1
|
Xin P, Yuan H, Zhang L, Zhu Q, Ning X, Song Y, Shu Y, Sun Y. A unimolecular artificial cation channel based on cascaded hydrated acid groups. J Mater Chem B 2024; 12:10835-10838. [PMID: 39420629 DOI: 10.1039/d4tb01508h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A cation channel possessing cascaded hydrated acid groups has been successfully constructed using pillar[5]arene integrated with dual cyclodextrins. As a proof-of-concept, the secondary side of cyclodextrin substituted by 24 -CO2H groups presents high coordination sites, which helps hydrated cations to quickly dehydrate and accelerates efficient cation transport (Rb+ > Cs+ > K+ > Na+ > Li+). Notably, benefitted by the protonation and deprotonation of -CO2H groups, ion permeation activity of the channel molecules under acidic condition (pH = 6.0) is 2.8 times higher than that under alkaline conditions (pH = 8.0), exhibiting pH-modulated property and promising potential in building intelligent artificial ion channels with customized features.
Collapse
Affiliation(s)
- Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Hailong Yuan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Long Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Qiuhui Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Xunpeng Ning
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Yufei Song
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Yuqing Shu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
2
|
Nobre PC, Cordeiro P, Chipoline IC, Menezes V, Santos KVS, Ángel AYB, Alberto EE, Nascimento V. Telluride-Based Pillar[5]arene: A Recyclable Catalyst for Alkylation Reactions in Aqueous Solution. J Org Chem 2024; 89:12982-12988. [PMID: 39233358 PMCID: PMC11421007 DOI: 10.1021/acs.joc.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The syntheses of previously unknown sulfide- and telluride-pillar[n]arenes are reported here. These macrocycles, among others, were tested as catalysts for alkylation reactions in aqueous solutions. Telluride-pillar[5]arene (P[5]-TePh) showed the best performance, emulating the behavior of the methyltransferase enzyme cofactor S-adenosyl-l-methionine. Using 1.0 mol % of P[5]-TePh, benzyl bromides reacted with NaCN/NaN3 in water, yielding organic nitriles/azides. The catalyst was recycled and efficiently reused for up to six cycles. 1H NMR experiments indicate a possible interaction between the substrate and P[5]-TePh's cavity.
Collapse
Affiliation(s)
- Patrick C Nobre
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Pâmella Cordeiro
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Ingrid C Chipoline
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Victor Menezes
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Kaila V S Santos
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Alix Y Bastidas Ángel
- Departamento de Química, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Eduardo E Alberto
- Departamento de Química, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Vanessa Nascimento
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| |
Collapse
|
3
|
Chattopadhayay S, Wanjari P, Talukdar P. Acylhydrazone-based reversibly photoswitchable ion pair transporter with OFF-ON cotransport activity. Chem Sci 2024; 15:d4sc02474e. [PMID: 39355225 PMCID: PMC11440441 DOI: 10.1039/d4sc02474e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
The cellular membrane transport of physiologically important cations and anions is omnipresent and regulates different physiological functions. Whereas a notable number of cation-anion transporters are being developed to transport salts across the membrane, developing an artificial cation-anion symporter with stimulus-responsive activities is an immense obstacle. Herein, for the first time, we report reversibly photoswitchable acylhydrazone-based transporter 2 that has distinctive OFF-ON cation-anion co-transport abilities. The substituent was modified in 1a-1c and 2, to change the to-and-fro movement of the transporter to enhance the ion transport efficiency. Ion transport experiments across the lipid bilayer membrane demonstrate that 1a has the highest transport activity among the series with irreversible photoisomerization properties, whereas 2 has a unique reversible photoisomerization property. A detailed transport study indicated that the E-conformer of compound 2 facilitates Na+/Cl- transport via the symport process by following the carrier mode of ion transport. 23Na NMR and chloride selective electrode assays confirmed the OFF and ON state of ion transport of compound 2 with photoirradiation. An assembly of [(2 E )2 + NaCl] was subjected to geometry optimization to understand the responsible ion binding motif. Geometry optimization followed by the natural bond orbital analysis of 1a Z and 2 Z demonstrated that 1a Z forms comparatively stronger intramolecular H-bonding than 2 Z , making it accessible for reversible photoisomerization.
