1
|
Wang P, Ou G, Li G, Li H, Zhao T. Analysis of genetic diversity and structure of endangered Dengchuan cattle population using a single-nucleotide polymorphism chip. Anim Biotechnol 2024; 35:2349625. [PMID: 38733367 DOI: 10.1080/10495398.2024.2349625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
This study aimed to evaluate the genetic diversity and structure within the Dengchuan cattle population and effectively protect and utilize their germplasm resources. Herein, the single-nucleotide polymorphisms (SNPs) of 100 Dengchuan cattle (46 bulls and 54 cows) were determined using the GGP Bovine 100K SNP Beadchip. The results showed that among the Dengchuan cattle, a total of 101,220 SNPs were detected, and there were 83,534 SNPs that passed quality control, of which 85.7% were polymorphic. The average genetic distance based on identity-by-state (IBS) within the conservation population of Dengchuan cattle was 0.26 ± 0.02. A total of 3,999 genome-length runs of homozygosity (ROHs) were detected in the Dengchuan cattle, with ROH lengths primarily concentrated in the range of 1-5 Mb, accounting for 87.02% of the total. The average inbreeding coefficient based on ROHs was 4.6%, within the conservation population of Dengchuan cattle, whereas it was 4.9% for bulls, and the Wright inbreeding coefficient (FIS) value was 2.4%, demonstrating a low level of inbreeding within the Dengchuan cattle population. Based on neighbor-joining tree analysis, the Dengchuan cattle could be divided into 16 families. In summary, the conservation population of Dengchuan cattle displays relatively abundant diversity and a moderate genetic relationship. Inbreeding was observed among a few individuals, but the overall inbreeding level of the population remained low. It is important to maintain this low level of inbreeding when introducing purebred bloodlines to expand the core group. This approach will ensure the long-term conservation of Dengchuan cattle germplasm resources and prevent loss of genetic diversity.
Collapse
Affiliation(s)
- Pingping Wang
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
- Co-Innovation Center for Cangshan Mountain and Erhai Lake Integrated Protection and Green Development of Yunnan Province, Dali University, Dali, Yuannan, China
| | - Guoyu Ou
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
- Co-Innovation Center for Cangshan Mountain and Erhai Lake Integrated Protection and Green Development of Yunnan Province, Dali University, Dali, Yuannan, China
| | - Genchang Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Huiying Li
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
- Co-Innovation Center for Cangshan Mountain and Erhai Lake Integrated Protection and Green Development of Yunnan Province, Dali University, Dali, Yuannan, China
| | - Tianzhang Zhao
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
- Co-Innovation Center for Cangshan Mountain and Erhai Lake Integrated Protection and Green Development of Yunnan Province, Dali University, Dali, Yuannan, China
| |
Collapse
|
2
|
García-Chamé M, Mayer I, Schneider L, Niemeyer CM, M. Domínguez C. Fluidic Interface for Surface-based DNA Origami Studies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53489-53498. [PMID: 39348886 PMCID: PMC11472258 DOI: 10.1021/acsami.4c10874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 10/02/2024]
Abstract
Traditionally, the use of DNA origami nanostructures (DONs) to study early cell signaling processes has been conducted using standard laboratory equipment with DONs typically utilized in solution. Surface-based technologies simplify the microscopic analysis of cells treated with DON agents by anchoring them to solid substrates, thus avoiding the complications of receptor-mediated endocytosis. A robust microfluidic platform for real-time monitoring and precise functionalization of surfaces with DONs was developed here. The combination of controlled flow conditions with an upright total internal reflection fluorescence microscope enabled the kinetic analysis of the immobilization of DONs on DNA-functionalized surfaces. The results revealed that DON morphology and binding tags influence the binding kinetics and that DON hybridization on surfaces is more effective in microfluidic devices with larger-than-standard dimensions, addressing the low diffusivity challenge of DONs. The platform enabled the decoration of DONs with protein-binding ligands and in situ investigation of ligand occupancy on DONs to produce high-quality bioactive surfaces. These surfaces were used to recruit and activate the epidermal growth factor receptor (EGFR) through clustering in the membranes of living cancer cells (MCF-7) using an antagonistic antibody (Panitumumab). The activation was quantified depending on the interligand distances of the EGFR-targeting antibody.
Collapse
Affiliation(s)
- Miguel García-Chamé
- Institute for Biological Interfaces
(IBG-1), Karlsruhe Institute of Technology
(KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Ivy Mayer
- Institute for Biological Interfaces
(IBG-1), Karlsruhe Institute of Technology
(KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Leonie Schneider
- Institute for Biological Interfaces
(IBG-1), Karlsruhe Institute of Technology
(KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Christof M. Niemeyer
- Institute for Biological Interfaces
(IBG-1), Karlsruhe Institute of Technology
(KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Carmen M. Domínguez
- Institute for Biological Interfaces
(IBG-1), Karlsruhe Institute of Technology
(KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
García-Chamé M, Wadhwani P, Pfeifer J, Schepers U, Niemeyer CM, Domínguez CM. A Versatile Microfluidic Platform for Extravasation Studies Based on DNA Origami-Cell Interactions. Angew Chem Int Ed Engl 2024; 63:e202318805. [PMID: 38687094 DOI: 10.1002/anie.202318805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The adhesion of circulating tumor cells (CTCs) to the endothelial lumen and their extravasation to surrounding tissues are crucial in the seeding of metastases and remain the most complex events of the metastatic cascade to study. Integrins expressed on CTCs are major regulators of the extravasation process. This knowledge is primarily derived from animal models and biomimetic systems based on artificial endothelial layers, but these methods have ethical or technical limitations. We present a versatile microfluidic device to study cancer cell extravasation that mimics the endothelial barrier by using a porous membrane functionalized with DNA origami nanostructures (DONs) that display nanoscale patterns of adhesion peptides to circulating cancer cells. The device simulates physiological flow conditions and allows direct visualization of cell transmigration through microchannel pores using 3D confocal imaging. Using this system, we studied integrin-specific adhesion in the absence of other adhesive events. Specifically, we show that the transmigration ability of the metastatic cancer cell line MDA-MB-231 is influenced by the type, distance, and density of adhesion peptides present on the DONs. Furthermore, studies with mixed ligand systems indicate that integrins binding to RGD (arginine-glycine-aspartic acid) and IDS (isoleucine-aspartic acid-serine) did not synergistically enhance the extravasation process of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Miguel García-Chamé
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 2 (IBG 2), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Juliana Pfeifer
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Carmen M Domínguez
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Mayer I, Karimian T, Gordiyenko K, Angelin A, Kumar R, Hirtz M, Mikut R, Reischl M, Stegmaier J, Zhou L, Ma R, Nienhaus GU, Rabe KS, Lanzerstorfer P, Domínguez CM, Niemeyer CM. Surface-Patterned DNA Origami Rulers Reveal Nanoscale Distance Dependency of the Epidermal Growth Factor Receptor Activation. NANO LETTERS 2024; 24:1611-1619. [PMID: 38267020 PMCID: PMC10853960 DOI: 10.1021/acs.nanolett.3c04272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The nanoscale arrangement of ligands can have a major effect on the activation of membrane receptor proteins and thus cellular communication mechanisms. Here we report on the technological development and use of tailored DNA origami-based molecular rulers to fabricate "Multiscale Origami Structures As Interface for Cells" (MOSAIC), to enable the systematic investigation of the effect of the nanoscale spacing of epidermal growth factor (EGF) ligands on the activation of the EGF receptor (EGFR). MOSAIC-based analyses revealed that EGF distances of about 30-40 nm led to the highest response in EGFR activation of adherent MCF7 and Hela cells. Our study emphasizes the significance of DNA-based platforms for the detailed investigation of the molecular mechanisms of cellular signaling cascades.
