1
|
Kim J, Kim YE, Hong S. Traceless Nucleophile Strategy for C5-Selective C-H Sulfonylation of Pyridines. Angew Chem Int Ed Engl 2024; 63:e202409561. [PMID: 39126202 DOI: 10.1002/anie.202409561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The functionalization of pyridines is crucial for the rapid construction and derivatization of agrochemicals, pharmaceuticals, and materials. Conventional functionalization approaches have primarily focused on the ortho- and para-positions, while achieving precise meta-selective functionalization, particularly at the C5 position in substituted pyridines, remains a formidable challenge due to the intrinsic electronic properties of pyridines. Herein, we present a new strategy for meta- and C5-selective C-H sulfonylation of N-amidopyridinium salts, which employs a transient enamine-type intermediate generated through a nucleophilic addition to N-amidopyridinium salts. This process harnesses the power of electron donor-acceptor complexes, enabling high selectivity and broad applicability, including the construction of complex pyridines bearing valuable sulfonyl functionalities under mild conditions without the need for an external photocatalyst. The remarkable C5 selectivity, combined with the broad applicability to late-stage functionalization, significantly expands the toolbox for pyridine functionalization, unlocking access to previously unattainable meta-sulfonylated pyridines.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| | - Ye-Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Kitcatt D, Pogacar E, Mi L, Nicolle S, Lee AL. Light-Mediated Direct Decarboxylative Giese Aroylations without a Photocatalyst. J Org Chem 2024; 89:16055-16059. [PMID: 39438444 PMCID: PMC11536358 DOI: 10.1021/acs.joc.4c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Previous light-mediated approaches to the direct decarboxylative Giese aroylation reaction have mainly relied on the use of a photocatalyst and a reductive quenching pathway. By exploiting a mechanistically distinct oxidative protocol, we have successfully developed a photocatalyst-free, light-mediated direct Giese aroylation methodology.
Collapse
Affiliation(s)
- David
M. Kitcatt
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Eva Pogacar
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Le Mi
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Simon Nicolle
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Ai-Lan Lee
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| |
Collapse
|
3
|
Pal K, Das D, Ghosh KG, Sureshkumar D. Visible-Light Driven Synthesis of Vinyl Amines without Photocatalyst. J Org Chem 2024; 89:15317-15324. [PMID: 39326405 DOI: 10.1021/acs.joc.4c01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
We developed a visible-light-induced vinyl amination of activated alkenes using TMSN3 and CsF through EDA complex formation under an oxygen atmosphere. Without light, the EDA complex forms between activated alkene, CsF, and oxygen. Upon exposure to light, oxygen in the complex gets excited, initiating the HAT process. This method efficiently synthesizes vinyl-amine derivatives via a radical pathway, demonstrating good functional group tolerance and high yields in a short time. Further, the late-stage functionalization enables the synthesis of biologically active heterocycles.
Collapse
Affiliation(s)
- Koustav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Debabrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Krishna Gopal Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|
4
|
Dash OP, Garg D, Volla CMR. Rh(III)-catalyzed aldehydic and aryl C-H alkylation with cyclopropanols via C-H/C-C bond activation. Chem Commun (Camb) 2024; 60:10576-10579. [PMID: 39233631 DOI: 10.1039/d4cc03797a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Herein, we report Rh(III) catalyzed aldehydic or aryl C-H alkylation via C-C bond activation of cyclopropanols, facilitating the synthesis of β-functionalized ketones. The protocol employs cyclopropanol as the alkylating agent with 2-aminobenzaldehyde or aniline derivatives to access a variety of unsymmetrical 1,4-diketones or β-aryl ketones, respectively. The practicality of these transformations is showcased through the modification of natural products, gram-scale synthesis, broad substrate scope and postfunctionalizations.
Collapse
Affiliation(s)
- Om Prakash Dash
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Divya Garg
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
5
|
Schmitz M, Bertrams MS, Sell AC, Glaser F, Kerzig C. Efficient Energy and Electron Transfer Photocatalysis with a Coulombic Dyad. J Am Chem Soc 2024; 146:25799-25812. [PMID: 39227057 DOI: 10.1021/jacs.4c08551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Photocatalysis holds great promise for changing the way value-added molecules are currently prepared. However, many photocatalytic reactions suffer from quantum yields well below 10%, hampering the transition from lab-scale reactions to large-scale or even industrial applications. Molecular dyads can be designed such that the beneficial properties of inorganic and organic chromophores are combined, resulting in milder reaction conditions and improved reaction quantum yields of photocatalytic reactions. We have developed a novel approach for obtaining the advantages of molecular dyads without the time- and resource-consuming synthesis of these tailored photocatalysts. Simply by mixing a cationic ruthenium complex with an anionic pyrene derivative in water a salt bichromophore is produced owing to electrostatic interactions. The long-lived organic triplet state is obtained by static and quantitative energy transfer from the preorganized ruthenium complex. We exploited this so-called Coulombic dyad for energy transfer catalysis with similar reactivity and even higher photostability compared to a molecular dyad and reference photosensitizers in several photooxygenations. In addition, it was shown that this system can also be used to maximize the quantum yield of photoredox reactions. This is due to an intrinsically higher cage escape quantum yield after photoinduced electron transfer for purely organic compounds compared to heavy atom-containing molecules. The combination of laboratory-scale as well as mechanistic irradiation experiments with detailed spectroscopic investigations provided deep mechanistic insights into this easy-to-use photocatalyst class.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Arne C Sell
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Felix Glaser
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
6
|
Lu S, Xiang Y, Chen J, Shu C. Recent Developments in Photoinduced Decarboxylative Acylation of α-Keto Acids. Molecules 2024; 29:3904. [PMID: 39202983 PMCID: PMC11357500 DOI: 10.3390/molecules29163904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Ketones are ubiquitous patterns found in various biological molecules and natural products. In recent years, a number of acylation methods have been developed based on the use of α-oxocarboxylic acids as acyl-transfer reagents, with particular emphasis on the photoinduced decarboxylative acylation of α-keto acids. This review focuses on the latest advancements in acylation methodologies through the decarboxylation of α-keto acids over the past several years, highlighting their product diversity, selectivity, and applicability. Where possible, the mechanistic rationale is presented, providing a positive outlook for the promising future of this field.
