atom-economical strategy for the rapid synthesis of thiazolidine-2-carboxylic acid derivatives and the post-modification of glycine-derived dipeptides under mild conditions with good yield and high diastereoselectivities. A preliminary mechanistic study favors a pathway involving a cooperative photoredox catalysis and iron catalysis.
Collapse
Affiliation(s)
- Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yuan Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Jintao Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhidang Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhao Liu
- First Hospital of Lanzhou University, Lanzhou, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
19
|
Li F, Xu Y, Xu Y, Xie H, Wu J, Wang C, Li Z, Wang Z, Wang L. Engineering of Dual-Function Vitreoscilla Hemoglobin: A One-Pot Strategy for the Synthesis of Unnatural α-Amino Acids. Org Lett 2023; 25:7115-7119. [PMID: 37737085 DOI: 10.1021/acs.orglett.3c02537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Despite a well-developed and growing body of work on the directed evolution of hemoproteins, the potential of hemoproteins to catalyze non-natural reactions remains underexplored. This paper reports a new biocatalytic strategy for the one-pot synthesis of unnatural α-amino acids. Engineered variants of dual-function Vitreoscilla hemoglobin were found to efficiently catalyze N-H insertion and C-H sp3 alkylation, providing moderate to excellent yields (57%-95%) of unnatural α-amino acid derivatives and turnover numbers (1425-2375).
Collapse
Affiliation(s)
- Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Yuelin Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Junhao Wu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Zhengqiang Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Zhi Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| |
Collapse
|
20
|
Guo Y, Wang X, Li C, Su J, Xu J, Song Q. Decarboxylation of β-boryl NHPI esters enables radical 1,2-boron shift for the assembly of versatile organoborons. Nat Commun 2023; 14:5693. [PMID: 37709736 PMCID: PMC10502150 DOI: 10.1038/s41467-023-41254-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
In recent years, numerous 1,2-R shift (R = aliphatic or aryl) based on tetracoordinate boron species have been well investigated. In the contrary, the corresponding radical migrations, especially 1,2-boryl radical shift for the construction of organoborons is still in its infancy. Given the paucity and significance of such strategies in boron chemistry, it is urgent to develop other efficient and alternative synthetic protocols to enrich these underdeveloped radical 1,2-boron migrations, before their fundamental potential applications could be fully explored at will. Herein, we have demonstrated a visible-light-induced photoredox neutral decarboxylative radical cross-coupling reaction, which undergoes a radical 1,2-boron shift to give a translocated C-radical for further capture of versatile radical acceptors. The mild reaction conditions, good functional-group tolerance, and broad β-boryl NHPI esters scope as well as versatile radical acceptors make this protocol applicable in modification of bioactive molecules. It can be expected that this methodology will be a very useful tool and an alternative strategy for the construction of primary organoborons via a novel radical 1,2-boron shift mode.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Xiaosha Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, 350108, Fuzhou, P. R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China.
| |
Collapse
|
21
|
Wang L, Li K, Ye T, Huang L, Wu H, Zhang J, Xie H, Liu Y, Zeng J, Cheng P. Visible-Light-Promoted α-Benzylation of N-Phenyl α-Amino Acids to α-Amino Phenylpropanoids. J Org Chem 2023; 88:11924-11934. [PMID: 37560787 DOI: 10.1021/acs.joc.3c01196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A new method for the synthesis of α-amino phenylpropanoids under blue light-emitting diode irradiation has been developed through α-C-H benzylation of readily available N-phenyl glycine ester with benzyl oxalates as a coupling partner under mild conditions. A range of N-phenyl glycine esters were successfully converted to α-amino phenylpropanoid products in moderate to good yields. The utility of this methodology is underlined by its application to the late-state modification of natural products.