Collapse
Affiliation(s)
- Ivy Mayer
- Institute
for Biological Interfaces (IBG-1), Karlsruhe
Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Tina Karimian
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Klavdiya Gordiyenko
- Institute
for Biological Interfaces (IBG-1), Karlsruhe
Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Alessandro Angelin
- Institute
for Biological Interfaces (IBG-1), Karlsruhe
Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Ravi Kumar
- Institute
of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Hirtz
- Institute
of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Ralf Mikut
- Institute
for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Markus Reischl
- Institute
for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Johannes Stegmaier
- Institute
for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute
of Imaging and Computer Vision, RWTH Aachen
University, 52074 Aachen, Germany
| | - Lu Zhou
- Institute
of Applied Physics (APH), Karlsruhe Institute
of Technology (KIT), 76049 Karlsruhe, Germany
| | - Rui Ma
- Institute
of Applied Physics (APH), Karlsruhe Institute
of Technology (KIT), 76049 Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute
of Applied Physics (APH), Karlsruhe Institute
of Technology (KIT), 76049 Karlsruhe, Germany
- Institute
of Biological and Chemical Systems (IBCS) and Institute of Nanotechnology
(INT), Karlsruhe Institute of Technology
(KIT), 76021 Karlsruhe, Germany
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kersten S. Rabe
- Institute
for Biological Interfaces (IBG-1), Karlsruhe
Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Peter Lanzerstorfer
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Carmen M. Domínguez
- Institute
for Biological Interfaces (IBG-1), Karlsruhe
Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Christof M. Niemeyer
- Institute
for Biological Interfaces (IBG-1), Karlsruhe
Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Feng C, Liu X, Sun YF, Ren CL. Double-Stranded DNA Immobilized in Lying-Flat and Upright Orientation on a PNIPAm-Coated Surface: A Theoretical Study. ACS Macro Lett 2024:105-111. [PMID: 38190547 DOI: 10.1021/acsmacrolett.3c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Surface-immobilized double-stranded DNA (dsDNA) in upright orientation plays an important role in optimizing and understanding DNA-based nanosensors and nanodevices. However, it is difficult to regulate the surface density of upright DNA due to the fact that DNA usually stands vertically at a high packing density but may lie down at a low packing density. We herein report dsDNA immobilized in upright orientation on a poly(N-isopropylacrylamide) (PNIPAm)-coated surface in theory. The theoretical results reveal that the angle of upright DNA relative to the surface is larger than that of DNA immobilized on the bare surface caused by the lying-flat DNA under proper PNIPAm surface coverage at 45 °C. The surface density of upright DNA is significantly influenced by DNA concentration and DNA length. It is envisioned that the density-regulated DNA molecules immobilized in upright orientation in the present work are well suited to bottom-up construction of complex DNA-based nanostructures and nanodevices.
Collapse
Affiliation(s)
- Chao Feng
- State Key Laboratory of Metastable Materials Science & Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xiao Liu
- State Key Laboratory of Metastable Materials Science & Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yang-Feng Sun
- Industrial Technology Center, Chengde Petroleum College, Chengde 067000, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Li Z, Lv Y, Duan X, Liu B, Zhao Y. Highly Uniform DNA Monolayers Generated by Freezing-Directed Assembly on Gold Surfaces Enable Robust Electrochemical Sensing in Whole Blood. Angew Chem Int Ed Engl 2023; 62:e202312975. [PMID: 37726209 DOI: 10.1002/anie.202312975] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Assembling DNA on solid surfaces is fundamental to surface-based DNA technology. However, precise control over DNA conformation and organization at solid-liquid interfaces remains a challenge, resulting in limited stability and sensitivity in biosensing applications. We herein communicate a simple and robust method for creating highly uniform DNA monolayers on gold surfaces by a freeze-thawing process. Using Raman spectroscopy, fluorescent imaging, and square wave voltammetry, we demonstrate that thiolated DNA is concentrated and immobilized on gold surfaces with an upright conformation. Moreover, our results reveal that the freezing-induced DNA surfaces are more uniform, leading to improved DNA stability and target recognition. Lastly, we demonstrate the successful detection of a model drug in undiluted whole blood while mitigating the effects of biofouling. Our work not only provides a simple approach to tailor the DNA-gold surface for biosensors but also sheds light on the unique behavior of DNA oligonucleotides upon freezing on the liquid-solid interface.
Collapse
Affiliation(s)
- Zhenglian Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yanguan Lv
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Department of Clinical Medical Laboratory, Affiliated Hospital of Yang Zhou University Medical College, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu, 223002, P. R. China
| | - Xiaoman Duan
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Biwu Liu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
7
|
Ullah S, Ali HG, Hashmi M, Haider MK, Ishaq T, Tamada Y, Park S, Kim IS. Electrospun composite nanofibers of deoxyribonucleic acid and polylactic acid for skincare applications. J Biomed Mater Res A 2023; 111:1798-1807. [PMID: 37539635 DOI: 10.1002/jbm.a.37592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
The development of useful biomaterials has resulted in significant advances in various fields of science and technology. The demand for new biomaterial designs and manufacturing techniques continues to grow, with the goal of building a sustainable society. In this study, two types of DNA-cationic surfactant complexes were synthesized using commercially available deoxyribonucleic acid from herring sperm DNA (hsDNA, <50 bp) and deoxyribonucleic acid from salmon testes DNA (stDNA, ~2000 bp). The DNA-surfactant complexes were blended with a polylactic acid (PLA) biopolymer and electrospun to obtain nanofibers, and then copper nanoparticles were synthesized on nanofibrous webs. Scanning electron microscopic images showed that all nanofibers possessed uniform morphology. Interestingly, different diameters were observed depending on the base pairs in the DNA complex. Transmission electron microscopy showed uniform growth of copper nanoparticles on the nanofibers. Fourier-transform infrared spectroscopy spectra confirmed the uniform blending of both types of DNA complexes in PLA. Both stDNA- and hsDNA-derived nanofibers showed greater biocompatibility than native PLA nanofibers. Furthermore, they exerted significant antibacterial activity in the presence of copper nanoparticles. This study demonstrates that DNA is a potentially useful material to generate electrospun nanofibrous webs for use in biomedical sciences and technologies.