Collapse
Affiliation(s)
- Shuaiqi Lu
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan 430079, China
| | - Yilong Xiang
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan 430079, China
| | - Jingfu Chen
- China National Standard Pharmaceutical Corporation Limited, Huangshi 435002, China
| | - Chao Shu
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan 430079, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
7
|
Xie Z, Cao B, Zhao J, Liu M, Lao Y, Luo H, Zhong Z, Xiong X, Wei W, Zou T. Ion Pairing Enables Targeted Prodrug Activation via Red Light Photocatalysis: A Proof-of-Concept Study with Anticancer Gold Complexes. J Am Chem Soc 2024; 146:8547-8556. [PMID: 38498689 DOI: 10.1021/jacs.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photocatalysis has found increasing applications in biological systems, for example, in localized prodrug activation; however, high-energy light is usually required without giving sufficient efficiency and target selectivity. In this work, we report that ion pairing between photocatalysts and prodrugs can significantly improve the photoactivation efficiency and enable tumor-targeted activation by red light. This is exemplified by a gold-based prodrug (1d) functionalized with a morpholine moiety. Such a modification causes 1d to hydrolyze in aqueous solution, forming a cationic species that tightly interacts with anionic photosensitizers including Eosin Y (EY) and Rose Bengal (RB), along with a significant bathochromic shift of absorption tailing to the far-red region. As a result, a high photoactivation efficiency of 1d by EY or RB under low-energy light was found, leading to an effective release of active gold species in living cells, as monitored by a gold-specific biosensor (GolS-mCherry). Importantly, the morpholine moiety, with pKa ∼6.9, in 1d brings in a highly pH-sensitive and preferential ionic interaction under a slightly acidic condition over the normal physiological pH, enabling tumor-targeted prodrug activation by red light irradiation in vitro and in vivo. Since a similar absorption change was found in other morpholine/amine-containing clinic drugs, photocages, and precursors of reactive labeling intermediates, it is believed that the ion-pairing strategy could be extended for targeted activation of different prodrugs and for mapping of an acidic microenvironment by low-energy light.
Collapse
Affiliation(s)
- Zhiying Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Education Sciences, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Moyi Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuhan Lao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hejiang Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhi Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Zhao H, Zong Y, Sun Y, An G, Wang J. An Organocatalytic System for Z-Alkene Synthesis via a Hydrogen-Bonding-Assisted Photoinduced Electron Donor-Acceptor Complex. Org Lett 2024; 26:1739-1744. [PMID: 38367258 DOI: 10.1021/acs.orglett.4c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
A general catalytic donor for the combination of a photoinduced electron donor-acceptor (EDA) complex and energy transfer was developed. This mild and metal-free protocol allows facile access to various Z-alkenes. Mechanism studies revealed that the organophotocatalyst, 4-CzIPN, formed a distinct three-component EDA complex with redox-active esters and (C6H5O)2P(O)OH to trigger the photoredox catalysis. The E → Z isomerization was achieved via electron exchange energy transfer from 4-CzIPN.
Collapse
Affiliation(s)
- Hui Zhao
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P. R.China
| | - Yingxiao Zong
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye, Gansu 734000, P. R. China
| | - Yue Sun
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P. R.China
| | - Guanghui An
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P. R.China
| | - Junke Wang
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye, Gansu 734000, P. R. China
| |
Collapse
|
9
|
Wei J, Meng J, Zhang C, Liu Y, Jiao N. Dioxygen compatible electron donor-acceptor catalytic system and its enabled aerobic oxygenation. Nat Commun 2024; 15:1886. [PMID: 38424055 PMCID: PMC10904740 DOI: 10.1038/s41467-024-45866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
The photochemical properties of Electron Donor-Acceptor (EDA) complexes present exciting opportunities for synthetic chemistry. However, these strategies often require an inert atmosphere to maintain high efficiency. Herein, we develop an EDA complex photocatalytic system through rational design, which overcomes the oxygen-sensitive limitation of traditional EDA photocatalytic systems and enables aerobic oxygenation reactions through dioxygen activation. The mild oxidation system transfers electrons from the donor to the effective catalytic acceptor upon visible light irradiation, which are subsequently captured by molecular oxygen to form the superoxide radical ion, as demonstrated by the specific fluorescent probe, dihydroethidine (DHE). Furthermore, this visible-light mediated oxidative EDA protocol is successfully applied in the aerobic oxygenation of boronic acids. We believe that this photochemical dioxygen activation strategy enabled by EDA complex not only provides a practical approach to aerobic oxygenation but also promotes the design and application of EDA photocatalysis under ambient conditions.
Collapse
Affiliation(s)
- Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
| | - Junhong Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Caifang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Yameng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China.
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China.
- State Key Laboratory of Organometallic Chemistry Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
10
|
Ashirbaev SS, Brás NF, Frei P, Liu K, Moser S, Zipse H. Redox-Mediated Amination of Pyrogallol-Based Polyphenols. Chemistry 2024; 30:e202303783. [PMID: 38029366 DOI: 10.1002/chem.202303783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Flavonoids are known to covalently modify amyloidogenic peptides by amination reactions. The underlying coupling process between polyphenols and N-nucleophiles is assessed by several in vitro and in silico approaches. The coupling reaction involves a sequence of oxidative dearomatization, amination, and reductive amination (ODARA) reaction steps. The C6-regioselectivity of the product is confirmed by crystallographic analysis. Under aqueous conditions, the reaction of baicalein with lysine derivatives yields C-N coupling as well as hydrolysis products of transient imine intermediates. The observed C-N coupling reactions work best for flavonoids combining a pyrogallol substructure with an electron-withdrawing group attached to the C4a-position. Thermodynamic properties such as bond dissociation energies also highlight the key role of pyrogallol units for the antioxidant ability. Combining the computed electronic properties and in vitro antioxidant assays suggests that the studied pyrogallol-containing flavonoids act by various radical-scavenging mechanisms working in synergy. Multivariate analysis indicates that a small number of descriptors for transient intermediates of the ODARA process generates a model with excellent performance (r=0.93) for the prediction of cross-coupling yields. The same model has been employed to predict novel antioxidant flavonoid-based molecules as potential covalent inhibitors, opening a new avenue to the design of therapeutically relevant anti-amyloid compounds.