Collapse
Affiliation(s)
- Lin Wang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Kang Li
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Tian Ye
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lei Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huilan Wu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jingxuan Zhang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Hongqi Xie
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yisong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Pi Cheng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
22
|
Wang C, Qi R, Wang R, Xu Z. Photoinduced C(sp 3)-H Functionalization of Glycine Derivatives: Preparation of Unnatural α-Amino Acids and Late-Stage Modification of Peptides. Acc Chem Res 2023. [PMID: 37467427 DOI: 10.1021/acs.accounts.3c00260] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
ConspectusPeptides are essential components of living systems and contribute to critical biological processes, such as cell proliferation, immune defense, tumor formation, and differentiation. Therefore, peptides have attracted considerable attention as targets for the development of therapeutic products. The incorporation of unnatural amino acid residues into peptides can considerably impact peptide immunogenicity, toxicity, side effects, water solubility, action duration, and distribution and enhance the peptides' druggability. Typically, the direct modification of natural amino acids is a practical and effective approach for promptly obtaining unnatural amino acids. However, selective functionalization of multiple C(sp3)-H bonds with comparable chemical reactivities in the peptide side chains remains a formidable challenge. Furthermore, chemical modifications aimed at highly reactive (nucleophilic and aromatic) groups on peptide side chains can interfere with the biological activity of peptides.In recent years, the rapid advancement of photoinduced radical reactions has made photoredox radical-radical cross-coupling a practical approach for constructing C(sp3)-C(sp3) bonds under mild conditions. Glycine, a naturally occurring amino acid and the fundamental skeleton of all α-amino acids, provides a basis for the alkylated modification of its own α-C(sp3)-H bond under mild conditions. This Account describes our recent research endeavors for systematically investigating the photocatalytic α-C(sp3)-H alkylation of glycine derivatives via radical-radical coupling between N-aryl glycinate-derived radicals and various alkyl radicals. In 2018, we disclosed the photoinduced Cu-catalyzed decarboxylative α-C(sp3)-H alkylation of glycine derivatives. Subsequently, we developed a catalyst-free method for alkylating glycine derivatives and glycine residues in peptides via electron donor-acceptor (EDA)-complex-promoted single electron transfer. Moreover, we developed a photoinduced method for the radical alkylation of N-aryl glycinate α-C(sp3)-H bonds using unactivated alkyl chlorides (iodides) under photocatalyst-free conditions. Notably, by building on racemic alkylations of glycine derivatives and glycine-residue-containing peptides, we recently stereoselectively alkylated the N-aryl glycinate α-C(sp3)-H bond using a dual-functional Cu catalyst generated in situ for synthesizing a series of unnatural chiral α-amino and C-glycoamino acids.We have developed a series of methods for synthesizing unnatural amino acids through the α-C(sp3)-H alkylation of glycine derivatives using photoredox-promoted radical coupling as a key strategy. These methods are efficient and versatile and can be used for the late-stage modification of peptides in various contexts. Our work builds on the fundamental importance of glycine as the basic scaffold of all α-amino acids and highlights the potential of radical-based chemistry for developing chemical transformations in peptide synthesis. These findings have broad implications for chemical biology and may open doors for discovering peptide drugs and developing therapeutics.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| | - Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou 730000, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou 730000, China
| |
Collapse
|
23
|
Qi R, Chen Q, Liu L, Ma Z, Pan D, Wang H, Li Z, Wang C, Xu Z. Copper-catalyzed asymmetric C(sp 3)-H cyanoalkylation of glycine derivatives and peptides. Nat Commun 2023; 14:3295. [PMID: 37280209 DOI: 10.1038/s41467-023-38871-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Alkylnitriles play important roles in many fields because of their unique electronic properties and structural characteristics. Incorporating cyanoalkyl with characteristic spectroscopy and reactivity properties into amino acids and peptides is of special interest for potential imaging and therapeutic purposes. Here, we report a copper-catalyzed asymmetric cyanoalkylation of C(sp3)-H. In the reactions, glycine derivatives can effectively couple with various cycloalkanone oxime esters with high enantioselectivities, and the reaction can be applied to the late-stage modification of peptides with good yields and excellent stereoselectivities, which is useful for modern peptide synthesis and drug discovery. The mechanistic studies show that the in situ formed copper complex by the coordination of glycine derivatives and chiral phosphine Cu catalyst can not only mediate the single electronic reduction of cycloalkanone oxime ester but also control the stereoselectivity of the cyanoalkylation reaction.