Collapse
Affiliation(s)
- Sana Ullah
- Graduate School of Medicine Science and Technology, Division of Smart Materials, Shinshu University Ueda Campus, Nagano, Japan
- Department of Inorganic Chemistry I, and Helmholtz Institute of Ulm (HIU), Ulm University, Ulm, Germany
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University Ueda Campus, Nagano, Japan
| | - Hina Ghulam Ali
- Department of Inorganic Chemistry I, and Helmholtz Institute of Ulm (HIU), Ulm University, Ulm, Germany
| | - Motahira Hashmi
- Graduate School of Medicine Science and Technology, Division of Smart Materials, Shinshu University Ueda Campus, Nagano, Japan
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University Ueda Campus, Nagano, Japan
| | - Md Kaiser Haider
- Graduate School of Medicine Science and Technology, Division of Smart Materials, Shinshu University Ueda Campus, Nagano, Japan
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University Ueda Campus, Nagano, Japan
| | - Tehmeena Ishaq
- Department of chemistry, The University of Lahore, Sargodha campus, Sargodha, Pakistan
| | - Yasushi Tamada
- Department of Biomedical Engineering, Faculty of Textile Science and Technology, Shinshu University Ueda Campus, Nagano, Japan
| | - Soyoung Park
- Department of Genome Informatics, Immunology Frontier Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University Ueda Campus, Nagano, Japan
| |
Collapse
|
8
|
Sheshachala S, Huber B, Schuetzke J, Mikut R, Scharnweber T, Domínguez CM, Mutlu H, Niemeyer CM. Charge controlled interactions between DNA-modified silica nanoparticles and fluorosurfactants in microfluidic water-in-oil droplets. NANOSCALE ADVANCES 2023; 5:3914-3923. [PMID: 37496619 PMCID: PMC10367961 DOI: 10.1039/d3na00124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Microfluidic droplets are an important tool for studying and mimicking biological systems, e.g., to examine with high throughput the interaction of biomolecular components and the functionality of natural cells, or to develop basic principles for the engineering of artificial cells. Of particular importance is the approach to generate a biomimetic membrane by supramolecular self-assembly of nanoparticle components dissolved in the aqueous phase of the droplets at the inner water/oil interface, which can serve both to mechanically reinforce the droplets and as an interaction surface for cells and other components. While this interfacial assembly driven by electrostatic interaction of surfactants is quite well developed for water/mineral oil (W/MO) systems, no approaches have yet been described to exploit this principle for water/fluorocarbon oil (W/FO) emulsion droplets. Since W/FO systems exhibit not only better compartmentalization but also gas solubility properties, which is particularly crucial for live cell encapsulation and cultivation, we report here the investigation of charged fluorosurfactants for the self-assembly of DNA-modified silica nanoparticles (SiNP-DNA) at the interface of microfluidic W/FO emulsions. To this end, an efficient multicomponent Ugi reaction was used to synthesize the novel fluorosurfactant M4SURF to study the segregation and accumulation of negatively charged SiNP-DNA at the inner interface of microfluidic droplets. Comparative measurements were performed with the negatively charged fluorosurfactant KRYTOX, which can also induce SiNP-DNA segregation in the presence of cations. The segregation dynamics is characterized and preliminary results of cell encapsulation in the SiNP-DNA functionalized droplets are shown.
Collapse
Affiliation(s)
- Sahana Sheshachala
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Birgit Huber
- Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Jan Schuetzke
- Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Tim Scharnweber
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Carmen M Domínguez
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
9
|
Yang B, Gordiyenko K, Schäfer A, Dadfar SMM, Yang W, Riehemann K, Kumar R, Niemeyer CM, Hirtz M. Fluorescence Imaging Study of Film Coating Structure and Composition Effects on DNA Hybridization. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Bingquan Yang
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Klavdiya Gordiyenko
- Institute of Biological Interfaces (IBG-1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Andreas Schäfer
- nanoAnalytics GmbH Heisenbergstraße 11 48149 Münster Germany
| | - Seyed Mohammad Mahdi Dadfar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Wenwu Yang
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Kristina Riehemann
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Institute of Biological Interfaces (IBG-1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
10
|
Mao X, Liu M, Li Q, Fan C, Zuo X. DNA-Based Molecular Machines. JACS AU 2022; 2:2381-2399. [PMID: 36465542 PMCID: PMC9709946 DOI: 10.1021/jacsau.2c00292] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 05/17/2023]
Abstract
Artificial molecular machines have found widespread applications ranging from fundamental studies to biomedicine. More recent advances in exploiting unique physical and chemical properties of DNA have led to the development of DNA-based artificial molecular machines. The unprecedented programmability of DNA provides a powerful means to design complex and sophisticated DNA-based molecular machines that can exert mechanical force or motion to realize complex tasks in a controllable, modular fashion. This Perspective highlights the potential and strategies to construct artificial molecular machines using double-stranded DNA, functional nucleic acids, and DNA frameworks, which enable improved control over reaction pathways and motion behaviors. We also outline the challenges and opportunities of using DNA-based molecular machines for biophysics, biosensing, and biocomputing.
Collapse
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Liang L, Jia S, Barman I. DNA-POINT: DNA Patterning of Optical Imprint for Nanomaterials Topography. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38388-38397. [PMID: 35969693 DOI: 10.1021/acsami.2c10908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Engineering well-defined scale-spanning structures through transfer of diverse biomolecules and materials to a surface is of tremendous interest in life sciences research yet remains profoundly challenging. Here, we report a novel method, termed as DNA patterning of optical imprint for nanomaterials topography (DNA-POINT), for rapid photopatterning of large area, geometrically complex surfaces via light-responsive DNA. Our method employs top-down multiphoton-driven patterning of azobenzene-modified DNA strands, offering precise position control of molecules and nanoparticles along the axial plane and a template for bottom-up self-assembly of multiple layers of different chemical composition along the vertical plane. We demonstrate the surface patterning of plasmonic gold nanoparticles, fluorophore-labeled oligonucleotides, and multiple layers consisting of molecule-nanoparticle hybrid patterns into preconceived shapes without compromising on the functionality of the biomolecules. Furthermore, we exhibit scanning mode operation of DNA-POINT, thereby paving the way for maskless and cleanroom-free fast fabrication of biochips for high-throughput diagnostics and biosensing applications.
Collapse
Affiliation(s)
- Le Liang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, The Institute for Advanced Studies, Wuhan University, Wuhan 430071, China
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sisi Jia
- Zhangjiang Laboratory, Shanghai 201210, China
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
12
|
Huang X, Zhao W, Chen X, Li J, Ye H, Li C, Yin X, Zhou X, Qiao X, Xue Z, Wang T. Gold Nanoparticle-Bridge Array to Improve DNA Hybridization Efficiency of SERS Sensors. J Am Chem Soc 2022; 144:17533-17539. [PMID: 36000980 DOI: 10.1021/jacs.2c06623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interfacial mass transfer rate of a target has a significant impact on the sensing performance. The surface reaction forms a concentration gradient perpendicular to the surface, wherein a slow mass transfer process decreases the interfacial reaction rate. In this work, we self-assembled gold nanoparticles (AuNPs) in the gap of a SiO2 opal array to form a AuNP-bridge array. The diffusion paths of vertical permeability and a microvortex effect provided by the AuNP-bridge array synergistically improved the target mass transfer efficiency. As a proof of concept, we used DNA hybridization efficiency as a research model, and the surface-enhanced Raman spectroscopy (SERS) signal acted as a readout index. The experimental verification and theoretical simulation show that the AuNP-bridge array exhibited rapid mass transfer and high sensitivity. The DNA hybridization efficiency of the AuNP-bridge array was 15-fold higher than that of the AuNP-planar array. We believe that AuNP-bridge arrays can be potentially applied for screening drug candidates, genetic variations, and disease biomarkers.