Collapse
Affiliation(s)
- Salavat S Ashirbaev
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Natércia F Brás
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Patricia Frei
- Department of Pharmacy, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Kuangjie Liu
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Simone Moser
- Institute of Pharmacy, University of Innsbruck, Innrain 80-13, 6020, Innsbruck, Austria
| | - Hendrik Zipse
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
11
|
Xue T, Ma C, Liu L, Xiao C, Ni SF, Zeng R. Characterization of A π-π stacking cocrystal of 4-nitrophthalonitrile directed toward application in photocatalysis. Nat Commun 2024; 15:1455. [PMID: 38365855 PMCID: PMC10873295 DOI: 10.1038/s41467-024-45686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Photoexcitation of the electron-donor-acceptor complexes have been an effective approach to achieve radicals by triggering electron transfer. However, the catalytic version of electron-donor-acceptor complex photoactivation is quite underdeveloped comparing to the well-established utilization of electronically biased partners. In this work, we utilize 4-nitrophthalonitrile as an electron acceptor to facilitate the efficient π-stacking with electron-rich aromatics to form electron-donor-acceptor complex. The characterization and energy profiles on the cocrystal of 4-nitrophthalonitrile and 1,3,5-trimethoxybenzene disclose that the electron transfer is highly favorable under the light irradiation. This electron acceptor catalyst can be efficiently applied in the benzylic C-H bond photoactivation by developing the Giese reaction of alkylanisoles and the oxidation of the benzyl alcohols. A broad scope of electron-rich aromatics can be tolerated and a mechanism is also proposed. Moreover, the corresponding π-anion interaction of 4-nitrophthalonitrile with potassium formate can further facilitate the hydrocarboxylation of alkenes efficiently.
Collapse
Affiliation(s)
- Ting Xue
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Cheng Ma
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Le Liu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Chunhui Xiao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063, Guangdong, PR China.
| | - Rong Zeng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
12
|
Mondal S, Midya SP, Mondal S, Das S, Ghosh P. Merging Photocatalytic Doubly-Decarboxylative C sp 2 -C sp 2 Cross-Coupling for Stereo-Selective (E)-α,β-Unsaturated Ketones Synthesis. Chemistry 2024; 30:e202303337. [PMID: 37987541 DOI: 10.1002/chem.202303337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
A photocatalytic domain of doubly decarboxylative Csp 2 -Csp 2 cross coupling reaction is disclosed. Merging iridium and palladium photocatalysis manifested carbon-carbon bonds in a tandem dual-radical pathway. Present catalytic platform efficiently cross-coupled α, β-unsaturated acids and α-keto acids to afford a variety of α, β-unsaturated ketones with excellent (E)-selectivity and functional group tolerance. Mechanistically, photocatalyst implicated through reductive quenching cycle whereas cross coupling proceeded over one electron oxidative pallado-cycle.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Siba P Midya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Suman Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
13
|
Li HC, Zhao KY, Tan Y, Wang HS, Wang WS, Chen XL, Yu B. Visible-Light-Promoted Intermolecular β-Acyl Difunctionalization of Alkenes via Oxidative Radical-Polar Crossover. Org Lett 2023; 25:8067-8071. [PMID: 37939226 DOI: 10.1021/acs.orglett.3c03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A visible-light-induced β-acyl difunctionalization of alkenes with acyl oxime esters and various nucleophiles was developed to achieve molecular complexity from readily available raw materials via oxidative radical-polar crossover. A variety of nucleophiles, including NH-sulfoximines, indoles, indazole, and trimethoxybenzene, were all effectively applicable to the sustainable reaction system. The novel synthetic strategy features mild reaction conditions, a broad substrate scope (39 examples), easy scale-up, and excellent regioselectivity.
Collapse
Affiliation(s)
- Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ke-Yuan Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Tan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Hao-Sen Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Shan Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
14
|
Mörsdorf JM, Ballmann J. Coordination-Induced Radical Generation: Selective Hydrogen Atom Abstraction via Controlled Ti-C σ-Bond Homolysis. J Am Chem Soc 2023; 145:23452-23460. [PMID: 37861658 DOI: 10.1021/jacs.3c05748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A method for the generation of transient alkyl radicals via homolytic Ti-C bond cleavage was developed by employing a tailor-made organotitanium half-cage complex. In contrast to established metal-mediated radical initiation protocols via thermal or photochemical M-C σ-bond homolysis, radical formation is triggered solely by coordination of a solvent molecule (thf) to a titanium(IV) center. During the reaction, the nonstabilized alkyl radical is formed along with a persistent titanium(III) metalloradical, thus taming the former transient radical (persistent radical effect). Radical coupling and hydrogen atom abstraction (HAT) reactions have been explored not only experimentally but also computationally and by means of kinetic analysis. Exploiting these findings led to the development of selective HAT transformations, for example, with 9,10-dihydroanthracene. Deuterium labeling studies using selectively deuterated alkyls and 9,10-dihydroanthracene-d4 confirmed a radical pathway, which was underpinned by developing a radical-radical cross-coupling reaction for transferring the alkyl radical to a stable Sn-centered radical. To set the stage for an application in organic synthesis, a 5-endo-trig radical cyclization based on our methodology was established, and a dihydroxylated sesquiterpene was thus prepared in high diastereomeric excess.