Collapse
Affiliation(s)
- Rupeng Qi
- School of Pharmacy, Lanzhou University, 730000, Lanzhou, China
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, 730000, Lanzhou, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, 730000, Lanzhou, China
| | - Liangyu Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Zijian Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Da Pan
- School of Pharmacy, Lanzhou University, 730000, Lanzhou, China
| | - Hongying Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Zhixuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Chao Wang
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, 730000, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China.
| | - Zhaoqing Xu
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, 730000, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China.
| |
Collapse
|
24
|
Song S, Cheng X, Cheng S, Lin YM, Gong L. Fe-Catalyzed Aliphatic C-H Methylation of Glycine Derivatives and Peptides. Chemistry 2023; 29:e202203404. [PMID: 36545842 DOI: 10.1002/chem.202203404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Direct and selective C-H methylation is a powerful tool with which to install methyl groups into organic molecules, and is particularly useful in pharmaceutical chemistry. However, practical methods for such modification of biologically interesting targets have been rarely developed. We here report an iron-catalyzed C(sp3 )-H methylation reaction of glycine derivatives, peptides and drug-like molecules in an alcohol in the presence of di-tert-butyl peroxide. A readily available iron catalyst plays multiple roles in the transformation, which accelerates oxidation of C-N bonds to C=N double bonds, activates imine intermediates as Lewis acids by bidentate chelation, and at the same time facilitates cleavage of the peroxide to generate methyl radicals. A variety of methylated N-aryl glycine derivatives and peptides were obtained in good yield and with excellent chemo- and site-selectivity. This reaction is scalable, easily managed, and can be completed within 1-2 h. It features an economic, bio-friendly catalyst, a green solvent and low toxic reagents, and will provide effective access to precise C-H modification of biomolecules and natural products.
Collapse
Affiliation(s)
- Silin Song
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Xiuliang Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Shiyan Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 361005, Xiamen, China
| |
Collapse
|
25
|
Wang M, Wang C, Xie X, Pan D, Liu L, Chen Q, Li Z, Zhang Q, Xu Z. Non-classical C-saccharide linkage of dehydroalanine: synthesis of C-glycoamino acids and C-glycopeptides. Chem Commun (Camb) 2023; 59:3305-3308. [PMID: 36847114 DOI: 10.1039/d2cc06653j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Herein, a non-classical C-saccharide linkage is reported via a C5 radical of pentose or C6 radical of hexose addition to Michael acceptors. C(sp3)-S cleaved glycosyl thianthrenium salts are developed as the glycosyl radical agents. The reaction provides an efficient toolkit to synthesize β-glycosyl substituted unnatural amino acids as well as for the late-stage C-saccharide modification of peptides.
Collapse
Affiliation(s)
- Mengran Wang
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao Wang
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiuling Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Da Pan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Liangyu Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhixuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaoqing Xu
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
26
|
Wang S, Ye Y, Hu Y, Meng X, Liu Z, Liu J, Chen K, Zhang Z, Zhang Y. Visible-light-induced C sp3-H functionalization of glycine derivatives by cerium catalysis. Chem Commun (Camb) 2023; 59:2628-2631. [PMID: 36762590 DOI: 10.1039/d2cc07071e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A Ce(III)-catalyzed, visible-light-induced aerobic oxidative dehydrogenative coupling/aromatization reaction between glycine derivatives and alkenes has been developed, which provides an efficient approach for the synthesis of quinoline derivatives and post-modification of oligopeptides containing glycine residues under mild conditions without the need for external photosensitizers.