Collapse
Affiliation(s)
- Xiaobin Huang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weidong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jinming Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haochen Ye
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Cancan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaomeng Yin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xinyuan Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhenjie Xue
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Yao C, Ou J, Tang J, Yang D. DNA Supramolecular Assembly on Micro/Nanointerfaces for Bioanalysis. Acc Chem Res 2022; 55:2043-2054. [PMID: 35839123 DOI: 10.1021/acs.accounts.2c00170] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusFacing increasing demand for precision medicine, materials chemistry systems for bioanalysis with accurate molecular design, controllable structure, and adjustable biological activity are required. As a genetic biomacromolecule, deoxyribonucleic acid (DNA) is created via precise, efficient, and mild processes in life systems and can in turn precisely regulate life activities. From the perspective of materials chemistry, DNA possesses the characteristics of sequence programmability and can be endowed with customized functions by the rational design of sequences. In recent years, DNA has been considered to be a potential biomaterial for analysis and has been applied in the fields of bioseparation, biosensing, and detection imaging. To further improve the precision of bioanalysis, the supramolecular assembly of DNA on micro/nanointerfaces is an effective strategy to concentrate functional DNA modules, and thus the functions of DNA molecules for bioanalysis can be enriched and enhanced. Moreover, the new modes of DNA supramolecular assembly on micro/nanointerfaces enable the integration of DNA with the introduced components, breaking the restriction of limited functions of DNA materials and achieving more precise regulation and manipulation in bioanalysis. In this Account, we summarize our recent work on DNA supramolecular assembly on micro/nanointerfaces for bioanalysis from two main aspects. In the first part, we describe DNA supramolecular assembly on the interfaces of microscale living cells. The synthesis strategy of DNA is based on rolling-circle amplification (RCA), which generates ultralong DNA strands according to circular DNA templates. The templates can be designed with complementary sequences of functional modules such as aptamers, which allow DNA to specifically bind with cellular interfaces and achieve efficient cell separation. In the second part, we describe DNA supramolecular assembly on the interfaces of nanoscale particles. DNA sequences are designed with functional modules such as targeting, drug loading, and gene expression and then are assembled on interfaces of particles including upconversion nanoparticles (UCNPs), gold nanoparticles (AuNPs), and magnetic nanoparticle (MNPs). The integration of DNA with these functional particles achieves cell manipulation, targeted tumor imaging, and cellular regulation. The processes of interfacial assembly are well controlled, and the functions of the obtained bioanalytical materials can be flexibly regulated. We envision that the work on DNA supramolecular assembly on micro/nanointerfaces will be a typical paradigm for the construction of more bioanalytical materials, which we hope will facilitate the development of precision medicine.
Collapse
Affiliation(s)
- Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Junhan Ou
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
14
|
Heinritz C, Lamberger Z, Kocourková K, Minařík A, Humenik M. DNA Functionalized Spider Silk Nanohydrogels for Specific Cell Attachment and Patterning. ACS NANO 2022; 16:7626-7635. [PMID: 35521760 DOI: 10.1021/acsnano.1c11148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nucleated protein self-assembly of an azido modified spider silk protein was employed in the preparation of nanofibrillar networks with hydrogel-like properties immobilized on coatings of the same protein. Formation of the networks in a mild aqueous environment resulted in thicknesses between 2 and 60 nm, which were controlled only by the protein concentration. Incorporated azido groups in the protein were used to "click" short nucleic acid sequences onto the nanofibrils, which were accessible to specific hybridization-based modifications, as proved by fluorescently labeled DNA complements. A lipid modifier was used for efficient incorporation of DNA into the membrane of nonadherent Jurkat cells. Based on the complementarity of the nucleic acids, highly specific DNA-assisted immobilization of the cells on the nanohydrogels with tunable cell densities was possible. Addressability of the DNA cell-to-surface anchor was demonstrated with a competitive oligonucleotide probe, resulting in a rapid release of 75-95% of cells. In addition, we developed a photolithography-based patterning of arbitrarily shaped microwells, which served to spatially define the formation of the nanohydrogels. After detaching the photoresist and PEG-blocking of the surface, DNA-assisted immobilization of the Jurkat cells on the nanohydrogel microstructures was achieved with high fidelity.
Collapse
Affiliation(s)
- Christina Heinritz
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| | - Zan Lamberger
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| | - Karolína Kocourková
- Department of Physics and Materials Engineering, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic
| | - Antonín Minařík
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
- Department of Physics and Materials Engineering, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic
| | - Martin Humenik
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| |
Collapse
|
15
|
Zhang C, Zheng M, Ohayon YP, Vecchioni S, Sha R, Seeman NC, Jonoska N, Mao C. Programming DNA Self-Assembly by Geometry†. J Am Chem Soc 2022; 144:8741-8745. [PMID: 35507317 DOI: 10.1021/jacs.2c02456] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This manuscript introduces geometry as a means to program the tile-based DNA self-assembly in two and three dimensions. This strategy complements the sequence-focused programmable assembly. DNA crystal assembly critically relies on intermotif, sticky-end cohesion, which requires complementarity not only in sequence but also in geometry. For DNA motifs to assemble into crystals, they must be associated with each other in the proper geometry and orientation to ensure that geometric hindrance does not prevent sticky ends from associating. For DNA motifs with exactly the same pair of sticky-end sequences, by adjusting the length (thus, helical twisting phase) of the motif branches, it is possible to program the assembly of these distinct motifs to either mix with one another, to self-sort and consequently separate from one another, or to be alternatingly arranged. We demonstrate the ability to program homogeneous crystals, DNA "alloy" crystals, and definable grain boundaries through self-assembly. We believe that the integration of this strategy and conventional sequence-focused assembly strategy could further expand the programming versatility of DNA self-assembly.
Collapse
Affiliation(s)
- Cuizheng Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mengxi Zheng
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Simon Vecchioni
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Natasha Jonoska
- Department of Mathematics and Statistics, University of South Florida, Tampa, Florida 33620, United States
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Hu Y, Fan C. Nanocomposite DNA hydrogels emerging as programmable and bioinstructive materials systems. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Formulation of DNA Nanocomposites: Towards Functional Materials for Protein Expression. Polymers (Basel) 2021; 13:polym13152395. [PMID: 34371999 PMCID: PMC8347857 DOI: 10.3390/polym13152395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
DNA hydrogels are an emerging class of materials that hold great promise for numerous biotechnological applications, ranging from tissue engineering to targeted drug delivery and cell-free protein synthesis (CFPS). In addition to the molecular programmability of DNA that can be used to instruct biological systems, the formulation of DNA materials, e.g., as bulk hydrogels or microgels, is also relevant for specific applications. To advance the state of knowledge in this research area, the present work explores the scope of a recently developed class of complex DNA nanocomposites, synthesized by RCA polymerization of DNA-functionalized silica nanoparticles (SiNPs) and carbon nanotubes (CNTs). SiNP/CNT-DNA composites were produced as bulk materials and microgels which contained a plasmid with transcribable genetic information for a fluorescent marker protein. Using confocal microscopy and flow cytometry, we found that the materials are very efficiently taken up by various eukaryotic cell lines, which were able to continue dividing while the ingested material was evenly distributed to the daughter cells. However, no expression of the encoded protein occurred within the cells. While the microgels did not induce production of the marker protein even in a CFPS procedure with eukaryotic cell lysate, the bulk composites proved to be efficient templates for CFPS. This work contributes to the understanding of the molecular interactions between DNA composites and the functional cellular machinery. Implications for the use of such materials for CFPS procedures are discussed.