Collapse
Affiliation(s)
- Jean-Marc Mörsdorf
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Palani P, Arumugam A, Raja D, Muthu K, Senadi GC. Photoredox-catalyzed 1,2-oxo-alkylation of vinyl arenes with 1,3-diketones: an approach to 1,4-dicarbonyls via C-C activation. Chem Commun (Camb) 2023; 59:11433-11436. [PMID: 37671608 DOI: 10.1039/d3cc02366d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A mild and inexpensive approach to synthesising a series of 1,4-diketones in moderate to excellent yields via 1,2-oxo alkylation has been developed using fluorescein as a photocatalyst and air as an oxidant. The key features include (i) varied substrate scope (39 examples); (ii) good functional group tolerance; (iii) unsymmetrical 1,4-dicarbonyls; (iv) late-stage functionalization of thymol and ibuprofen derivatives; and (v) the synthetic expansion to 5- and 6-membered N-, O- and S-containing heterocycles.
Collapse
Affiliation(s)
- Pushbaraj Palani
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ajithkumar Arumugam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India.
| | - Dineshkumar Raja
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India.
| | - Kesavan Muthu
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India
| | - Gopal Chandru Senadi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
16
|
Kitcatt DM, Scott KA, Rongione E, Nicolle S, Lee AL. Direct decarboxylative Giese amidations: photocatalytic vs. metal- and light-free. Chem Sci 2023; 14:9806-9813. [PMID: 37736650 PMCID: PMC10510818 DOI: 10.1039/d3sc03143h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
A direct intermolecular decarboxylative Giese amidation reaction from bench stable, non-toxic and environmentally benign oxamic acids has been developed, which allows for easy access to 1,4-difunctionalised compounds which are not otherwise readily accessible. Crucially, a more general acceptor substrate scope is now possible, which renders the Giese amidation applicable to more complex substrates such as natural products and chiral building blocks. Two different photocatalytic methods (one via oxidative and the other via reductive quenching cycles) and one metal- and light-free method were developed and the flexibility provided by different conditions proved to be crucial for enabling a more general substrate scope.
Collapse
Affiliation(s)
- David M Kitcatt
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Katie A Scott
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Elena Rongione
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Simon Nicolle
- GlaxoSmithKline Gunnels Wood Rd Stevenage SG1 2NY UK
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| |
Collapse
|
17
|
Abstract
Recently, organic synthesis has seen a renaissance in radical chemistry due to the accessibility of mild methods for radical generation using visible light. While renewed interest in synthetic radical chemistry has been driven by the advent of photoredox catalysis, a resurgence of electron donor-acceptor (EDA) photochemistry has also led to many new radical transformations. Similar to photoredox catalysis, EDA photochemistry involves light-promoted single-electron transfer pathways. However, the mechanism of electron transfer in EDA systems is unique wherein the lifetimes of radical intermediates are often shorter due to competitive back-electron transfer. Distinguishing between EDA and photoredox mechanisms can be challenging since they can form identical products. In this perspective, we seek to provide insight on the mechanistic studies which can distinguish between EDA and photoredox manifolds. Additionally, we highlight some key challenges in EDA photochemistry and suggest future goals which could advance the synthetic potential of this field of research.
Collapse
Affiliation(s)
- Alan K. Wortman
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corey R. J. Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Fang L, Jia S, Fan S, Zhu J. Palladium-catalyzed coupling of amides and cyclopropanols for the synthesis of γ-diketones. Chem Commun (Camb) 2023; 59:10392-10395. [PMID: 37551733 DOI: 10.1039/d3cc02888g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
A palladium catalytic method has been developed for the coupling of amides and cyclopropanols to γ-diketones, through simultaneous C-N and C-C activation. Heteroatom ligand exchange and heteroatom-to-carbon ligation mode switching enable the achievement of molecular cross-coupling in an amide N-atom structural context-dependent manner, avoiding any stoichiometric organometallic reagent or base.
Collapse
Affiliation(s)
- Lili Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Shuqi Jia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Shuaixin Fan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Jin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
19
|
Zhou Y, Zhao L, Hu M, Duan XH, Liu L. Visible-Light Photoredox-Catalyzed Divergent 1,2-Diacylation and Hydroacylation of Alkenes with Carboxylic Acid Anhydride. Org Lett 2023. [PMID: 37413688 DOI: 10.1021/acs.orglett.3c01787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
A photoredox-catalyzed divergent 1,2-dicarbonylation and hydroacylation of alkenes with acid anhydride is presented. This approach offers a mild and efficient entry to 1,4-dicarbonyl compounds bearing all-carbon quaternary centers, exhibiting a broad substrate scope and high functional group compatibility. Hydrocarbonylaltion of alkenes can also be realized by simply introducing a proton source to the reaction system. Mechanism investigations support a radical addition/radical-polar crossover cascade.
Collapse
Affiliation(s)
- Youkang Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lirong Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
20
|
Fischer DM, Freis M, Amberg WM, Lindner H, Carreira EM. Organophotocatalytic carbo-heterofunctionalization of unactivated olefins with pendant nucleophiles. Chem Sci 2023; 14:7256-7261. [PMID: 37416720 PMCID: PMC10321488 DOI: 10.1039/d3sc02250a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
We report the difunctionalization of unactivated, terminal olefins through intermolecular addition of α-bromoketones, -esters, and -nitriles followed by formation of 4- to 6-membered heterocycles with pendant nucleophiles. The reaction can be conducted with alcohols, acids, and sulfonamides as nucleophiles furnishing products bearing 1,4 functional group relationships that offer various handles for further manipulation. Salient features of the transformations are the use of 0.5 mol% of a benzothiazinoquinoxaline organophotoredox catalyst and their robustness with respect to air and moisture. Mechanistic investigations are carried out and a catalytic cycle for the reaction is proposed.
Collapse
Affiliation(s)
- David M Fischer
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland
| | - Manuel Freis
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland
| | - Willi M Amberg
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland
| | - Henry Lindner
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland
| | - Erick M Carreira
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland
| |
Collapse
|
21
|
Gómez-Gil S, Rubio-Presa R, Hernández-Ruiz R, Suárez-Pantiga S, Pedrosa MR, Sanz R. Synthesis of 1,4-ketoaldehydes and 1,4-diketones by Mo-catalyzed oxidative cleavage of cyclobutane-1,2-diols. Org Biomol Chem 2023; 21:4185-4190. [PMID: 37128956 DOI: 10.1039/d3ob00436h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A new two-step procedure for the synthesis of 1,4-dicarbonyls has been developed involving an efficient and clean Mo-catalyzed oxidative cleavage of cyclobutane-1,2-diols with DMSO, which is used as solvent and oxidant. The required starting glycols were prepared by nucleophilic additions of organolithiums and Grignard reagents to easily available 2-hydroxycyclobutanones.