Collapse
Affiliation(s)
- Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yanjie Ye
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Xu Meng
- First Hospital of Lanzhou University, Lanzhou University, China
| | - Zhao Liu
- First Hospital of Lanzhou University, Lanzhou University, China
| | - Jiyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Kuan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhengze Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
27
|
Visible-light-induced controllable α-chlorination of nafimidone derivatives through LMCT excitation of CuCl2. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Li H, Li S, Hu H, Sun R, Liu M, Ding A, Liu X, Luo W, Fu Z, Guo S, Cai H. Visible-light-induced C(sp 3)-C(sp 3) bond formation via radical/radical cross-coupling. Chem Commun (Camb) 2023; 59:1205-1208. [PMID: 36629273 DOI: 10.1039/d2cc05840e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Radical/radical cross-coupling remains challenging due to diffusion control issues. Herein, we report a visible-light-induced radical/radical cross-coupling reaction of quaternary ammonium salts and Hantzschs via C-N and C-C bond cleavage. The current synthetic approach furnishes 1,2-diphenylethanes in moderate to good yields and provides a method for the construction of the C(sp3)-C(sp3) bond.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Sen Li
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Huimin Hu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Runbo Sun
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Meixia Liu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Anjun Ding
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Xiaoyong Liu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Wenlin Luo
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Zhengjiang Fu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Shengmei Guo
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Hu Cai
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| |
Collapse
|
29
|
Wang C, Qi R, Xu Z. Glycosyl Radical-Based Synthesis of C-Glycoamino Acids and C-Glycopeptides. Chemistry 2022; 29:e202203689. [PMID: 36586132 DOI: 10.1002/chem.202203689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
Radical-based reactions usually exhibit excellent functional-group compatibilities due to their mild initiation conditions. Glycosyl radical involved C-glycosylation modifications are important strategies to achieve highly regio- and chemoselective constructions of C-glycosidic bonds or C-glycoside linkages of peptides and proteins. In this Concept, we cover recent developments in glycosyl radical-based synthesis of unnatural amino acids and late-stage modification of peptides and proteins, and provide a preliminary outlook on the possible development of this direction in the future.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P.R. China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, P.R. China
| | - Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P.R. China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P.R. China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, P.R. China
| |
Collapse
|
30
|
Li Y, Yang J, Geng X, Tao P, Shen Y, Su Z, Zheng K. Modular Construction of Unnatural α‐Tertiary Amino Acid Derivatives by Multicomponent Radical Cross‐Couplings. Angew Chem Int Ed Engl 2022; 61:e202210755. [DOI: 10.1002/anie.202210755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Yujun Li
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Jie Yang
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Xinxin Geng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Pan Tao
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Yanling Shen
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
31
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
32
|
Anti-Markovnikov ring-opening of sulfonium salts with alkynes by visible light/copper catalysis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Wang J, Ye Y, Sang T, Zhou C, Bao X, Yuan Y, Huo C. C(sp 3)-H/C(sp 3)-H Dehydrogenative Radical Coupling of Glycine Derivatives. Org Lett 2022; 24:7577-7582. [PMID: 36214657 DOI: 10.1021/acs.orglett.2c02951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report a general C(sp3)-H/C(sp3)-H dehydrogenative coupling strategy for the preparation of various natural or unnatural amino acids from readily available glycine derivatives and hydrocarbons through a combination of SET and HAT process.