Collapse
|
18
|
Myres GJ, Peterson EM, Harris JM. Confocal Raman Microscopy Enables Label-Free, Quantitative, and Structurally Informative Detection of DNA Hybridization at Porous Silica Surfaces. Anal Chem 2021; 93:7978-7986. [PMID: 34037395 DOI: 10.1021/acs.analchem.1c00885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Characterization of DNA at solid/liquid interfaces remains a challenge because most surface-sensitive techniques are unable to provide quantitative insight into the base content, length, or structure. Surface-enhanced Raman scattering measurements of DNA hybridization on plasmonic-metal substrates have been used to overcome small Raman-scattering cross-sections; however, surface-enhanced Raman spectroscopy measurements are not generally quantitative due to the fall-off in the scattering signal with the decay of the electric field enhancement from the surface, which also limits the length of oligonucleotides that can be investigated. In this work, we introduce an experimental methodology in which confocal Raman microscopy is used to characterize hybridization reactions of ssDNA immobilized at the solid/liquid interface of porous silica particles. By focusing the femtoliter confocal probe volume within a single porous particle, signal enhancement arises from the ∼1500-times greater surface area detected compared to a planar substrate. Because the porous support is a purely dielectric material, the scattering signal is independent of the proximity of the oligonucleotide to the silica surface. With this technique, we characterize a 19-mer capture strand and determine its hybridization efficiency with 9-mer and 16-mer target sequences from the scattering of a structurally insensitive phosphate-stretching mode. Changes in polarizability and frequency of scattering from DNA bases were observed, which are consistent with Watson-Crick base pairing. Quantification of base content from their duplex scattering intensities allows us to discriminate between hybridization of two target strands of equivalent length but with different recognition sequences. A duplex having a single-nucleotide polymorphism could be distinguished from hybridization of a fully complementary strand based on differences in base content and duplex conformation.
Collapse
Affiliation(s)
- Grant J Myres
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Eric M Peterson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
19
|
Jin F, Xu D. A fluorescent microarray platform based on catalytic hairpin assembly for MicroRNAs detection. Anal Chim Acta 2021; 1173:338666. [PMID: 34172148 DOI: 10.1016/j.aca.2021.338666] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
The DNA microarray has distinctive advantages of high-throughput and less complicated operations, but tends to have a relatively low sensitivity. Catalytic hairpin assembly (CHA) is one of the most promising enzyme-free, isothermal DNA circuit for high efficient signal amplification. Here, a microarray-based catalytic hairpin assembly (mi-CHA) biosensing method has been developed to detect various miRNAs in a single test simultaneously. The target miRNA can trigger conformational transformations of hairpin-structured DNA probes on the chip surface and lead to the specific signal amplification. A significant advantage of this approach is that each duplex produced by the solid-phase CHA will be immobilized on the certain location of the chip and release fluorescent signal via the universal domain, eliminating the requirement of different fluorophores. This method has manifested a high detection sensitivity of human cancer-associated miRNAs (miR-21 and miR-155) down to 1.33 fM and promised a high specificity to distinguish single-base mismatches. Furthermore, the practicability of this method was demonstrated by analyzing target miRNAs in human serum and cancer cells. The experimental results suggest that the proposed method has high-throughput analytical potential and could be applied to many other clinical diagnosis.
Collapse
Affiliation(s)
- Furui Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China.
| |
Collapse
|
20
|
Juste-Dolz A, Delgado-Pinar M, Avella-Oliver M, Fernández E, Pastor D, Andrés MV, Maquieira Á. BIO bragg gratings on microfibers for label-free biosensing. Biosens Bioelectron 2021; 176:112916. [PMID: 33401145 DOI: 10.1016/j.bios.2020.112916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 01/14/2023]
Abstract
Discovering nanoscale phenomena to sense biorecognition events introduces new perspectives to exploit nanoscience and nanotechnology for bioanalytical purposes. Here we present Bio Bragg Gratings (BBGs), a novel biosensing approach that consists of diffractive structures of protein bioreceptors patterned on the surface of optical waveguides, and tailored to transduce the magnitude of biorecognition assays into the intensity of single peaks in the reflection spectrum. This work addresses the design, fabrication, and optimization of this system by both theoretical and experimental studies to explore the fundamental physicochemical parameters involved. Functional biomolecular gratings are fabricated by microcontact printing on the surface of tapered optical microfibers, and their structural features were characterized. The transduction principle is experimentally demonstrated, and its quantitative bioanalytical prospects are assessed in a representative immunoassay, based on patterned protein probes and selective IgG targets, in label-free conditions. This biosensing system involves appealing perspectives to avoid unwanted signal contributions from non-specific binding, herein investigated in human serum samples. The work also proves how the optical response of the system can be easily tuned, and it provides insights into the relevance of this feature to conceive multiplexed BBG systems capable to perform multiple label-free biorecognition assays in a single device.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
| | - Martina Delgado-Pinar
- Department of Applied Physics and Electromagnetism-ICMUV, Universitat de València, Burjassot, 46100, Spain
| | - Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
| | - Daniel Pastor
- Photonics Research Labs, Universitat Politècnica de València, 46021, Valencia, Spain
| | - Miguel V Andrés
- Department of Applied Physics and Electromagnetism-ICMUV, Universitat de València, Burjassot, 46100, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
21
|
Hu Y, Domínguez CM, Christ S, Niemeyer CM. Postsynthetic Functionalization of DNA-Nanocomposites with Proteins Yields Bioinstructive Matrices for Cell Culture Applications. Angew Chem Int Ed Engl 2020; 59:19016-19020. [PMID: 32681679 PMCID: PMC7589387 DOI: 10.1002/anie.202008471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Indexed: 11/08/2022]
Abstract
We report on the directed postsynthetic functionalization of soft DNA nanocomposite materials with proteins. Using the example of the functionalization of silica nanoparticle-modified DNA polymer materials with agonists or antagonists of the epidermal growth factor receptor EGFR cell membrane receptor, we demonstrate that hierarchically structured interfaces to living cells can be established. Owing to the modular design principle, even complex DNA nanostructures can be integrated into the materials, thereby enabling the high-precision arrangement of ligands on the lower nanometer length scale. We believe that such complex biohybrid material systems can be used for new applications in biotechnology.
Collapse
Affiliation(s)
- Yong Hu
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Carmen M. Domínguez
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Sophina Christ
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
22
|
Hu Y, Domínguez CM, Christ S, Niemeyer CM. Postsynthetic Functionalization of DNA‐Nanocomposites with Proteins Yields Bioinstructive Matrices for Cell Culture Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yong Hu
- Karlsruhe Institute of Technology (KIT) Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Carmen M. Domínguez
- Karlsruhe Institute of Technology (KIT) Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Sophina Christ
- Karlsruhe Institute of Technology (KIT) Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT) Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
23
|
Xie Z, Gan T, Fang L, Zhou X. Recent progress in creating complex and multiplexed surface-grafted macromolecular architectures. SOFT MATTER 2020; 16:8736-8759. [PMID: 32969442 DOI: 10.1039/d0sm01043j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface-grafted macromolecules, including polymers, DNA, peptides, etc., are versatile modifications to tailor the interfacial functions in a wide range of fields. In this review, we aim to provide an overview of the most recent progress in engineering surface-grafted chains for the creation of complex and multiplexed surface architectures over micro- to macro-scopic areas. A brief introduction to surface grafting is given first. Then the fabrication of complex surface architectures is summarized with a focus on controlled chain conformations, grafting densities and three-dimensional structures. Furthermore, recent advances are highlighted for the generation of multiplexed arrays with designed chemical composition in both horizontal and vertical dimensions. The applications of such complicated macromolecular architectures are then briefly discussed. Finally, some perspective outlooks for future studies and challenges are suggested. We hope that this review will be helpful to those just entering this field and those in the field requiring quick access to useful reference information about the progress in the properties, processing, performance, and applications of functional surface-grafted architectures.
