1
|
Zhang S, Hu Y, Li M, Xie Y. Reductive Amination of Aldehyde and Ketone with Ammonia and H 2 by an In Situ-Generated Cobalt Catalyst under Mild Conditions. Org Lett 2024; 26:7122-7127. [PMID: 39166977 DOI: 10.1021/acs.orglett.4c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Herein, we present the simplest approach for the synthesis of primary amines via reductive amination using H2 as a reductant and aqueous ammonia as a nitrogen source, catalyzed by amorphous Co particles. The highly active Co particles were prepared in situ by simply mixing commercially available CoCl2 and NaBH4/NaHBEt3 without any ligand or support. This reaction system features mild conditions (80 °C, 1-10 bar), high selectivity (99%), a wide substrate scope, simple operation, and easy separation of the catalyst. The successful large-scale application of this reaction in the production of primary amines suggests its potential industrial interest.
Collapse
Affiliation(s)
- Shiyun Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yue Hu
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Meichao Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yinjun Xie
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
2
|
Zhang M, Qi Z, Xie M, Qu Y. Employing Ammonia for the Synthesis of Primary Amines: Recent Achievements over Heterogeneous Catalysts. CHEMSUSCHEM 2024:e202401550. [PMID: 39189946 DOI: 10.1002/cssc.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 08/28/2024]
Abstract
Primary amines represent highly privileged chemicals for synthesis of polymers, pharmaceuticals, agrochemicals, coatings, etc. Consequently, the development of efficient and green methodologies for the production of primary amines are of great importance in chemical industry. Owing to the advantages of low cost and ease in availability, ammonia is considered as a feasible nitrogen source for synthesis of N-containing compounds. Thus, the efficient transformation of ammonia into primary amines has received much attention. In this review, the commonly applied synthetic routes to produce primary amines from ammonia were summarized, including the reductive amination of carbonyl compounds, the hydrogen transfer amination of alcohols, the hydroamination of olefins and the arylation with ammonia, in which the catalytic performance of the recent heterogeneous catalysts is discussed. Additionally, various strategies to modulate the surface properties of catalysts are outlined in conjunction with the analysis of reaction mechanism. Particularly, the amination of the biomass-derived substrates is highlighted, which could provide competitive advantages in chemical industry and stimulate the development of sustainable catalysis in the future. Ultimately, perspectives into the challenges and opportunities for synthesis of primary amines with ammonia as N-resource are discussed.
Collapse
Affiliation(s)
- Mingkai Zhang
- School of Science, Xi'an University of Technology, Xi'an, 710048, China
| | - Zening Qi
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710072, China
| | - Min Xie
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710072, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
3
|
Karapanou MI, Malliotaki D, Stratakis M. Au nanoparticle-catalyzed double hydrosilylation of nitriles by diethylsilane. Org Biomol Chem 2024; 22:5346-5352. [PMID: 38861320 DOI: 10.1039/d4ob00534a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
We present the first example of Au-catalyzed reduction of nitriles into primary amines. In contrast to monohydrosilanes which are completely unreactive, diethylsilane (a dihydrosilane) is capable of reducing aryl or alkyl nitriles into primary amines under catalysis by Au nanoparticles supported on TiO2, via a smooth double hydrosilylation pathway. The produced labile N-disilylamines are readily deprotected by HCl in Et2O to form the hydrochloric salts of the corresponding amines in very good to excellent yields. The catalyst is recyclable and reusable at least in 5 consecutive runs.
Collapse
Affiliation(s)
| | - Dimitra Malliotaki
- Department of Chemistry, University of Crete, Voutes, 71003, Heraklion, Greece.
| | - Manolis Stratakis
- Department of Chemistry, University of Crete, Voutes, 71003, Heraklion, Greece.
| |
Collapse
|
4
|
Gao J, Ma R, Poovan F, Zhang L, Atia H, Kalevaru NV, Sun W, Wohlrab S, Chusov DA, Wang N, Jagadeesh RV, Beller M. Streamlining the synthesis of amides using Nickel-based nanocatalysts. Nat Commun 2023; 14:5013. [PMID: 37591856 PMCID: PMC10435480 DOI: 10.1038/s41467-023-40614-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
The synthesis of amides is a key technology for the preparation of fine and bulk chemicals in industry, as well as the manufacture of a plethora of daily life products. Furthermore, it constitutes a central bond-forming methodology for organic synthesis and provides the basis for the preparation of numerous biomolecules. Here, we present a robust methodology for amide synthesis compared to traditional amidation reactions: the reductive amidation of esters with nitro compounds under additives-free conditions. In the presence of a specific heterogeneous nickel-based catalyst a wide range of amides bearing different functional groups can be selectively prepared in a more step-economy way compared to previous syntheses. The potential value of this protocol is highlighted by the synthesis of drugs, as well as late-stage modifications of bioactive compounds. Based on control experiments, material characterizations, and DFT computations, we suggest metallic nickel and low-valent Ti-species to be crucial factors that makes this direct amide synthesis possible.
Collapse
Affiliation(s)
- Jie Gao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Rui Ma
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Fairoosa Poovan
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Lan Zhang
- Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China
| | - Hanan Atia
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Narayana V Kalevaru
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Wenjing Sun
- Guang-dong Medical University, 523808, Dongguan, China
| | - Sebastian Wohlrab
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Denis A Chusov
- A. N. Nesmeyanov Institute of Organoelement Compounds, 119991, Moscow, Russia.
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China.
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany.
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany.
| |
Collapse
|
5
|
Zhou B, Chandrashekhar VG, Ma Z, Kreyenschulte C, Bartling S, Lund H, Beller M, Jagadeesh RV. Development of a General and Selective Nanostructured Cobalt Catalyst for the Hydrogenation of Benzofurans, Indoles and Benzothiophenes. Angew Chem Int Ed Engl 2023; 62:e202215699. [PMID: 36636903 DOI: 10.1002/anie.202215699] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
The selective hydrogenation of benzofurans in the presence of a heterogeneous non-noble metal catalyst is reported. The developed optimal catalytic material consists of cobalt-cobalt oxide core-shell nanoparticles supported on silica, which has been prepared by the immobilization and pyrolysis of cobalt-DABCO-citric acid complex on silica under argon at 800 °C. This novel catalyst allows for the selective hydrogenation of simple and functionalized benzofurans to 2,3-dihydrobenzofurans as well as related heterocycles. The versatility of the reported protocol is showcased by the reduction of selected drugs and deuteration of heterocycles. Further, the stability, recycling, and reusability of the Co-nanocatalyst are demonstrated.