Collapse
Affiliation(s)
- Jiayuan Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Tongzhi Sang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Chenxing Zhou
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
34
|
Yang X, Yu W. Promoting effect of water on light and phenanthroline-diphosphine Cu(I) complex-initiated iodine atom transfer cyclisation. Chem Commun (Camb) 2022; 58:11693-11696. [PMID: 36177844 DOI: 10.1039/d2cc04324f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water can greatly facilitate the iodine atom transfer cyclisation of 2-allyloxy(or prop-2-yn-1-yloxy)-3-iodo tetrahydropyrans and tetrahydrofurans initiated by phenanthroline-diphosphine Cu(I) complexes under 455 nm light irradiation. Good yields were obtained in a mixture of acetonitrile and water (1 : 4, v/v) or in pure water, whereas no reaction took place in acetonitrile under the otherwise same conditions. The copper complexes are virtually heterogeneous in the water-dominant reaction media, which is believed to be a main reason for the beneficial effect of water.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
35
|
Babu MH, Sim J. Radical‐Mediated C‐H Alkylation of Glycine Derivatives: A Straightforward Strategy for Diverse α‐Unnatural Amino Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Madala Hari Babu
- Chungnam National University College of Pharmacy KOREA, REPUBLIC OF
| | - Jaehoon Sim
- Chungnam National University College of Pharmacy College of Pharmacy 99 Daehak-ro, Yuseong-guW6 College of Pharmacy 34134 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
36
|
Baeza Cinco MÁ, Wu G, Telser J, Hayton TW. Structural and Spectroscopic Characterization of a Zinc-Bound N-Oxyphthalimide Radical. Inorg Chem 2022; 61:13250-13255. [PMID: 35972238 DOI: 10.1021/acs.inorgchem.2c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermolysis of a 1:1:1 mixture of MeLH (MeL = {(2,6-iPr2C6H3)NC(Me)}2CH), N-hydroxyphthalimide (HOPth), and diethylzinc in toluene at 77 °C provided [MeLZn(OPth)] (1) in good yield after workup. The subsequent reduction of 1 with 1.3 equiv of KC8 and 1 equiv of 2.2.2-cryptand, in tetrahydrofuran, provided [K(2.2.2-cryptand)][MeLZn(OPth)] (2) in 74% yield after workup. Characterization of 2 via X-ray crystallography and electron paramagnetic resonance spectroscopy reveals the presence of an S = 1/2 radical on the N-oxyphthalimide ligand. Importantly, these data represent the first structural and spectroscopic confirmation of the redox activity of a metal-bound N-oxyphthalimide fragment, expanding the range of structurally characterized redox-active ligands.
Collapse
Affiliation(s)
- Miguel Á Baeza Cinco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93016, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93016, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, 430 South Michigan Avenue. Chicago, Illinois 60605-1394, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93016, United States
| |
Collapse
|
37
|
San Segundo M, Correa A. Radical C–H Alkylation with Ethers and Unactivated Cycloalkanes toward the Assembly of Tetrasubstituted Amino Acid Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Jiang C, Sha X, Ni C, Qin W, Zhu X, Wang S, Li X, Lu H. Visible-Light-Promoted Cross Dehydrogenative/Decarboxylative Coupling Cascades of Glycine Ester Derivatives and β-Keto Acids. J Org Chem 2022; 87:8744-8751. [PMID: 35708260 DOI: 10.1021/acs.joc.2c00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-induced dehydrogenative/decarboxylative coupling reaction of arylglycine derivatives and β-keto acids is described. This photocatalyst- and additive-free protocol can be applied in the efficient synthesis of γ-keto glycine derivatives under ambient conditions. Further uses of this methodology and a plausible mechanism are also demonstrated.
Collapse
Affiliation(s)
- Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xuefei Sha
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Cheng Ni
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Wei Qin
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xuejie Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Shan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xuan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| |
Collapse
|
39
|
Ding YN, Li N, Huang YC, An Y, Liang YM. Visible-Light-Induced Copper-Catalyzed Asymmetric C(sp 3)-C(sp 3)-H Glycosylation: Access to C-Glycopeptides. Org Lett 2022; 24:4519-4523. [PMID: 35729799 DOI: 10.1021/acs.orglett.2c01501] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, a practical and highly efficient method for visible-light-induced copper-catalyzed N-aminoquinoline-directed asymmetric C(sp3)-C(sp3)-H glycosylation was reported. At the same time, C(sp3)-C(sp3)-H glycosylation of nondeoxysugars with amino acids to construct C-glycopeptides was achieved. This approach promoted the synthesis of various C-glycopeptides and provided a new model for the synthesis of C-glycoamino acids.
Collapse
Affiliation(s)
- Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ning Li
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yan-Chong Huang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
40
|
Chowdhury R. Eosin-Y/Cu(OAc) 2-catalyzed aerobic oxidative coupling reactions of glycine esters in the dark. Org Biomol Chem 2022; 20:5387-5392. [PMID: 35748811 DOI: 10.1039/d2ob00678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic aerobic oxidative coupling reactions of glycine esters with β-keto acids, indoles, naphthols, and pyrrole have been realized at ambient temperature via the manipulation of the ground state reactivity of eosin-Y in the presence of Cu(OAc)2 in the dark. This method delivers structurally diverse unnatural amino acid derivatives under mild reaction conditions. UV-vis absorption spectroscopy, cyclic voltammetry, X-ray photoelectron spectroscopy, high-resolution mass spectrometry, and control experiments were performed to formulate a plausible mechanistic pathway. The step economy, broad substrate scope, use of air as a green oxidant, and operationally simple set-up make this protocol highly appealing for both academic and industrial applications.