Collapse
Affiliation(s)
- Zhuang Xie
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Xingangxi Road No. 135, Guangzhou, Guangdong Province 510275, P. R. China.
| | - Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Shenzhen, Guangdong Province 518055, P. R. China.
| | - Lvye Fang
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Xingangxi Road No. 135, Guangzhou, Guangdong Province 510275, P. R. China.
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Shenzhen, Guangdong Province 518055, P. R. China.
| |
Collapse
|
24
|
Overeem NJ, Hamming PH(E, Huskens J. Time‐Dependent Binding of Molecules and Nanoparticles at Receptor‐Modified Supported Lipid Bilayer Gradients in a Microfluidic Device. ChemistrySelect 2020. [DOI: 10.1002/slct.202002593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Nico J. Overeem
- Molecular Nanofabrication GroupMESA + Institute for Nanotechnology Faculty of Science and Technology University of Twente P.O. Box 217, 7500 AE Enschede The Netherlands
| | - Pieter H. (Erik) Hamming
- Molecular Nanofabrication GroupMESA + Institute for Nanotechnology Faculty of Science and Technology University of Twente P.O. Box 217, 7500 AE Enschede The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication GroupMESA + Institute for Nanotechnology Faculty of Science and Technology University of Twente P.O. Box 217, 7500 AE Enschede The Netherlands
| |
Collapse
|
25
|
Sheshachala S, Grösche M, Scherr T, Hu Y, Sun P, Bartschat A, Mikut R, Niemeyer CM. Segregation of Dispersed Silica Nanoparticles in Microfluidic Water-in-Oil Droplets: A Kinetic Study. Chemphyschem 2020; 21:1070-1078. [PMID: 32142187 PMCID: PMC7317348 DOI: 10.1002/cphc.201901151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/19/2020] [Indexed: 11/06/2022]
Abstract
Dispersed negatively charged silica nanoparticles segregate inside microfluidic water-in-oil (W/O) droplets that are coated with a positively charged lipid shell. We report a methodology for the quantitative analysis of this self-assembly process. By using real-time fluorescence microscopy and automated analysis of the recorded images, kinetic data are obtained that characterize the electrostatically-driven self-assembly. We demonstrate that the segregation rates can be controlled by the installment of functional moieties on the nanoparticle's surface, such as nucleic acid and protein molecules. We anticipate that our method enables the quantitative and systematic investigation of the segregation of (bio)functionalized nanoparticles in microfluidic droplets. This could lead to complex supramolecular architectures on the inner surface of micrometer-sized hollow spheres, which might be used, for example, as cell containers for applications in the life sciences.
Collapse
Affiliation(s)
- Sahana Sheshachala
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Maximilian Grösche
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Tim Scherr
- Institute for Automation and Applied Informatics (IAI)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Yong Hu
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Pengchao Sun
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Andreas Bartschat
- Institute for Automation and Applied Informatics (IAI)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics (IAI)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
26
|
Highly Modular Protein Micropatterning Sheds Light on the Role of Clathrin-Mediated Endocytosis for the Quantitative Analysis of Protein-Protein Interactions in Live Cells. Biomolecules 2020; 10:biom10040540. [PMID: 32252486 PMCID: PMC7225972 DOI: 10.3390/biom10040540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023] Open
Abstract
Protein micropatterning is a powerful tool for spatial arrangement of transmembrane and intracellular proteins in living cells. The restriction of one interaction partner (the bait, e.g., the receptor) in regular micropatterns within the plasma membrane and the monitoring of the lateral distribution of the bait’s interaction partner (the prey, e.g., the cytosolic downstream molecule) enables the in-depth examination of protein-protein interactions in a live cell context. This study reports on potential pitfalls and difficulties in data interpretation based on the enrichment of clathrin, which is a protein essential for clathrin-mediated receptor endocytosis. Using a highly modular micropatterning approach based on large-area micro-contact printing and streptavidin-biotin-mediated surface functionalization, clathrin was found to form internalization hotspots within the patterned areas, which, potentially, leads to unspecific bait/prey protein co-recruitment. We discuss the consequences of clathrin-coated pit formation on the quantitative analysis of relevant protein-protein interactions, describe controls and strategies to prevent the misinterpretation of data, and show that the use of DNA-based linker systems can lead to the improvement of the technical platform.
Collapse
|
27
|
DNA origami protection and molecular interfacing through engineered sequence-defined peptoids. Proc Natl Acad Sci U S A 2020; 117:6339-6348. [PMID: 32165539 PMCID: PMC7104344 DOI: 10.1073/pnas.1919749117] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA nanotechnology provides a structural toolkit for the fabrication of programmable DNA nano-constructs; however, their use in biomedical applications is challenging due the limited structural integrity in complex biological fluids. Here, we report a class of tailorable molecular coatings, peptoids, which can efficiently stabilize three-dimensional wireframed DNA constructs under a variety of biomedically relevant conditions, including magnesium-ion depletion and presence of degrading nuclease. Furthermore, we show that peptoid-coated DNA constructs offer a controllable anticancer drug release and an ability to display functional biomolecules on the DNA surfaces. Our study demonstrates an approach for building multifunctional and environmentally robust DNA-based molecular structures for nanomedicine and biosensing. DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson−Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1–9) with two types of architectures, termed as “brush” and “block,” were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications.
Collapse
|
28
|
Lahav-Mankovski N, Prasad PK, Oppenheimer-Low N, Raviv G, Dadosh T, Unger T, Salame TM, Motiei L, Margulies D. Decorating bacteria with self-assembled synthetic receptors. Nat Commun 2020; 11:1299. [PMID: 32157077 PMCID: PMC7064574 DOI: 10.1038/s41467-020-14336-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The responses of cells to their surroundings are mediated by the binding of cell surface proteins (CSPs) to extracellular signals. Such processes are regulated via dynamic changes in the structure, composition, and expression levels of CSPs. In this study, we demonstrate the possibility of decorating bacteria with artificial, self-assembled receptors that imitate the dynamic features of CSPs. We show that the local concentration of these receptors on the bacterial membrane and their structure can be reversibly controlled using suitable chemical signals, in a way that resembles changes that occur with CSP expression levels or posttranslational modifications (PTMs), respectively. We also show that these modifications can endow the bacteria with programmable properties, akin to the way CSP responses can induce cellular functions. By programming the bacteria to glow, adhere to surfaces, or interact with proteins or mammalian cells, we demonstrate the potential to tailor such biomimetic systems for specific applications. Cell surface proteins mediate the interactions between cells and their extracellular environment. Here the authors design synthetic biomemetic receptor-like sensors that facilitate programmable interactions between bacteria and their target.
Collapse
Affiliation(s)
- Naama Lahav-Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Pragati Kishore Prasad
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Noa Oppenheimer-Low
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gal Raviv
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tali Dadosh
- Chemical Research Support, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tamar Unger
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tomer Meir Salame
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
29
|
Humenik M, Preiß T, Gödrich S, Papastavrou G, Scheibel T. Functionalized DNA-spider silk nanohydrogels for controlled protein binding and release. Mater Today Bio 2020; 6:100045. [PMID: 32259099 PMCID: PMC7096766 DOI: 10.1016/j.mtbio.2020.100045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Hydrogels are excellent scaffolds to accommodate sensitive enzymes in a protective environment. However, the lack of suitable immobilization techniques on substrates and the lack of selectivity to anchor a biocatalyst are major drawbacks preventing the use of hydrogels in bioanalytical devices. Here, nanofilm coatings on surfaces were made of a recombinant spider silk protein (rssp) to induce rssp self-assembly and thus the formation of fibril-based nanohydrogels. To functionalize spider silk nanohydrogels for bioselective binding of proteins, two different antithrombin aptamers were chemically conjugated with the rssp, thereby integrating the target-binding function into the nanohydrogel network. Human thrombin was selected as a sensitive model target, in which the structural integrity determines its activity. The chosen aptamers, which bind various exosites of thrombin, enabled selective and cooperative embedding of the protein into the nanohydrogels. The change of the aptamer secondary structure using complementary DNA sequences led to the release of active thrombin and confirmed the addressable functionalization of spider silk nanohydrogels.