Collapse
Affiliation(s)
- Bei Zhou
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | | | - Zhuang Ma
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Carsten Kreyenschulte
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Henrik Lund
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | | |
Collapse
|
6
|
Electrochemical transformation of biomass-derived oxygenates. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Wang J, Wang W, Yang X, Liu J, Huang H, Chang M. Practical N-alkylation via homogeneous iridium-catalyzed direct reductive amination. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Zhang M, Zhang S, Ma Y. In-situ reconstruction of CoBO x enables formation of Co for synthesis of benzylamine through reductive amination. Front Chem 2023; 10:1104844. [PMID: 36688037 PMCID: PMC9845621 DOI: 10.3389/fchem.2022.1104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Cobalt (Co) as a substitute of noble-metal catalysts shows high catalytic capability for production of the widely used primary amines through the reductive amination. However, the synthesis of Co catalysts usually involves the introduction of organic compounds and the high-temperature pyrolysis, which is complicated and difficult for large-scale applications. Herein, we demonstrated a facile and efficient strategy for the preparation of Co catalysts through the in situ reconstruction of cobalt borate (CoBOx) during the reductive amination, delivering a high catalytic activity for production of benzylamine from benzaldehyde and ammonia. Initially, CoBOx was transformed into Co(OH)2 through the interaction with ammonia and subsequently reduced to Co nanoparticles by H2 under the reaction environments. The in situ generated Co catalysts exhibited a satisfactory activity and selectivity to the target product, which overmatched the commonly used Co/C, Pt or Raney Ni catalysts. We anticipate that such an in situ reconstruction of CoBOx by reactants during the reaction could provide a new approach for the design and optimization of catalysts to produce primary amines.
Collapse
Affiliation(s)
- Mingkai Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, China,Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Sai Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, China,*Correspondence: Sai Zhang, ; Yuanyuan Ma,
| | - Yuanyuan Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, China,*Correspondence: Sai Zhang, ; Yuanyuan Ma,
| |
Collapse
|
9
|
Ruan P, Chen B, Zhou Q, Zhang H, Wang Y, Liu K, Zhou W, Qin R, Liu Z, Fu G, Zheng N. Upgrading heterogeneous Ni catalysts with thiol modification. Innovation (N Y) 2022; 4:100362. [PMID: 36636490 PMCID: PMC9830375 DOI: 10.1016/j.xinn.2022.100362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Precious metal catalysts are the cornerstone of many industrial processes. Replacing precious metal catalysts with earth-abundant metals is one of key challenges for the green and sustainable development of chemical industry. We report in this work a surprisingly effective strategy toward the development of cost-effective, air-stable, and efficient Ni catalysts by simple surface modification with thiols. The as-prepared catalysts exhibit unprecedentedly high activity and selectivity in the reductive amination of aldehydes/ketones. The thiol modification can not only prevent the deep oxidation of Ni surface to endow the catalyst with long shelf life in air but can also allow the reductive amination to proceed via a non-contact mechanism to selectively produce primary amines. The catalytic performance is far superior to that of precious and non-precious metal catalysts reported in the literature. The wide application scope and high catalytic performance of the developed Ni catalysts make them highly promising for the low-cost, green production of high-value amines in chemical industry.
Collapse
Affiliation(s)
- Pengpeng Ruan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bili Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qin Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hansong Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yahao Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenting Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gang Fu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China,Corresponding author
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China,Corresponding author
| |
Collapse
|
10
|
Li X, Nishimura S. Synthesis of 5-Hydroxymethyl-2-furfurylamine via Reductive Amination of 5-Hydroxymethyl-2-furaldehyde with Supported Ni-Co Bimetallic Catalysts. Catal Letters 2022. [DOI: 10.1007/s10562-022-04223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Room-temperature hydrogenation of halogenated nitrobenzenes over metal—organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Strohmann M, Vorholt AJ, Leitner W. Branched Tertiary Amines from Aldehydes and α-Olefins by Combined Multiphase Tandem Reactions. Chemistry 2022; 28:e202202081. [PMID: 35916208 PMCID: PMC9804909 DOI: 10.1002/chem.202202081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 01/09/2023]
Abstract
This study presents the transformation of olefins to branched amines by combining a hydroformylation/aldol condensation tandem reaction with the reductive amination in a combined multiphase system that can be recycled 9 times. The products are branched amines that are precursors for surfactants. Since the multiphase hydrofomylation/aldol condensation system has already been studied, the first step was to develop the partial hydrogenation of unsaturated aldehydes together with a subsequent reductive amination. The rhodium/phosphine catalyst is immobilized in a polar polyethylene phase which separates from the product phase after the reaction. Reaction and catalyst recycling are demonstrated by the conversion of the C14 -aldehyde 2-pentylnonenal with the dimethylamine surrogate dimethylammonium dimethylcarbamate to the corresponding tertiary amine with yields up to 88 % and an average rhodium leaching of less than 0.1 % per recycling run. Furthermore, the positive influence of a Bronsted acid and carbon monoxide on the selectivity are discussed. Finally, the two PEG based systems have been merged in one recycling approach, by using the product phase of the hydroformylation aldol condensation reaction for the reductive amination reaction. The yields are stable during a nine recycling runs and the leaching low with 0.09 % over the two recycling stages.