Collapse
Affiliation(s)
- Sara Gómez-Gil
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Rubén Rubio-Presa
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Raquel Hernández-Ruiz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Samuel Suárez-Pantiga
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - María R Pedrosa
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Roberto Sanz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
22
|
Meher P, Samanta RK, Manna S, Murarka S. Visible light photoredox-catalyzed arylative cyclization to access benzimidazo[2,1- a]isoquinolin-6(5 H)-ones. Chem Commun (Camb) 2023; 59:6092-6095. [PMID: 37128950 DOI: 10.1039/d3cc00605k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A photoredox-catalyzed arylative radical cascade involving N-acryloyl-2-arylbenzoimidazoles and diaryliodonium triflates leading to the formation of a broad array of pharmaceutically important arylated-benzimidazo[2,1-a]isoquinolin-6(5H)-ones is described. Importantly, the synthesized benzimidazoisoquinolinones are amenable for further synthetic manipulation and allowed efficient access to benzimidazo-fused polycyclic heterocycles.
Collapse
Affiliation(s)
- Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Raj Kumar Samanta
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sourav Manna
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| |
Collapse
|
23
|
Li JL, Yang SL, Dai QS, Huang H, Jiang L, Li QZ, Wang QW, Zhang X, Han B. Modular synthesis of 1,4-diketones through regioselective bis-acylation of olefins by merging NHC and photoredox catalysis. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
24
|
Wang Z, Chen J, Lin Z, Quan Y. Photoinduced Dehydrogenative Borylation via Dihydrogen Bond Bridged Electron Donor and Acceptor Complexes. Chemistry 2023; 29:e202203053. [PMID: 36396602 DOI: 10.1002/chem.202203053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Air-stable amine- and phosphine-boranes are discovered as donors to integrate with pyridinium acceptor for generating photoactive electron-donor-acceptor (EDA) complexes. Experimental results and DFT calculations suggest a dihydrogen bond bridging the donor and acceptor. Irradiating the EDA complex enables an intra-complex single electron transfer to give a boron-centered radical for dehydrogenative borylation with no need of external photosensitizer and radical initiator. The deprotonation of Wheland-like radical intermediate rather than its generation is believed to determine the good ortho-selectivity based on DFT calculations. A variety of α-borylated pyridine derivatives have been readily synthesized with good functional group tolerance.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Jiaxin Chen
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Yangjian Quan
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
25
|
Cheng YY, Hou HY, Liu Y, Yu JX, Chen B, Tung CH, Wu LZ. α-Acylation of Alkenes by a Single Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202208831. [PMID: 36202761 DOI: 10.1002/anie.202208831] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/05/2022]
Abstract
A direct strategy for the difunctionalization of alkenes, with acylation occurring at the more substituted alkene position, would be attractive for complex ketone synthesis. We report herein a reaction driven by a single photocatalyst that enables α-acylation in this way with the introduction of a fluoromethyl, alkyl, sulfonyl or thioether group at the β-position of the alkene with high chemo- and regioselectivity under extremely mild conditions. Crucial to the success of this method are rate differences in the kinetics of radical generation through single-electron transfer (SET) between different radical precursors and the excited photocatalyst (PC*). Thus, the β-position of the alkene is first occupied by the group derived from the radical precursor that can be generated most readily, and α-keto acids could be used as an electrophilic reagent for the α-acylation of alkenes.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong-Yu Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ji-Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Zhao F, Gu XW, Franke R, Wu XF. Copper-Catalyzed 1,2-Dicarbonylative Cyclization of Alkenes with Alkyl Bromides via Radical Cascade Process. Angew Chem Int Ed Engl 2022; 61:e202214812. [PMID: 36254794 PMCID: PMC10100518 DOI: 10.1002/anie.202214812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Indexed: 11/12/2022]
Abstract
Herein, we developed a new procedure on 1,2-dicarbonylative cyclization of 4-aryl-1-butenes with alkyl bromides. Using simple copper catalyst, two molecules of carbon monoxide were introduced into the double bond with the formation of four new C-C bonds and a new ring. Various α-tetralones and 2,3-dihydroquinolin-4-ones were formed in moderate to good yields.
Collapse
Affiliation(s)
- Fengqian Zhao
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany
| | - Xing-Wei Gu
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany
| | - Robert Franke
- Evonik Performance Materials GmbH, Paul-Baumann-Str. 1, 45772, Marl, Germany
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Liaoning Dalian, China
| |
Collapse
|
27
|
Pham TT. Advances in Carbon‐Carbon Bond Activation by Using Photocatalysts: A Mini Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202202679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Thuy Thanh Pham
- Department of Chemistry and Biochemistry New Mexico State University 1175 N Horseshoe Dr. Las Cruces NM 88003
| |
Collapse
|
28
|
Guo J, Xie Y, Lai ZM, Weng J, Chan ASC, Lu G. Enantioselective Hydroalkylation of Alkenylpyridines Enabled by Merging Photoactive Electron Donor–Acceptor Complexes with Chiral Bifunctional Organocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Guo
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ying Xie
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ze-Min Lai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
29
|
Luo Y, Wei Q, Yang L, Zhou Y, Cao W, Su Z, Liu X, Feng X. Enantioselective Radical Hydroacylation of α,β-Unsaturated Carbonyl Compounds with Aldehydes by Triplet Excited Anthraquinone. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04047] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yao Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qi Wei
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Liangkun Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
30
|
Gorbachev D, Smith E, Argent SP, Newton GN, Lam HW. Synthesis of New Morphinan Opioids by TBADT-Catalyzed Photochemical Functionalization at the Carbon Skeleton. Chemistry 2022; 28:e202201478. [PMID: 35661287 PMCID: PMC9544987 DOI: 10.1002/chem.202201478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/11/2022]
Abstract
The synthesis of new morphinan opioids by the addition of photochemically generated carbon-centered radicals to substrates containing an enone in the morphinan C-ring, is described. Using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom transfer photocatalyst, diverse radical donors can be used to prepare a variety of C8-functionalized morphinan opioids. This work demonstrates the late-stage modification of complex, highly functionalized substrates.