Collapse
Affiliation(s)
- Raghunath Chowdhury
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktingar, Mumbai-94, India
| |
Collapse
|
41
|
Qi R, Wang C, Ma Z, Wang H, Chen Q, Liu L, Pan D, Ren X, Wang R, Xu Z. Visible-Light-Promoted Stereoselective C(sp 3 )-H Glycosylation for the Synthesis of C-Glycoamino Acids and C-Glycopeptides. Angew Chem Int Ed Engl 2022; 61:e202200822. [PMID: 35315966 DOI: 10.1002/anie.202200822] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/09/2022]
Abstract
The glycosylative modification of peptides could improve the pharmacological properties of peptide drugs and deliver them efficiently to the target sites. Compared with O-/N-glycosides, C-glycosides exhibit more metabolic stability. We here disclose the first example of visible-light-promoted and Cu-catalyzed stereoselective C-glycosylation. The mild reaction conditions are compatible with various carbohydrate substrates, as demonstrated with a series of monosaccharides and a disaccharide, and are amenable to the synthesis of a wide variety of C-glycoamino acids and C-glycopeptidomimetics with good yields and excellent stereoselectivities. The dual-functional photocatalyst formed in situ via coordination of the glycine derivative and the chiral phosphine Cu complex could not only catalyze the photoredox process but also control the stereoselectivity of the glycosylation reaction.
Collapse
Affiliation(s)
- Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zijian Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Hongying Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Liangyu Liu
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Da Pan
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Xiaoyu Ren
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, China
| |
Collapse
|
42
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
43
|
Qi R, Wang C, Ma Z, Wang H, Chen Q, Liu L, Pan D, Ren X, Wang R, Xu Z. Visible‐Light‐Promoted Stereoselective C(sp
3
)−H Glycosylation for the Synthesis of
C
‐Glycoamino Acids and
C
‐Glycopeptides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Zijian Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Hongying Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Qiao Chen
- School of Pharmacy Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Liangyu Liu
- School of Pharmacy Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Da Pan
- School of Pharmacy Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Xiaoyu Ren
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
- Research Unit of Peptide Science 2019RU066 Chinese Academy of Medical Sciences 199 West Donggang Road Lanzhou 730000 China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
- Research Unit of Peptide Science 2019RU066 Chinese Academy of Medical Sciences 199 West Donggang Road Lanzhou 730000 China
| |
Collapse
|
44
|
Wang Y, Yang M, Lao C, Jiang Z. Potassium-Base-Mediated Autoxidative Diastereoselective Homocoupling of N-Acyl-2-aminoacetophenones. Org Lett 2022; 24:2625-2629. [PMID: 35380842 DOI: 10.1021/acs.orglett.2c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We herein report a general and highly efficient method for the synthesis of dl-2,3-diamide-1,4-diones via autoxidative dehydrogenative homocoupling of N-acyl-2-aminoacetophenones mediated by t-BuOK. The transformation is mild, operationally simple, and environmentally friendly. Control experiments and stereochemical results suggest that the substrate undergoes autoxidation followed by a diastereoselective SN2 reactopm.
Collapse
Affiliation(s)
- Yingwei Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Mingrong Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Chichou Lao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
45
|
Utilization of photocatalysts in decarboxylative coupling of carboxylic N-hydroxyphthalimide (NHPI) esters. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Xiong W, Qin WB, Zhao YS, Fu KZ, Liu GK. Direct C(sp3)−H Difluoromethylation via Radical-Radical Cross-Coupling by Visible-Light Photoredox Catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00192f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the radical-radical cross-coupling strategy for direct difluoromethylation of C(sp3)−H bond is reported. This transformation was readily accomplished under transition metal-free photoredox catalysis in the presence of 3 mol% of...