Collapse
Affiliation(s)
- Marc Strohmann
- Multiphase CatalysisMax-Planck-Institut für Chemische EnergiekonversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Andreas J. Vorholt
- Multiphase CatalysisMax-Planck-Institut für Chemische EnergiekonversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Walter Leitner
- Multiphase CatalysisMax-Planck-Institut für Chemische EnergiekonversionStiftstraße 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 152074AachenGermany
| |
Collapse
|
13
|
Zhang X, Zhao J, Che C, Qin J, Wan T, Sun F, Ma J, Long Y. Uniformly microporous diatomite supported Ni0/2+ catalyzed controllable selective reductive amination of benzaldehydes to primary amines, secondary imines and secondary amines. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Hu Q, Jiang S, Wu Y, Xu H, Li G, Zhou Y, Wang J. Ambient-Temperature Reductive Amination of 5-Hydroxymethylfurfural Over Al 2 O 3 -Supported Carbon-Doped Nickel Catalyst. CHEMSUSCHEM 2022; 15:e202200192. [PMID: 35233939 DOI: 10.1002/cssc.202200192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Indexed: 06/14/2023]
Abstract
An efficient catalytic system for the conversion of 5-hydroxymethylfurfural (HMF) into N-containing compounds over low-cost non-noble-metal catalysts is preferable, but it is challenging to reach high conversion and selectivity under mild conditions. Herein, an Al2 O3 -supported carbon-doped Ni catalyst was obtained via the direct pyrolysis-reduction of a mixture of Ni3 (BTC)2 ⋅ 12H2 O and Al2 O3 , generating stable Ni0 species due to the presence of carbon residue. A high yield of 96 % was observed in the reductive amination of HMF into 5-hydroxymethyl furfurylamine (HMFA) with ammonia and hydrogen at ambient temperature. The catalyst was recyclable and could be applied to the ambient-temperature synthesis of HMF-based secondary/tertiary amines and other biomass-derived amines from the carbonyl compounds. The significant performance was attributable to the synergistic effect of Ni0 species and acidic property of the support Al2 O3 , which promoted the selective ammonolysis of the imine intermediate while inhibiting the potential side reaction of over-hydrogenation.
Collapse
Affiliation(s)
- Qizhi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Shi Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yue Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hongzhong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Guoqing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
15
|
Wei Z, Cheng Y, Huang H, Ma Z, Zhou K, Liu Y. Reductive Amination of 5-Hydroxymethylfurfural to 2,5-Bis(aminomethyl)furan over Alumina-Supported Ni-Based Catalytic Systems. CHEMSUSCHEM 2022; 15:e202200233. [PMID: 35225422 DOI: 10.1002/cssc.202200233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Mono- and bimetallic Ni-based catalysts were prepared by screening 6 supports and 14 secondary metals for reductive amination of 5-hydroxymethylfurfural (5-HMF) into 2,5-bis(aminomethyl)furan (BAMF), among which γ-Al2 O3 and Mn were the best candidates. By further optimization of the reaction conditions at 0.4 g catalyst loading for 0.5 g substrate of 5-HMF and 160 °C of reaction temperature, 10Ni/γ-Al2 O3 and 10NiMn(4 : 1)/γ-Al2 O3 achieved the highest BAMF yields of 86.3 and 82.1 %, respectively. Although the BAMF yield values were comparable with that over Raney Ni, the turnover frequencies based on the initial BAMF yield and unit weight of Ni for 10NiMn(4 : 1)/γ-Al2 O3 , 10Ni/γ-Al2 O3 , and Raney Ni were calculated as 0.41, 0.09, and 0.04 h-1 , respectively. X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy showed that the existence of MnOx well dispersed on the γ-Al2 O3 support and its electron transfer effect with Ni particles on the surface of the support contributed to the high efficiency and better recyclability for the five-time reused 10NiMn(4 : 1)/γ-Al2 O3 catalyst.
Collapse
Affiliation(s)
- Zuojun Wei
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou, 324000, P.R. China
| | - Yuran Cheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou, 324000, P.R. China
| | - Hao Huang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
| | - Zhihe Ma
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou, 324000, P.R. China
| | - Kuo Zhou
- Research and Development Base of Catalytic Hydrogenation College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Xiacheng District, Hangzhou, 310014, P.R. China
| | - Yingxin Liu
- Research and Development Base of Catalytic Hydrogenation College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Xiacheng District, Hangzhou, 310014, P.R. China
| |
Collapse
|
16
|
Zhou J, Yang Q, Lee CS, Wang J(J. Enantio‐ and Regioselective Construction of 1,4‐Diamines via Cascade Hydroamination of Methylene Cyclopropanes. Angew Chem Int Ed Engl 2022; 61:e202202160. [DOI: 10.1002/anie.202202160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Jian Zhou
- Department of Chemistry Hong Kong Baptist University Kowloon, Hong Kong China
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Qingjing Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Chi Sing Lee
- Department of Chemistry Hong Kong Baptist University Kowloon, Hong Kong China
| | - Jun (Joelle) Wang
- Department of Chemistry Hong Kong Baptist University Kowloon, Hong Kong China
| |
Collapse
|
17
|
Verma R, Jing Y, Liu H, Aggarwal V, Goswami HK, Bala E, Ke Z, Verma PK. Employing Ammonia for Diverse Amination Reactions: Recent Developments of Abundantly Available and Challenging Nitrogen Sources. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rahul Verma
- Shoolini University School of Advanced Chemical Sciences INDIA
| | - Yaru Jing
- Sun Yat-sen University School of Chemistry and Chemical Engineering: Sun Yat-sen University School of Chemistry School of Materials Science & Engineering, PCFM Lab INDIA
| | - Honghu Liu
- Sun Yat-sen University School of Chemistry and Chemical Engineering: Sun Yat-sen University School of Chemistry School of Materials Science & Engineering, PCFM Lab INDIA
| | - Varun Aggarwal
- Shoolini University School of Advanced Chemical Sciences INDIA
| | | | - Ekta Bala
- Shoolini University School of Advanced Chemical Sciences 173229 Solan INDIA
| | - Zhuofeng Ke
- Sun Yat-sen University School of Chemistry and Chemical Engineering: Sun Yat-sen University School of Chemistry chool of Materials Science & Engineering, PCFM Lab INDIA
| | - Praveen Kumar Verma
- Shoolini University School of Advanced Chemical Sciences Solan 173229 Solan INDIA
| |
Collapse
|
18
|
Wang H, Lin Y, Lu J. Ultra-thin nickel oxide overcoating of noble metal catalysts for directing selective hydrogenation of nitriles to secondary amines. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Bai-cheng F, Bao-hu X, Zhen-chao Z, Yu-hui H, Yan J, Qing-lin Y. Production of Heterocyclic Primary Amines from Heterocyclic Aldehydes on Ni‐Mo/ZrO
2. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Feng Bai-cheng
- Qingdao University of Science and Technology College of Chemical Engineering 266042 Qingdao Shandong China
| | - Xi Bao-hu
- Qingdao University of Science and Technology College of Chemical Engineering 266042 Qingdao Shandong China
| | - Zhang Zhen-chao
- Qingdao University of Science and Technology College of Chemical Engineering 266042 Qingdao Shandong China
| | - Hou Yu-hui
- Qingdao University of Science and Technology College of Chemical Engineering 266042 Qingdao Shandong China
| | - Jin Yan
- Qingdao University of Science and Technology College of Chemical Engineering 266042 Qingdao Shandong China
| | - Yao Qing-lin
- Chemical Technology Academy of Ji Nan 250000 Jinan Shandong China
| |
Collapse
|
20
|
Zhou J, Yang Q, Lee CS, WANG J. Enantio‐ and Regioselective Construction of 1,4‐diamines via Cascade Hydroamination of Methylene Cyclopropanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian Zhou
- Hong Kong Baptist University Department of Chemistry HONG KONG
| | - Qingjing Yang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Chi Sing Lee
- Hong Kong Baptist University Department of Chemistry HONG KONG