Collapse
Affiliation(s)
- Dmitry Gorbachev
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Elliot Smith
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Stephen P. Argent
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Graham N. Newton
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| |
Collapse
|
31
|
Ye HB, Zhou XY, Li L, He XK, Xuan J. Photochemical Synthesis of Succinic Ester-Containing Phenanthridines from Diazo Compounds as 1,4-Dicarbonyl Precursors. Org Lett 2022; 24:6018-6023. [PMID: 35947775 DOI: 10.1021/acs.orglett.2c02313] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We disclosed herein a straightforward photochemical method for the construction of phenanthridines containing a synthetically useful succinate unit. The reaction occurred under visible-light irradiation with cheap eosin Y Na as photoredox catalyst and a diazo compound as the succinate precursor. Under the optimal reaction conditions, a wide range of phenanthridines were obtained in moderate to good yields. Note that the succinate units in the final heterocycles could be easily transformed into many valuable structures, such as γ-butyrolactone, dihydrofuran-2(3H)-one, and tetrahydrofuran. Mechanistic experiments were performed to support the proposed mechanism.
Collapse
Affiliation(s)
- Hai-Bing Ye
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Xu-Yu Zhou
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Xiang-Kui He
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Hefei, Anhui 230601, China
| |
Collapse
|
32
|
Forni JA, Gandhi VH, Polyzos A. Carbonylative Hydroacylation of Styrenes with Alkyl Halides by Multiphoton Tandem Photoredox Catalysis in Flow. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- José A. Forni
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vir H. Gandhi
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- Dr A. Polyzos CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
33
|
Tasnim T, Ayodele MJ, Pitre SP. Recent Advances in Employing Catalytic Donors and Acceptors in Electron Donor-Acceptor Complex Photochemistry. J Org Chem 2022; 87:10555-10563. [PMID: 35904501 DOI: 10.1021/acs.joc.2c01013] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electron donor-acceptor (EDA) complexes provide a means to initiate radical reactions under visible light irradiation using substrates that do not absorb visible light individually. Catalytic approaches to complex formation are vital for advancing this synthetic strategy as it decouples the complexation and photogeneration of radicals from substrate functionalization, a limitation inherent to stoichiometric approaches that restricts structural diversity. This Synopsis highlights recent developments in EDA complex photochemistry in which either the donor or acceptor are employed catalytically.
Collapse
Affiliation(s)
- Tarannum Tasnim
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, Oklahoma 74078, United States
| | - Mayokun J Ayodele
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, Oklahoma 74078, United States
| | - Spencer P Pitre
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
34
|
Zhou W, Wu S, Melchiorre P. Tetrachlorophthalimides as Organocatalytic Acceptors for Electron Donor-Acceptor Complex Photoactivation. J Am Chem Soc 2022; 144:8914-8919. [PMID: 35549337 DOI: 10.1021/jacs.2c03546] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excitation of photoactive electron donor-acceptor (EDA) complexes is an effective way to generate radicals. Applications in a catalytic regime typically use catalytic donors. Herein, we report that readily available electron-poor tetrachlorophthalimides can act as effective organocatalytic acceptors to trigger the formation of EDA complexes with a variety of radical precursors not amenable to previous catalytic methods. Excitation with visible light generates carbon radicals under mild conditions. The versatility of this EDA complex catalytic platform allowed us to develop mechanistically distinct radical reactions, including in combination with a cobalt-based catalytic system. Quantum yield measurements established that a closed catalytic cycle is operational, which hints at the ability of tetrachlorophthalimides to readily turn over and govern each catalytic cycle.
Collapse
Affiliation(s)
- Wei Zhou
- ICIQ─Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain.,Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, 43007 Tarragona, Spain
| | - Shuo Wu
- ICIQ─Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain.,Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, 43007 Tarragona, Spain
| | - Paolo Melchiorre
- ICIQ─Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
35
|
Laha JK, Gulati U, Saima, Schulte T, Breugst M. pH-Controlled Intramolecular Decarboxylative Cyclization of Biarylacetic Acids: Implication on Umpolung Reactivity of Aroyl Radicals. J Org Chem 2022; 87:6638-6656. [PMID: 35484866 DOI: 10.1021/acs.joc.2c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple approach for the intramolecular aroylation of electron-rich arenes under mild conditions has been developed. A pH-controlled polarity umpolung strategy can be used to synthesize different fluorenones, which are important building blocks for biological applications. Unlike previous acylation reactions involving nucleophilic aroyl radicals, this approach likely relies on in situ generated electrophilic aroyl radicals. Detailed mechanistic and computational investigations provide detailed insights into the reaction mechanism and support the hypothesis of a pH-mediated umpolung.