Collapse
Affiliation(s)
- Martin Humenik
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| | - Tamara Preiß
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| | - Sebastian Gödrich
- Department of Physical Chemistry II, Faculty of Biology, Chemistry & Earth Sciences, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Georg Papastavrou
- Department of Physical Chemistry II, Faculty of Biology, Chemistry & Earth Sciences, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Material Science (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
30
|
Arrabito G, Ferrara V, Ottaviani A, Cavaleri F, Cubisino S, Cancemi P, Ho YP, Knudsen BR, Hede MS, Pellerito C, Desideri A, Feo S, Pignataro B. Imbibition of Femtoliter-Scale DNA-Rich Aqueous Droplets into Porous Nylon Substrates by Molecular Printing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:17156-17165. [PMID: 31790261 DOI: 10.1021/acs.langmuir.9b02893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work presents the first reported imbibition mechanism of femtoliter (fL)-scale droplets produced by microchannel cantilever spotting (μCS) of DNA molecular inks into porous substrates (hydrophilic nylon). Differently from macroscopic or picoliter droplets, the downscaling to the fL-size leads to an imbibition process controlled by the subtle interplay of evaporation, spreading, viscosity, and capillarity, with gravitational forces being quasi-negligible. In particular, the minimization of droplet evaporation, surface tension, and viscosity allows for a reproducible droplet imbibition process. The dwell time on the nylon surface permits further tuning of the droplet lateral size, in accord with liquid ink diffusion mechanisms. The functionality of the printed DNA molecules is demonstrated at different imbibed oligonucleotide concentrations by hybridization with a fluorolabeled complementary sequence, resulting in a homogeneous coverage of DNA within the imbibed droplet. This study represents a first step toward the μCS-enabled fabrication of DNA-based biosensors and microarrays into porous substrates.
Collapse
Affiliation(s)
- G Arrabito
- Department of Physics and Chemistry "Emilio Segrè" , University of Palermo , Building 17, V.le delle Scienze , Palermo 90128 , Italy
| | - V Ferrara
- Department of Chemical Sciences , University of Catania , Viale Andrea Doria 6 , Catania 95125 , Italy
| | - A Ottaviani
- Department of Biology , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy
| | - F Cavaleri
- Department of Physics and Chemistry "Emilio Segrè" , University of Palermo , Building 17, V.le delle Scienze , Palermo 90128 , Italy
| | - S Cubisino
- Department of Physics and Chemistry "Emilio Segrè" , University of Palermo , Building 17, V.le delle Scienze , Palermo 90128 , Italy
| | - P Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies , University of Palermo , Building 16, V.le delle Scienze , Palermo 90128 , Italy
| | - Y P Ho
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong SAR , China
- Centre for Novel Biomaterials , The Chinese University of Hong Kong , Hong Kong SAR , China
| | - B R Knudsen
- Department of Molecular Biology and Genetics , Aarhus University , C.F. Møllers Allé 3 , Aarhus C 8000 , Denmark
- iNANO , Aarhus University , Gustav Wieds Vej 14 , Aarhus 8000 , Denmark
| | - M S Hede
- VPCIR.COM , CF. Møllers Alle 3 , Aarhus C 800 , Denmark
| | - C Pellerito
- Department of Physics and Chemistry "Emilio Segrè" , University of Palermo , Building 17, V.le delle Scienze , Palermo 90128 , Italy
| | - A Desideri
- Department of Biology , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy
| | - S Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies , University of Palermo , Building 16, V.le delle Scienze , Palermo 90128 , Italy
| | - B Pignataro
- Department of Physics and Chemistry "Emilio Segrè" , University of Palermo , Building 17, V.le delle Scienze , Palermo 90128 , Italy
| |
Collapse
|
31
|
Hu Y, Grösche M, Sheshachala S, Oelschlaeger C, Willenbacher N, Rabe KS, Niemeyer CM. Bottom‐Up Assembly of DNA–Silica Nanocomposites into Micrometer‐Sized Hollow Spheres. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yong Hu
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Maximilian Grösche
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Sahana Sheshachala
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Claude Oelschlaeger
- Karlsruhe Institute of Technology (KIT)Institute for Mechanical Process Engineering and Mechanics Gotthard-Franz-Straße 3 76131 Karlsruhe Germany
| | - Norbert Willenbacher
- Karlsruhe Institute of Technology (KIT)Institute for Mechanical Process Engineering and Mechanics Gotthard-Franz-Straße 3 76131 Karlsruhe Germany
| | - Kersten S. Rabe
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
32
|
Hu Y, Grösche M, Sheshachala S, Oelschlaeger C, Willenbacher N, Rabe KS, Niemeyer CM. Bottom-Up Assembly of DNA-Silica Nanocomposites into Micrometer-Sized Hollow Spheres. Angew Chem Int Ed Engl 2019; 58:17269-17272. [PMID: 31625665 PMCID: PMC6900086 DOI: 10.1002/anie.201910606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 02/05/2023]
Abstract
Although DNA nanotechnology has developed into a highly innovative and lively field of research at the interface between chemistry, materials science, and biotechnology, there is still a great need for methodological approaches for bridging the size regime of DNA nanostructures with that of micrometer- and millimeter-sized units for practical applications. We report on novel hierarchically structured composite materials from silica nanoparticles and DNA polymers that can be obtained by self-assembly through the clamped hybridization chain reaction. The nanocomposite materials can be assembled into thin layers within microfluidically generated water-in-oil droplets to produce mechanically stabilized hollow spheres with uniform size distributions at high throughput rates. The fact that cells can be encapsulated in these microcontainers suggests that our concept not only contributes to the further development of supramolecular bottom-up manufacturing, but can also be exploited for applications in the life sciences.
Collapse
Affiliation(s)
- Yong Hu
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Maximilian Grösche
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Sahana Sheshachala
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Claude Oelschlaeger
- Karlsruhe Institute of Technology (KIT)Institute for Mechanical Process Engineering and MechanicsGotthard-Franz-Straße 376131KarlsruheGermany
| | - Norbert Willenbacher
- Karlsruhe Institute of Technology (KIT)Institute for Mechanical Process Engineering and MechanicsGotthard-Franz-Straße 376131KarlsruheGermany
| | - Kersten S. Rabe
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
33
|
Dai Y, Liu CC. Recent Advances on Electrochemical Biosensing Strategies toward Universal Point-of-Care Systems. Angew Chem Int Ed Engl 2019; 58:12355-12368. [PMID: 30990933 DOI: 10.1002/anie.201901879] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Indexed: 02/06/2023]
Abstract
A number of very recently developed electrochemical biosensing strategies are promoting electrochemical biosensing systems into practical point-of-care applications. The focus of research endeavors has transferred from detection of a specific analyte to the development of general biosensing strategies that can be applied for a single category of analytes, such as nucleic acids, proteins, and cells. In this Minireview, recent cutting-edge research on electrochemical biosensing strategies are described. These developments resolved critical challenges regarding the application of electrochemical biosensors to practical point-of-care systems, such as rapid readout, simple biosensor fabrication method, ultra-high detection sensitivity, direct analysis in a complex biological matrix, and multiplexed target analysis. This Minireview provides general guidelines both for scientists in the biosensing research community and for the biosensor industry on development of point-of-care system, benefiting global healthcare.