| | - Jun WANG
- Hong Kong Baptist University Department of Chemistry Ho Sin Hang Campus 000000 Hong Kong HONG KONG
| |
Collapse
|
21
|
Bhunia MK, Chandra D, Abe H, Niwa Y, Hara M. Synergistic Effects of Earth-Abundant Metal-Metal Oxide Enable Reductive Amination of Carbonyls at 50 °C. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4144-4154. [PMID: 35014256 DOI: 10.1021/acsami.1c21157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reductive amination of carbonyls to primary amines is of importance to the synthesis of fine chemicals; however, this reaction with heterogeneous catalysts containing earth-abundant metals under mild conditions remains scarce. Here, we show that the nickel catalyst with mixed oxidation states enables such synthesis of primary amines under low temperature (50 °C) and H2 pressure (0.9 MPa). The catalyst shows activity in both water and toluene. The high activity likely results from the formation of small (ca. 4.6 nm) partially oxidized nickel nanoparticles (NPs) homogeneously anchored onto the silica and their synergistic effect. Detailed characterizations indicate stabilization of NPs through strong metal support interaction via electron donation from the metal to support. We identify that the support endowed with an amphoteric nature shows better performance. This strategy of making small metal-metal oxide NPs will open an avenue toward the rational development of efficient catalysts that would allow for other organic transformations under mild reaction conditions.
Collapse
Affiliation(s)
- Manas K Bhunia
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Debraj Chandra
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Hitoshi Abe
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Graduate School of Science and Technology, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Yasuhiro Niwa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
- Advanced Low Carbon Technology Research and Development Program (ALCA), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
22
|
Ma Z, Chandrashekhar VG, Zhou B, Alenad AM, Rockstroh N, Bartling S, Beller M, Jagadeesh RV. Stable and reusable Ni-based nanoparticles for general and selective hydrogenation of nitriles to amines. Chem Sci 2022; 13:10914-10922. [PMID: 36320707 PMCID: PMC9491304 DOI: 10.1039/d2sc02961h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Silica supported ultrasmall Ni-nanoparticles allow for general and selective hydrogenation of all kinds of nitriles to primary amines under mild conditions. By calcination of a template material generated from Ni(ii)nitrate and colloidal silica under air and subsequent reduction in the presence of molecular hydrogen the optimal catalyst is prepared. The prepared supported nanoparticles are stable, can be conveniently used and easily recycled. The applicability of the optimal catalyst material is shown by hydrogenation of >110 diverse aliphatic and aromatic nitriles including functionalized and industrially relevant substrates. Challenging heterocyclic nitriles, specifically cyanopyridines, provided the corresponding primary amines in good to excellent yields. The resulting amines serve as important precursors and intermediates for the preparation of numerous life science products and polymers. Silica supported ultrasmall Ni-nanoparticles allow for general and selective hydrogenations of all kinds of nitriles to primary amines under mild conditions.![]()
Collapse
Affiliation(s)
- Zhuang Ma
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | | | - Bei Zhou
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Asma M. Alenad
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Nils Rockstroh
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | | |
Collapse
|
23
|
Khorsandi Z, Keshavarzipour F, Varma RS, Hajipour AR, Sadeghi-Aliabadi H. Sustainable synthesis of potential antitumor new derivatives of Abemaciclib and Fedratinib via C-N cross coupling reactions using Pd/Cu-free Co-catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Zheng B, Xu J, Song J, Wu H, Mei X, Zhang K, Han W, Wu W, He M, Han B. Nanoparticles and single atoms of cobalt synergistically enabled low-temperature reductive amination of carbonyl compounds. Chem Sci 2022; 13:9047-9055. [PMID: 36091204 PMCID: PMC9365245 DOI: 10.1039/d2sc01596j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Low-temperature and selective reductive amination of carbonyl compounds is a highly promising approach to access primary amines. However, it remains a great challenge to conduct this attractive route efficiently over earth-abundant metal-based catalysts. Herein, we designed several Co-based catalysts (denoted as Co@C–N(x), where x represents the pyrolysis temperature) by the pyrolysis of the metal–organic framework ZIF-67 at different temperatures. Very interestingly, the prepared Co@C–N(800) could efficiently catalyze the reductive amination of various aldehydes/ketones to synthesize the corresponding primary amines with high yields at 35 °C. Besides non-noble metal and mild temperature, the other unique advantage of the catalyst was that the substrates with different reduction-sensitive groups could be converted into primary amines selectively because the Co-based catalyst was not active for these groups at low temperature. Systematic analysis revealed that the catalyst was composed of graphene encapsulated Co nanoparticles and atomically dispersed Co–Nx sites. The Co particles promoted the hydrogenation step, while the Co–Nx sites acted as acidic sites to activate the intermediate (Schiff base). The synergistic effect of metallic Co particles and Co–Nx sites is crucial for the excellent performance of the catalyst Co@C–N(800). To the best of our knowledge, this is the first study on efficient synthesis of primary amines via reductive amination of carbonyl compounds over earth-abundant metal-based catalysts at low temperature (35 °C). An earth-abundant Co-based catalyst, Co@C–N(800), could efficiently catalyze the reductive amination of carbonyl compounds into primary amines at 35 °C owing to the synergistic effect of Co nanoparticles and atomically dispersed Co–Nx sites.![]()
Collapse
Affiliation(s)
- Bingxiao Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Jiao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Jinliang Song
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Xuelei Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Kaili Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Wanying Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Wei Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Fernandes CDS, Francisco CB, Gauze GDF, Rittner R, Basso EA. Rapid Synthesis of Primary Amines from Ketones using Choline Chloride/Urea Deep Eutectic as a Reaction Medium. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.2010465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Roberto Rittner
- Physical Organic Chemistry Laboratory, Chemistry Institute, University of Campinas, Campinas, SP, Brazil
| | - Ernani A. Basso
- Chemistry Department, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
26
|
New Low-Dimensional Hybrid Perovskitoids Based on Lead Bromide with Organic Cations from Charge-Transfer Complexes. CRYSTALS 2021. [DOI: 10.3390/cryst11111424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have obtained a series of low-dimensional hybrid perovskitoids (often referred to as perovskites) based on lead bromide. As organic cations, the derivatives of polyaromatic and conjugated molecules, such as anthracene, pyrene and (E)-stilbene, were chosen to form charge-transfer complexes with various organic acceptors for use as highly tunable components of hybrid perovskite solar cells. X-ray diffraction analysis showed these crystalline materials to be new 1D- and pseudo-layered 0D-perovskitoids with lead bromide octahedra featuring different sharing modes, such as in unusual mini-rods of four face- and edge-shared octahedra. Thanks to the low dimensionality, they can be of use in another type of optoelectronic device, photodetectors.