Collapse
Affiliation(s)
- Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Upma Gulati
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Saima
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Tim Schulte
- Department für Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
| | - Martin Breugst
- Department für Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany.,Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
36
|
Nielsen CDT, Linfoot JD, Williams AF, Spivey AC. Recent progress in asymmetric synergistic catalysis - the judicious combination of selected chiral aminocatalysts with achiral metal catalysts. Org Biomol Chem 2022; 20:2764-2778. [PMID: 35298581 PMCID: PMC9082520 DOI: 10.1039/d2ob00025c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review we survey recent synergistic applications of a chiral organocatalyst with an achiral metal to perform stereoselective transformations of synthetic utility (since 2016). The transformations are classified by the modes of reactivity deployed, focussing on organocatalytic activation of carbonyl substrates as chiral nucleophiles via the α-position (e.g., as enamines) and as chiral electrophiles via the β-position (e.g., as iminium ions) combined with complementary activation of their reaction partners by an achiral metal co-catalyst (e.g., Pd or Cu-based). Corresponding radical reactions are also presented in which photocatalysis mediated by achiral metal complexes replaces the metal co-catalyst. Certain privileged structures are revealed and opportunities to develop this exciting field are highlighted. A critical survey of recent synergistic applications of a chiral organocatalyst with an achiral metal to perform stereoselective transformations of synthetic utility.![]()
Collapse
Affiliation(s)
- Christian D-T Nielsen
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| | - Joshua D Linfoot
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| | - Alexander F Williams
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| | - Alan C Spivey
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
37
|
Choi H, Mathi GR, Hong S, Hong S. Enantioselective functionalization at the C4 position of pyridinium salts through NHC catalysis. Nat Commun 2022; 13:1776. [PMID: 35365667 PMCID: PMC8975994 DOI: 10.1038/s41467-022-29462-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
A catalytic method for the enantioselective and C4-selective functionalization of pyridine derivatives is yet to be developed. Herein, we report an efficient method for the asymmetric β-pyridylations of enals that involve N-heterocyclic carbene (NHC) catalysis with excellent control over enantioselectivity and pyridyl C4-selectivity. The key strategy for precise stereocontrol involves enhancing interactions between the chiral NHC-bound homoenolate and pyridinium salt in the presence of hexafluorobenzene, which effectively differentiates the two faces of the homoenolate radical. Room temperature is sufficient for this transformation, and reaction efficiency is further accelerated by photo-mediation. This methodology exhibits broad functional group tolerance and enables facile access to a diverse range of enantioenriched β-pyridyl carbonyl compounds under mild and metal-free conditions.
Collapse
Affiliation(s)
- Hangyeol Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Gangadhar Rao Mathi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seonghyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
38
|
Wang C, Yang S, Huang Z, Zhao Y. A Palladium-Catalyzed 4CzIPN-Mediated Decarboxylative Acylation Reaction of O-Methyl Ketoximes with α-Keto Acids under Visible Light. Molecules 2022; 27:molecules27061980. [PMID: 35335341 PMCID: PMC8955727 DOI: 10.3390/molecules27061980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
This work presents a palladium-catalyzed oxime ether-directed ortho-selective benzoylation using benzoylformic acid as the acyl source with a palladium catalyst and 4CzIPN as the co-catalyst under light. Various non-symmetric benzophenone derivatives were obtained in moderate to good yields. A preliminary mechanism study revealed that the reaction proceeds through a free radical pathway.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China; (C.W.); (S.Y.)
| | - Shan Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China; (C.W.); (S.Y.)
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China; (C.W.); (S.Y.)
- Correspondence: (Z.H.); (Y.Z.)
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China; (C.W.); (S.Y.)
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
- Correspondence: (Z.H.); (Y.Z.)
| |
Collapse
|
39
|
Rodríguez RI, Sicignano M, Alemán J. Fluorinated Sulfinates as Source of Alkyl Radicals in the Photo-Enantiocontrolled β-Functionalization of Enals. Angew Chem Int Ed Engl 2022; 61:e202112632. [PMID: 34982505 DOI: 10.1002/anie.202112632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 12/13/2022]
Abstract
The generation of sulfonyl radicals has long been known as a flexible strategy in a wide range of different sulfonylative transformations. Meanwhile their use in alkylation processes has been somehow limited due to their inherent difficulty in evolving to less-stable radicals after sulfur dioxide extrusion. Herein we report a convenient strategy that involves gem-difluorinated sulfinates as an "upgrading-mask", allowing these precursors to decompose into their corresponding alkyl radicals. The electron-donor character of sulfinates in the formation of an electron donor-acceptor (EDA) complex with transient iminium ions is displayed, achieving the first example of a stereocontrolled light-driven insertion of gem-difluoro derivatives into unsaturated aldehydes. This methodology is compatible with flow conditions, maintaining identical levels of enantiocontrol.
Collapse
Affiliation(s)
- Ricardo I Rodríguez
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Marina Sicignano
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
40
|
Abstract
The quest to find milder and more sustainable methods to generate highly reactive, carbon-centred intermediates has led to a resurgence of interest in radical chemistry. In particular, carboxylic acids are seen as attractive radical precursors due their availability, low cost, diversity, and sustainability. Moreover, the corresponding nucleophilic carbon-radical can be easily accessed through a favourable radical decarboxylation process, extruding CO2 as a traceless by-product. This review summarizes the recent progress on using carboxylic acids directly as convenient radical precursors for the formation of carbon-carbon bonds via the 1,4-radical conjugate addition (Giese) reaction.
Collapse
Affiliation(s)
- David M Kitcatt
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Simon Nicolle
- GlaxoSmithKline, Gunnels Wood Rd, Stevenage SG1 2NY, UK
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
41
|
Runemark A, Sundén H. Aerobic Oxidative EDA Catalysis: Synthesis of Tetrahydroquinolines Using an Organocatalytic EDA Active Acceptor. J Org Chem 2022; 87:1457-1469. [PMID: 35005960 PMCID: PMC8790759 DOI: 10.1021/acs.joc.1c02776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 12/17/2022]
Abstract
A catalytic electron donor-acceptor (EDA) complex for the visible-light-driven annulation reaction between activated alkenes and N,N-substituted dialkyl anilines is reported. The key photoactive complex is formed in situ between dialkylated anilines as donors and 1,2-dibenzoylethylene as a catalytic acceptor. The catalytic acceptor is regenerated by aerobic oxidation. Investigations into the mechanism are provided, revealing a rare example of a catalytic acceptor in photoactive EDA complexes that can give access to selective functionalization of aromatic amines under mild photochemical conditions.