Collapse
Affiliation(s)
- Yifan Dai
- Electronics Design Center, Case Western Reserve University, Cleveland, Ohio, 44106, USA.,Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Chung Chiun Liu
- Electronics Design Center, Case Western Reserve University, Cleveland, Ohio, 44106, USA.,Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| |
Collapse
|
34
|
Dai Y, Liu CC. Recent Advances on Electrochemical Biosensing Strategies toward Universal Point‐of‐Care Systems. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901879] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yifan Dai
- Electronics Design CenterCase Western Reserve University Cleveland Ohio 44106 USA
- Department of Chemical and Biomolecular EngineeringCase Western Reserve University Cleveland Ohio 44106 USA
| | - Chung Chiun Liu
- Electronics Design CenterCase Western Reserve University Cleveland Ohio 44106 USA
- Department of Chemical and Biomolecular EngineeringCase Western Reserve University Cleveland Ohio 44106 USA
| |
Collapse
|
35
|
Hu Y, Niemeyer CM. From DNA Nanotechnology to Material Systems Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806294. [PMID: 30767279 DOI: 10.1002/adma.201806294] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/29/2018] [Indexed: 05/25/2023]
Abstract
In the past 35 years, DNA nanotechnology has grown to a highly innovative and vibrant field of research at the interface of chemistry, materials science, biotechnology, and nanotechnology. Herein, a short summary of the state of research in various subdisciplines of DNA nanotechnology, ranging from pure "structural DNA nanotechnology" over protein-DNA assemblies, nanoparticle-based DNA materials, and DNA polymers to DNA surface technology is given. The survey shows that these subdisciplines are growing ever closer together and suggests that this integration is essential in order to initiate the next phase of development. With the increasing implementation of machine-based approaches in microfluidics, robotics, and data-driven science, DNA-material systems will emerge that could be suitable for applications in sensor technology, photonics, as interfaces between technical systems and living organisms, or for biomimetic fabrication processes.
Collapse
Affiliation(s)
- Yong Hu
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
36
|
Finke A, Schneider A, Spreng A, Leist M, Niemeyer CM, Marx A. Functionalized DNA Hydrogels Produced by Polymerase-Catalyzed Incorporation of Non-Natural Nucleotides as a Surface Coating for Cell Culture Applications. Adv Healthc Mater 2019; 8:e1900080. [PMID: 30861332 DOI: 10.1002/adhm.201900080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 12/17/2022]
Abstract
Cells from most mammalian tissues require an extracellular matrix (ECM) for attachment and proper functioning. In vitro cell cultures therefore must be supplied with an ECM that satisfies both the biological needs of cells used and the technical demands of the experimental setup. The latter include matrix functionalization for cell attachment, favorable microscopic properties, and affordable production costs. Here, modified DNA materials are therefore developed as an ECM mimic. The material is prepared by chemical cross-linking of commonly available salmon sperm DNA. To render the material cell-compatible, it is enzymatically modified by DNA polymerase I to provide versatile attachment points for peptides, proteins, or antibodies via a modular strategy. Different cells specifically attach to the material, even from mixed populations. They can be mildly released for further cell studies by DNase I-mediated digestion of the DNA material. Additionally, neural stem cells not only attach and survive on the material but also differentiate to a neural lineage when prompted. Furthermore, the DNA material can be employed to capture and retain cells under flow conditions. The simple preparation of the DNA material and its wide scope of applications open new perspectives for various cell study challenges and medical applications.
Collapse
Affiliation(s)
- Alexander Finke
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of Konstanz Universitätsstraße 10 78464 Konstanz Germany
| | - Ann‐Kathrin Schneider
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann‐von‐Helmholtz‐Platz D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Anna‐Sophie Spreng
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of Konstanz Universitätsstraße 10 78464 Konstanz Germany
| | - Marcel Leist
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of Konstanz Universitätsstraße 10 78464 Konstanz Germany
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann‐von‐Helmholtz‐Platz D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Andreas Marx
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of Konstanz Universitätsstraße 10 78464 Konstanz Germany
| |
Collapse
|
37
|
Sun P, Leidner A, Weigel S, Weidler PG, Heissler S, Scharnweber T, Niemeyer CM. Biopebble Containers: DNA-Directed Surface Assembly of Mesoporous Silica Nanoparticles for Cell Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900083. [PMID: 30985076 DOI: 10.1002/smll.201900083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The development of methods for colloidal self-assembly on solid surfaces is important for many applications in biomedical sciences. Toward this goal, described is a versatile class of mesoporous silica nanoparticles (MSN) that contain on their surface various types of DNA molecules to enable their self-assembly into micropatterned surface architectures useful for cell studies. Monodisperse dye-doped MSN are synthesized by biphase stratification and functionalized with an aptamer oligonucleotide that serves as gatekeeper for the triggered release of encapsulated molecular cargo, such as fluorescent dye rhodamine B or the anticancer drug doxorubicin. One or two additional types of oligonucleotides are installed on the MSN surface to enable DNA-directed immobilization on solid substrates bearing patterns of complementary capture oligonucleotides. It is demonstrated that this strategy can be used for efficient self-assembly of microstructured surface architectures, which not only promote the adhesion and guidance of cells but also are capable of affecting the fate of adhered cells through triggered release of their cargo. It is believed that this approach is useful for diverse applications in tissue engineering and nanobio sciences.
Collapse
Affiliation(s)
- Pengchao Sun
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Arnold Leidner
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
- BASF SE, Dispersions & Colloidal Materials - B001, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Simone Weigel
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Peter G Weidler
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Heissler
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Tim Scharnweber
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
38
|
He P, Lou X, Woody SM, He L. Amplification-by-Polymerization in Biosensing for Human Genomic DNA Detection. ACS Sens 2019; 4:992-1000. [PMID: 30942069 DOI: 10.1021/acssensors.9b00133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A polymerization reaction was employed as a signal amplification method to realize direct visualization of gender-specific DNA extracted from human blood in a polymerase chain reaction (PCR)-free fashion. Clear distinction between X and Y chromosomes was observed by naked eyes for detector-free sensing purposes. The grown polymer films atop X and Y chromosomes were quantitatively measured by ellipsometry for thickness readings. Detection assays have been optimized for genomic DNA recognition to a maximum extent by varying the selection of the proper blocking reagents, the annealing temperature, and the annealing time. Traditional PCR and gel electrophoresis for amplicon identification were conducted in parallel for performance comparison. In the blind test for blood samples examined by the new approach, 25 out of 26 were correct and one was false negative, which was comparable to, if not better than, the PCR results. This is the first time our amplification-by-polymerization technique is being used for chromosome DNA analysis. The potential of adopting the described sensing technique without PCR was demonstrated, which could further promote the development of a portable, PCR-free DNA sensing device for point-of-need applications.
Collapse
Affiliation(s)
- Peng He
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, United States
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Xinhui Lou
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Susan M. Woody
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Lin He
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|