Collapse
|
27
|
Dai Z, Pan YM, Wang SG, Zhang X, Yin Q. Direct reductive amination of ketones with ammonium salt catalysed by Cp*Ir(III) complexes bearing an amidato ligand. Org Biomol Chem 2021; 19:8934-8939. [PMID: 34636833 DOI: 10.1039/d1ob01710a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of half-sandwich Ir(III) complexes 1-6 bearing an amidato bidentate ligand were conveniently synthesized and applied to the catalytic Leuckart-Wallach reaction to produce racemic α-chiral primary amines. With 0.1 mol% of complex 1, a broad range of ketones, including aryl ketones, dialkyl ketones, cyclic ketones, α-keto acids, α-keto esters and diketones, could be transformed to their corresponding primary amines with moderate to excellent yields (40%-95%). Asymmetric transformation was also attempted with chiral Ir complexes 3-6, and 16% ee of the desired primary amine was obtained. Despite the unsatisfactory enantio-control achieved so far, the current exploration might stimulate more efforts towards the discovery of better chiral catalysts for this challenging but important transformation.
Collapse
Affiliation(s)
- Zengjin Dai
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Ying-Min Pan
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China. .,Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
28
|
Su J, Su H, Chen J, Li X. Semiconductor‐based nanocomposites for selective organic synthesis. NANO SELECT 2021. [DOI: 10.1002/nano.202100065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Juan Su
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| | - Hui Su
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| | - Jie‐Sheng Chen
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| | - Xin‐Hao Li
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
29
|
Zou Q, Liu F, Zhao T, Hu X. Reductive amination of ketones/aldehydes with amines using BH 3N(C 2H 5) 3 as a reductant. Chem Commun (Camb) 2021; 57:8588-8591. [PMID: 34357367 DOI: 10.1039/d1cc02618f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report the first example of efficient reductive amination of ketones/aldehydes with amines using BH3N(C2H5)3 as a catalyst and a reductant under mild conditions, affording various tertiary and secondary amines in excellent yields. A mechanistic study indicates that BH3N(C2H5)3 plays a dual function role of promoting imine and iminium formation and serving as a reductant in reductive amination.
Collapse
Affiliation(s)
- Qizhuang Zou
- Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China.
| | | | | | | |
Collapse
|
30
|
Liu J, Song Y, Ma L. Earth-abundant Metal-catalyzed Reductive Amination: Recent Advances and Prospect for Future Catalysis. Chem Asian J 2021; 16:2371-2391. [PMID: 34235866 DOI: 10.1002/asia.202100473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/27/2021] [Indexed: 12/29/2022]
Abstract
Nitrogen-containing compounds, as an important class of chemicals, have been used widely in pharmaceuticals, materials synthesis. Transition metal-catalyzed reductive amination of an aldehyde or a ketone with ammonia or an amine has been proved to be an efficient and practical method for the preparation of nitrogen-containing compounds in academia and industry for a century. Given the above, several effective methods using transition metals have been developed in recent years. Noble transition metals like Pd, Pt, and Au-based catalysts have been predominately used in reductive amination. Because of their high prices, strict official regulations of residues in pharmaceuticals, and deleterious effects on the biological system, their industrial applications are severely hampered. With the increasing sustainable and environmental problems, the Earth-abundant transition metals including Ti, Fe, Co, Ni, and Zr have also been investigated for the reductive amination reaction and showed great potential to the advancement of sustainable and cost-effective reductive amination processes. This critical review will mainly summarize the work using Earth-abundant metals. The effects of different transition metals used in catalytic reduction amination were discussed and compared, and some suggestions were given. The last section highlights the catalytic activities of bi- and tri-metallic catalysts. Indeed, this latter family is very promising and simultaneously benefits from increased stability, and selectivity, compared to monometallic NPs, due to synergistic substrate activation. Few comprehensive reviews focusing on Earth-abundant transition metals catalyst has been published since 1948, although several authors reported some summaries dealing with one or the other part of this aspect. It is hoped that this critical review will inspire researchers to develop new efficient and selective earth-abundant metal catalysts for highly, environmentally sustainable reductive amination methods, as well as improve the pharmaceutical industry and related chemical synthesis company traditional method with the utilization of the green method widely.