Collapse
|
47
|
Li X, Jiang M, Zhu X, Song X, Deng Q, Lv J, Yang D. A desulphurization strategy for Sonogashira couplings by visible light/copper catalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01548f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a new copper-based photocatalyst, [(binap)(tpy)Cu]Cl, and applied it in the visible-light promoted Sonogashira coupling reactions.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Min Jiang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Xiaolong Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qirong Deng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
48
|
Zhou SY, Zhang D, Liu XJ, Qin JH, Fu ZL, Li SL, Cai FJ, Li Y, Li JH. Visible-Light-Driven Photoredox-Catalyzed C(sp3)-C(sp3) Cross-Coupling of N-arylamines with Cycloketone Oxime Esters. Org Chem Front 2022. [DOI: 10.1039/d2qo00128d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photoredox-catalyzed C(sp3)-C(sp3) cross-coupling between N-arylamines and cycloketone oxime esters under mild conditions has been accomplished. The redox-neutral reaction proceeds good functional group tolerance and excellent regioselectivity without any...
Collapse
|
49
|
Liu Y, Shi B, Liu Z, Gao R, Huang C, Alhumade H, Wang S, Qi X, Lei A. Time-Resolved EPR Revealed the Formation, Structure, and Reactivity of N -Centered Radicals in an Electrochemical C(sp 3)-H Arylation Reaction. J Am Chem Soc 2021; 143:20863-20872. [PMID: 34851107 DOI: 10.1021/jacs.1c09341] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electrochemical synthesis has been rapidly developed over the past few years, while a vast majority of the reactions proceed through a radical pathway. Understanding the properties of radical intermediates is crucial in the mechanistic study of electrochemical transformations and will be beneficial for developing new reactions. Nevertheless, it is rather difficult to determine the "live" radical intermediates due to their high reactivity. In this work, the formation and structure of sulfonamide N-centered radicals have been researched directly by using the time-resolved electron paramagnetic resonance (EPR) technique under electrochemical conditions. Supported by the EPR results, the reactivity of N-centered radicals as a mediator in the hydrogen atom transfer (HAT) approach has been discussed. Subsequently, these mechanistic study results have been successfully utilized in the discovery of an unactivated C(sp3)-H arylation reaction. The kinetic experiments have revealed the rate-determined step is the anodic oxidation of sulfonamides.
Collapse
Affiliation(s)
- Yichang Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Biyin Shi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zhao Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Renfei Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Cunlong Huang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Center of Research Excellence in Renewable Energy and Power Ststems, King Abdulzaziz University, Jeddah 21589, Saudi Arabia
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Xiaotian Qi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China.,Department of Chemical and Materials Engineering, Abdulzaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
50
|
Zhang G, Xiong Y, Li S, Xiao H. Recent Advances in Visible-Light-Promoted Copper Catalysis in Organic Reactions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1533-3597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractIn recent years, visible-light-mediated copper photocatalysis has emerged as an attractive strategy for the diverse construction of basic bonds in an ecologically benign and cost-effective fashion. The intense activity in these areas has been stimulated by the distinctive properties of copper photocatalysts and has led to the rapid development and expansion of their applications. In this review, we focus on a series of significant achievements in the use of copper complexes as standalone photocatalysts in organic reactions to exhibit their high flexibility and potential in synthetic chemistry.1 Introduction2 Redox Coupling Reactions2.1 Carbon–Nitrogen Redox Coupling Reactions2.2 Carbon–Carbon Redox Coupling Reactions3 Oxidative Coupling Reactions4 Difunctionalization of Olefins5 C–H Bond Functionalization6 Radical Alkylation of Imines7 Conclusions and Outlook
Collapse
Affiliation(s)
- Guozhu Zhang
- College of Chemistry, Central China Normal University (CCNU)
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Yang Xiong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Sijia Li
- College of Chemistry, Central China Normal University (CCNU)
| | - Haijing Xiao
- College of Chemistry, Central China Normal University (CCNU)
| |
Collapse
|