Collapse
Affiliation(s)
- August Runemark
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Henrik Sundén
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
- Chemistry
and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg, Sweden
| |
Collapse
|
42
|
Liu J, Lu LQ, Luo Y, Zhao W, Sun PC, Jin W, Qi X, Cheng Y, Xiao WJ. Photoredox-Enabled Chromium-Catalyzed Alkene Diacylations. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05672] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Liu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yixin Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wei Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Peng-Chao Sun
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
43
|
Rodríguez RI, Sicignano M, Alemán J. Fluorinated Sulfinates as Source of Alkyl Radicals in the Photo‐Enantiocontrolled β‐Functionalization of Enals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ricardo I. Rodríguez
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Marina Sicignano
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - José Alemán
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
44
|
Zhou Q, Sun CG, Liu X, Li X, Shao Z, Tan K, Shen Y. Electron donor–acceptor complex-catalyzed photoredox reactions mediated by DIPEA and inorganic carbonates. Org Chem Front 2022. [DOI: 10.1039/d2qo00868h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DIPEA–NHPI ester–inorganic carbonate catalytic EDA complex is reported as an efficient and sustainable radical generation platform for developing photocatalytic reactions.
Collapse
Affiliation(s)
- Qingli Zhou
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chenggang Guo Sun
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaofan Li
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziyan Shao
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Kai Tan
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuehai Shen
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
45
|
Wang D, Ackermann L. Three-component carboacylation of alkenes via cooperative nickelaphotoredox catalysis. Chem Sci 2022; 13:7256-7263. [PMID: 35799820 PMCID: PMC9214884 DOI: 10.1039/d2sc02277j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis. A wealth of ketones with high levels of structural complexity was rapidly obtained via direct functionalization of C(sp2)/C(sp3)–H bonds in a modular manner. Furthermore, a regioselective late-stage modification of natural products showcased the practical utility of the strategy, generally featuring high resource economy and ample substrate scope. Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis.![]()
Collapse
Affiliation(s)
- Dingyi Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Germany
| |
Collapse
|
46
|
Zhang S, gao W, Shi J, Li J, Li F, Liang Y, Zhan X, Li MB. Regioselective Umpolung Addition of Dicyanobenzene to α,β-Unsaturated Alkenes Enabled by Electrochemical Reduction. Org Chem Front 2022. [DOI: 10.1039/d1qo01852c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An umpolung addition of dicyanobenzene to α,β-unsaturated alkenes has been developed with an electroreductive strategy. This electrochemical protocol is well compatible with broad range of conventionally challenging substrates, including α,β-unsaturated...
Collapse
|
47
|
Jin S, Sui X, Haug GC, Nguyen VD, Dang HT, Arman HD, Larionov OV. N-Heterocyclic Carbene-Photocatalyzed Tricomponent Regioselective 1,2-Diacylation of Alkenes Illuminates the Mechanistic Details of the Electron Donor–Acceptor Complex-Mediated Radical Relay Processes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shengfei Jin
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Xianwei Sui
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Graham C. Haug
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Viet D. Nguyen
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hang T. Dang
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg V. Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
48
|
Cheng YY, Yu JX, Lei T, Hou HY, Chen B, Tung CH, Wu LZ. Direct 1,2-Dicarbonylation of Alkenes towards 1,4-Diketones via Photocatalysis. Angew Chem Int Ed Engl 2021; 60:26822-26828. [PMID: 34586701 DOI: 10.1002/anie.202112370] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 12/17/2022]
Abstract
1,4-Dicarbonyl compounds are intriguing motifs and versatile precursors in numerous pharmaceutical molecules and bioactive natural compounds. Direct incorporation of two carbonyl groups into a double bond at both ends is straightforward, but also challenging. Represented herein is the first example of 1,2-dicarbonylation of alkenes by photocatalysis. Key to success is that N(n-Bu)4 + not only associates with the alkyl anion to avoid protonation, but also activates the α-keto acid to undergo electrophilic addition. The α-keto acid is employed both for acyl generation and electrophilic addition. By tuning the reductive and electrophilic ability of the acyl precursor, unsymmetric 1,4-dicarbonylation is achieved for the first time. This metal-free, redox-neutral and regioselective 1,2-dicarbonylation of alkenes is executed by a photocatalyst for versatile substrates under extremely mild conditions and shows great potential in biomolecular and drug molecular derivatization.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ji-Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong-Yu Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
49
|
Cheng Y, Yu J, Lei T, Hou H, Chen B, Tung C, Wu L. Direct 1,2‐Dicarbonylation of Alkenes towards 1,4‐Diketones via Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuan‐Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ji‐Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hong‐Yu Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
50
|
Yan J, Tang H, Kuek EJR, Shi X, Liu C, Zhang M, Piper JL, Duan S, Wu J. Divergent functionalization of aldehydes photocatalyzed by neutral eosin Y with sulfone reagents. Nat Commun 2021; 12:7214. [PMID: 34893628 PMCID: PMC8664905 DOI: 10.1038/s41467-021-27550-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
While aldehydes represent a classic class of electrophilic synthons, the corresponding acyl radicals are inherently nucleophilic, which exhibits umpolung reactivity. Generation of acyl radicals typically requires noble metal catalysts or excess oxidants to be added. Herein, we report a convenient and green approach to access acyl radicals, capitalizing on neutral eosin Y-enabled hydrogen atom transfer (HAT) photocatalysis with aldehydes. The generated acyl radicals underwent SOMOphilic substitutions with various functionalized sulfones (X-SO2R') to deliver value-added acyl products. The merger of eosin Y photocatalysis and sulfone-based SOMOphiles provides a versatile platform for a wide array of aldehydic C-H functionalizations, including fluoromethylthiolation, arylthiolation, alkynylation, alkenylation and azidation. The present protocol features green characteristics, such as being free of metals, harmful oxidants and additives; step-economic; redox-neutral; and amenable to scale-up assisted by continuous-flow technology.
Collapse
Affiliation(s)
- Jianming Yan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Haidi Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Eugene Jun Rong Kuek
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Xiangcheng Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Chenguang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Muliang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.
| | - Jared L Piper
- Pfizer Worldwide Research and Development, Eastern Point Rd, Groton, CT, 06340, USA
| | - Shengquan Duan
- Pfizer Worldwide Research and Development, Eastern Point Rd, Groton, CT, 06340, USA.
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|