Collapse
Affiliation(s)
- Jianguo Liu
- Key Laboratory of Renewable Energy Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China.,Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Yanpei Song
- Key Laboratory of Renewable Energy Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Longlong Ma
- Key Laboratory of Renewable Energy Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| |
Collapse
|
31
|
Structural Requirements for Chemoselective Ammonolysis of Ethylene Glycol to Ethanolamine over Supported Cobalt Catalysts. Catalysts 2021. [DOI: 10.3390/catal11060736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ethylene glycol is regarded as a promising C2 platform molecule due to the fast development of its production from sustainable biomass. This study inquired the structural requirements of Co-based catalysts for the liquid-phase ammonolysis of ethylene glycol to value-added ethanolamine. We showed that the rate and selectivity of ethylene glycol ammonolysis on γ-Al2O3-supported Co catalysts were strongly affected by the metal particle size within the range of 2–10 nm, among which Co nanoparticles of ~4 nm exhibited both the highest ethanolamine selectivity and the highest ammonolysis rate based on the total Co content. Doping of a moderate amount of Ag further promoted the catalytic activity without affecting the selectivity. Combined kinetic and infrared spectroscopic assessments unveiled that the addition of Ag significantly destabilized the adsorbed NH3 on the Co surface, which would otherwise be strongly bound to the active sites and inhibit the rate-determining dehydrogenation step of ethylene glycol.
Collapse
|
32
|
Highly selective and robust single-atom catalyst Ru 1/NC for reductive amination of aldehydes/ketones. Nat Commun 2021; 12:3295. [PMID: 34078894 PMCID: PMC8172939 DOI: 10.1038/s41467-021-23429-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
Single-atom catalysts (SACs) have emerged as a frontier in heterogeneous catalysis due to the well-defined active site structure and the maximized metal atom utilization. Nevertheless, the robustness of SACs remains a critical concern for practical applications. Herein, we report a highly active, selective and robust Ru SAC which was synthesized by pyrolysis of ruthenium acetylacetonate and N/C precursors at 900 °C in N2 followed by treatment at 800 °C in NH3. The resultant Ru1-N3 structure exhibits moderate capability for hydrogen activation even in excess NH3, which enables the effective modulation between transimination and hydrogenation activity in the reductive amination of aldehydes/ketones towards primary amines. As a consequence, it shows superior amine productivity, unrivalled resistance against CO and sulfur, and unexpectedly high stability under harsh hydrotreating conditions compared to most SACs and nanocatalysts. This SAC strategy will open an avenue towards the rational design of highly selective and robust catalysts for other demanding transformations. Single-atom catalyst (SAC) has emerged as a frontier in heterogeneous catalysis yet its robustness remains a critical concern. Here, a highly active, selective and robust Ru1-N3 SAC is explored for a challenging reaction, reductive amination of aldehydes/ketones for synthesis of primary amines.
Collapse
|
33
|
Key Parameters for the Synthesis of Active and Selective Nanostructured 3d Metal Catalysts Starting from Coordination Compounds – Case Study: Nickel Mediated Reductive Amination. ChemCatChem 2021. [DOI: 10.1002/cctc.202100562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Sheng M, Fujita S, Yamaguchi S, Yamasaki J, Nakajima K, Yamazoe S, Mizugaki T, Mitsudome T. Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds. JACS AU 2021; 1:501-507. [PMID: 34467312 PMCID: PMC8395685 DOI: 10.1021/jacsau.1c00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 06/13/2023]
Abstract
The development of metal phosphide catalysts for organic synthesis is still in its early stages. Herein, we report the successful synthesis of single-crystal cobalt phosphide nanorods (Co2P NRs) containing coordinatively unsaturated Co-Co active sites, which serve as a new class of air-stable, highly active, and reusable heterogeneous catalysts for the reductive amination of carbonyl compounds. The Co2P NR catalyst showed high activity for the transformation of a broad range of carbonyl compounds to their corresponding primary amines using an aqueous ammonia solution or ammonium acetate as a green amination reagent at 1 bar of H2 pressure; these conditions are far milder than previously reported. The air stability and high activity of the Co2P NRs is noteworthy, as conventional Co catalysts are air-sensitive (pyrophorous) and show no activity for this transformation under mild conditions. P-alloying is therefore of considerable importance for nanoengineering air-stable and highly active non-noble-metal catalysts for organic synthesis.
Collapse
Affiliation(s)
- Min Sheng
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shu Fujita
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Sho Yamaguchi
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Jun Yamasaki
- Research
Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kiyotaka Nakajima
- Institute
for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Seiji Yamazoe
- Department
of Chemistry, Tokyo Metropolitan University, 1-1 minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tomoo Mizugaki
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka,
University, Suita, Osaka 565-0871, Japan
| | - Takato Mitsudome
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
35
|
Polishchuk I, Sklyaruk J, Lebedev Y, Rueping M. Air Stable Iridium Catalysts for Direct Reductive Amination of Ketones. Chemistry 2021; 27:5919-5922. [PMID: 33508154 DOI: 10.1002/chem.202005508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 11/08/2022]
Abstract
Half-sandwich iridium complexes bearing bidentate urea-phosphorus ligands were found to catalyze the direct reductive amination of aromatic and aliphatic ketones under mild conditions at 0.5 mol % loading with high selectivity towards primary amines. One of the complexes was found to be active in both the Leuckart-Wallach (NH4 CO2 H) type reaction as well as in the hydrogenative (H2 /NH4 AcO) reductive amination. The protocol with ammonium formate does not require an inert atmosphere, dry solvents, as well as additives and in contrast to previous reports takes place in hexafluoroisopropanol (HFIP) instead of methanol. Applying NH4 CO2 D or D2 resulted in a high degree of deuterium incorporation into the primary amine α-position.
Collapse
Affiliation(s)
- Iuliia Polishchuk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, Germany
| | - Jan Sklyaruk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, Germany
| | - Yury Lebedev
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, Germany.,KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
36
|
Intrinsic mechanism of active metal dependent primary amine selectivity in the reductive amination of carbonyl compounds. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Facile Synthesis of COF-Supported Reduced Pd-Based Catalyst for One-Pot Reductive Amination of Aldehydes. Catalysts 2021. [DOI: 10.3390/catal11020287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dibenzylamine motifs are an important class of crucial organic compounds and are widely used in fine chemical and pharmaceutical industries. The development of the efficient, economical, and environmentally friendly synthesis of amines using transition metal-based heterogeneous catalysts remains both desirable and challenging. Herein, we prepared the covalent organic framework (COF)-supported heterogeneous reduced COF-supported Pd-based catalyst and used it for the one-pot reductive amination of aldehydes. There are both Pd metallic state and oxidated Pdσ+ in the catalysts. Furthermore, in the presence of the reduced COF-supported Pd-based catalyst, many aromatic, aliphatic, and heterocyclic aldehydes with various functional groups substituted were converted to their corresponding amines products in good to excellent selectivity (up to 91%) under mild reaction conditions (70 °C, 2 h, NH3, 20 bar H2). This work expands the covalent organic frameworks for the material family and its support catalyst, opening up new catalytic applications in the economical, practical, and effective synthesis of secondary amines.
Collapse
|
38
|
Zhang J, Yang J, Tian J, Liu H, Li X, Fang W, Hu X, Xia C, Chen J, Huang Z. Reductive amination of bio-based 2-hydroxytetrahydropyran to 5-Amino-1-pentanol over nano-Ni–Al 2O 3 catalysts. NEW J CHEM 2021. [DOI: 10.1039/d0nj04962j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
5-Amino-1-pentanol was efficiently synthesized by reductive amination of bio-based 2-hydroxytetrahydropyran with a high yield over stable nano-Ni–Al2O3 catalysts.
Collapse
|
39
|
Wang F, Tan X, Wu T, Zheng LS, Chen GQ, Zhang X. Ni-Catalyzed asymmetric reduction of α-keto-β-lactams via DKR enabled by proton shuttling. Chem Commun (Camb) 2020; 56:15557-15560. [PMID: 33244528 DOI: 10.1039/d0cc05599a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chiral α-hydroxy-β-lactams are key fragments of many bioactive compounds and antibiotics, and the development of efficient synthetic methods for these compounds is of great value. The highly enantioselective dynamic kinetic resolution (DKR) of α-keto-β-lactams was realized via a novel proton shuttling strategy. A wide range of α-keto-β-lactams were reduced efficiently and enantioselectively by Ni-catalyzed asymmetric hydrogenation, providing the corresponding α-hydroxy-β-lactam derivatives with high yields and enantioselectivities (up to 92% yield, up to 94% ee). Deuterium-labelling experiments indicate that phenylphosphinic acid plays a pivotal role in the DKR of α-keto-β-lactams by promoting the enolization process. The synthetic potential of this protocol was demonstrated by its application in the synthesis of a key intermediate of Taxol and (+)-epi-Cytoxazone.
Collapse
Affiliation(s)
- Fangyuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Singh B, Na J, Konarova M, Wakihara T, Yamauchi Y, Salomon C, Gawande MB. Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200136] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Department of Chemistry, Aveiro 3810-193, Portugal
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Muxina Konarova
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Toru Wakihara
- Graduate School of Engineering, The University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26 Nishi-Waseda, Shinjuku, Tokyo 169-0051, Japan
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Manoj B. Gawande
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna, 431203 Maharashtra, India
| |
Collapse
|
41
|
|
42
|
Sen A, Dhital RN, Sato T, Ohno A, Yamada YMA. Switching from Biaryl Formation to Amidation with Convoluted Polymeric Nickel Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Abhijit Sen
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Raghu N. Dhital
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takuma Sato
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Aya Ohno
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yoichi M. A. Yamada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
43
|
Pan J, Zhang R, Ma S, Han L, Xu B. Easily Synthesized Ru Catalyst Efficiently Converts Carbonyl Compounds and Ammonia into Primary Amines. ChemistrySelect 2020. [DOI: 10.1002/slct.202002795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jia‐Sheng Pan
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems Institution of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Rui Zhang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Shuang‐Shuang Ma
- Beijing Key Laboratory of Ionic Liquids Clean Process Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems Institution of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Li‐Jun Han
- Beijing Key Laboratory of Ionic Liquids Clean Process Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems Institution of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Bao‐Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems Institution of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
44
|
Goel B, Vyas V, Tripathi N, Kumar Singh A, Menezes PW, Indra A, Jain SK. Amidation of Aldehydes with Amines under Mild Conditions Using Metal‐Organic Framework Derived NiO@Ni Mott‐Schottky Catalyst. ChemCatChem 2020. [DOI: 10.1002/cctc.202001041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bharat Goel
- Department of Pharmaceutical Engineering & Technology Indian Institute of Technology (Banaras Hindu University) Varanasi 221005 India
| | - Ved Vyas
- Department of Chemistry Indian Institute of Technology (Banaras Hindu University) Varanasi 221005 India
| | - Nancy Tripathi
- Department of Pharmaceutical Engineering & Technology Indian Institute of Technology (Banaras Hindu University) Varanasi 221005 India
| | - Ajit Kumar Singh
- Department of Chemistry Indian Institute of Technology (Banaras Hindu University) Varanasi 221005 India
| | - Prashanth W. Menezes
- Department of Chemistry Metalorganics and Inorganic Materials Technische Universität Berlin 10623 Berlin Germany
| | - Arindam Indra
- Department of Chemistry Indian Institute of Technology (Banaras Hindu University) Varanasi 221005 India
| | - Shreyans K. Jain
- Department of Pharmaceutical Engineering & Technology Indian Institute of Technology (Banaras Hindu University) Varanasi 221005 India
| |
Collapse
|
45
|
Dhameliya TM, Donga HA, Vaghela PV, Panchal BG, Sureja DK, Bodiwala KB, Chhabria MT. A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Adv 2020; 10:32740-32820. [PMID: 35516511 PMCID: PMC9056690 DOI: 10.1039/d0ra02272a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Heterocycles have been found to be of much importance as several nitrogen- and oxygen-containing heterocycle compounds exist amongst the various USFDA-approved drugs. Because of the advancement of nanotechnology, nanocatalysis has found abundant applications in the synthesis of heterocyclic compounds. Numerous nanoparticles (NPs) have been utilized for several organic transformations, which led us to make dedicated efforts for the complete coverage of applications of metal nanoparticles (MNPs) in the synthesis of heterocyclic scaffolds reported from 2010 to 2019. Our emphasize during the coverage of catalyzed reactions of the various MNPs such as Ag, Au, Co, Cu, Fe, Ni, Pd, Pt, Rh, Ru, Si, Ti, and Zn has not only been on nanoparticles catalyzed synthetic transformations for the synthesis of heterocyclic scaffolds, but also provide an inherent framework for the reader to select a suitable catalytic system of interest for the synthesis of desired heterocyclic scaffold.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Hiren A Donga
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Punit V Vaghela
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Bhoomi G Panchal
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Dipen K Sureja
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Kunjan B Bodiwala
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Mahesh T Chhabria
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| |
Collapse
|
46
|
Abstract
The reductive amination, the reaction of an aldehyde or a ketone with ammonia or an amine in the presence of a reducing agent and often a catalyst, is an important amine synthesis and has been intensively investigated in academia and industry for a century. Besides aldehydes, ketones, or amines, starting materials have been used that can be converted into an aldehyde or ketone (for instance, carboxylic acids or organic carbonate or nitriles) or into an amine (for instance, a nitro compound) in the presence of the same reducing agent and catalyst. Mechanistically, the reaction starts with a condensation step during which the carbonyl compound reacts with ammonia or an amine, forming the corresponding imine followed by the reduction of the imine to the alkyl amine product. Many of these reduction steps require the presence of a catalyst to activate the reducing agent. The reductive amination is impressive with regard to the product scope since primary, secondary, and tertiary alkyl amines are accessible and hydrogen is the most attractive reducing agent, especially if large-scale product formation is an issue, since hydrogen is inexpensive and abundantly available. Alkyl amines are intensively produced and use fine and bulk chemicals. They are key functional groups in many pharmaceuticals, agro chemicals, or materials. In this review, we summarize the work published on reductive amination employing hydrogen as the reducing agent. No comprehensive review focusing on this subject has been published since 1948, albeit many interesting summaries dealing with one or the other aspect of reductive amination have appeared. Impressive progress in using catalysts based on earth-abundant metals, especially nanostructured heterogeneous catalysts, has been made during the early development of the field and in recent years.
Collapse
Affiliation(s)
- Torsten Irrgang
- Inorganic Chemistry II - Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Rhett Kempe
- Inorganic Chemistry II - Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
47
|
Bäumler C, Bauer C, Kempe R. The Synthesis of Primary Amines through Reductive Amination Employing an Iron Catalyst. CHEMSUSCHEM 2020; 13:3110-3114. [PMID: 32314866 PMCID: PMC7317915 DOI: 10.1002/cssc.202000856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The reductive amination of ketones and aldehydes by ammonia is a highly attractive method for the synthesis of primary amines. The use of catalysts, especially reusable catalysts, based on earth-abundant metals is similarly appealing. Here, the iron-catalyzed synthesis of primary amines through reductive amination was realized. A broad scope and a very good tolerance of functional groups were observed. Ketones, including purely aliphatic ones, aryl-alkyl, dialkyl, and heterocyclic, as well as aldehydes could be converted smoothly into their corresponding primary amines. In addition, the amination of pharmaceuticals, bioactive compounds, and natural products was demonstrated. Many functional groups, such as hydroxy, methoxy, dioxol, sulfonyl, and boronate ester substituents, were tolerated. The catalyst is easy to handle, selective, and reusable and ammonia dissolved in water could be employed as the nitrogen source. The key is the use of a specific Fe complex for the catalyst synthesis and an N-doped SiC material as catalyst support.
Collapse
Affiliation(s)
- Christoph Bäumler
- Anorganische Chemie II - KatalysatordesignUniversität Bayreuth95440BayreuthGermany
| | - Christof Bauer
- Anorganische Chemie II - KatalysatordesignUniversität Bayreuth95440BayreuthGermany
| | - Rhett Kempe
- Anorganische Chemie II - KatalysatordesignUniversität Bayreuth95440BayreuthGermany
| |
Collapse
|
48
|
Xie C, Song J, Hua M, Hu Y, Huang X, Wu H, Yang G, Han B. Ambient-Temperature Synthesis of Primary Amines via Reductive Amination of Carbonyl Compounds. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01872] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chao Xie
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
| | - Manli Hua
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Hu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Huang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoran Wu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanying Yang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
| |
Collapse
|
49
|
Morisaki K, Morimoto H, Ohshima T. Recent Progress on Catalytic Addition Reactions to N-Unsubstituted Imines. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01212] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kazuhiro Morisaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
50
|
Murugesan K, Wei Z, Chandrashekhar VG, Jiao H, Beller M, Jagadeesh RV. General and selective synthesis of primary amines using Ni-based homogeneous catalysts. Chem Sci 2020; 11:4332-4339. [PMID: 34122891 PMCID: PMC8152594 DOI: 10.1039/d0sc01084g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The development of base metal catalysts for industrially relevant amination and hydrogenation reactions by applying abundant and atom economical reagents continues to be important for the cost-effective and sustainable synthesis of amines which represent highly essential chemicals. In particular, the synthesis of primary amines is of central importance because these compounds serve as key precursors and central intermediates to produce value-added fine and bulk chemicals as well as pharmaceuticals, agrochemicals and materials. Here we report a Ni-triphos complex as the first Ni-based homogeneous catalyst for both reductive amination of carbonyl compounds with ammonia and hydrogenation of nitroarenes to prepare all kinds of primary amines. Remarkably, this Ni-complex enabled the synthesis of functionalized and structurally diverse benzylic, heterocyclic and aliphatic linear and branched primary amines as well as aromatic primary amines starting from inexpensive and easily accessible carbonyl compounds (aldehydes and ketones) and nitroarenes using ammonia and molecular hydrogen. This Ni-catalyzed reductive amination methodology has been applied for the amination of more complex pharmaceuticals and steroid derivatives. Detailed DFT computations have been performed for the Ni-triphos based reductive amination reaction, and they revealed that the overall reaction has an inner-sphere mechanism with H2 metathesis as the rate-determining step. A Ni-triphos based homogeneous catalyst enabled the synthesis of all kinds of primary amines by reductive amination of carbonyl compounds with ammonia and hydrogenation of nitroarenes.![]()
Collapse
Affiliation(s)
- Kathiravan Murugesan
- Leibniz-Institut für Katalyse e. V. Albert Einstein-Str. 29a 18059 Rostock Germany
| | - Zhihong Wei
- Leibniz-Institut für Katalyse e. V. Albert Einstein-Str. 29a 18059 Rostock Germany
| | | | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V. Albert Einstein-Str. 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert Einstein-Str. 29a 18059 Rostock Germany
| | | |
Collapse
|