Collapse
Affiliation(s)
- Sandip Chattopadhayay
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pashan Pune 411008 Maharashtra India
| | - Paras Wanjari
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pashan Pune 411008 Maharashtra India
| |
Collapse
|
4
|
Lin Y, Wu B, Zeng Y, Yuan H, Ji C, Liu Z, Sui Y, Yin T, Kong X, Zhu Y, Chen J, Lang C. Artificial Channels Based on Bottlebrush Polymers: Enhanced Ion Transport Through Polymer Topology Control. Angew Chem Int Ed Engl 2024; 63:e202408558. [PMID: 38842471 DOI: 10.1002/anie.202408558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Synthetic structures mimicking the transport function of natural ion channel proteins have a wide range of applications, including therapeutic treatments, separation membranes, sensing, and biotechnologies. However, the development of polymer-based artificial channels has been hampered due to the limitation on available models. In this study, we demonstrate the great potential of bottlebrush polymers as accessible and versatile molecular scaffolds for developing efficient artificial ion channels. Adopting the bottlebrush configuration enhanced ion transport activity of the channels compared to their linear analogs. Matching the structure of lipid bilayers, the bottlebrush channel with a hydrophilic-hydrophobic-hydrophilic triblock architecture exhibited the highest activity among the series. Functionalized with urea groups, these channels displayed high anion selectivity. Additionally, we illustrated that the transport properties could be fine-tuned by modifying the chemistry of ion binding sites. This work not only highlights the importance of polymer topology control in channel design, but also reveals the great potential for further developing bottlebrush channels with customized features and diverse functionalities.
Collapse
Affiliation(s)
- Yangyang Lin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Bei Wu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | | | - Haoxuan Yuan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Changxing Ji
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Ziqi Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yan Sui
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Tingting Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Xian Kong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuting Zhu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Jie Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Chao Lang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
5
|
Xin P, Ren W, Zhu Q, Wang J, Sun Y, Chang J, Zhu G. Synthetic cation channel: reconstructing the ion permeation pathway of TRPA1 in an artificial system. RSC Adv 2024; 14:26933-26937. [PMID: 39193288 PMCID: PMC11348841 DOI: 10.1039/d4ra05676k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
A novel artificial cation channel was developed by rebuilding the ion permeation pathway of the natural channel protein (TRPA1) in a synthetic system. This tubular molecule can effectively embed into lipid bilayers and form transmembrane channels, thereby mediating cation transport. Furthermore, due to its carboxyl-modified ion permeation pathway, the transport activity of this artificial channel can be modulated by the pH of the buffer solution.
Collapse
Affiliation(s)
- Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Wenke Ren
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Qiuhui Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Jie Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Gongming Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| |
Collapse
|
6
|
Shi L, Zhao W, Jiu Z, Guo J, Zhu Q, Sun Y, Zhu B, Chang J, Xin P. Redox-Regulated Synthetic Channels: Enabling Reversible Ion Transport by Modulating the Ion-Permeation Pathway. Angew Chem Int Ed Engl 2024; 63:e202403667. [PMID: 38407803 DOI: 10.1002/anie.202403667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Natural redox-regulated channel proteins often utilize disulfide bonds as redox sensors for adaptive regulation of channel conformations in response to diverse physiological environments. In this study, we developed novel synthetic ion channels capable of reversibly switching their ion-transport capabilities by incorporating multiple disulfide bonds into artificial systems. X-ray structural analysis and electrophysiological experiments demonstrated that these disulfide-bridged molecules possess well-defined tubular cavities and can be efficiently inserted into lipid bilayers to form artificial ion channels. More importantly, the disulfide bonds in these molecules serve as redox-tunable switches to regulate the formation and disruption of ion-permeation pathways, thereby achieving a transition in the transmembrane transport process between the ON and OFF states.
Collapse
Affiliation(s)
- Linlin Shi
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Wen Zhao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhihui Jiu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Qiuhui Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
7
|
Yuan X, Shen J, Zeng H. Artificial transmembrane potassium transporters: designs, functions, mechanisms and applications. Chem Commun (Camb) 2024; 60:482-500. [PMID: 38111319 DOI: 10.1039/d3cc04488b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Potassium channels represent the most prevalent class of ion channels, exerting regulatory control over numerous vital biological processes, including muscle contraction, neurotransmitter release, cell proliferation, and apoptosis. The seamless integration of astonishing functions into a sophisticated structure, as seen in these protein channels, inspires the chemical community to develop artificial versions, gearing toward simplifying their structure while replicating their key functions. In particular, over the past ten years or so, a number of elegant artificial potassium transporters have emerged, demonstrating high selectivity, high transport efficiency or unprecedented transport mechanisms. In this review, we will provide a detailed exposition of these artificial potassium transporters that are derived from a single molecular backbone or self-assembled from multiple components, with their respective structural designs, channel functions, transport mechanisms and biomedical applications thoroughly reviewed.
Collapse
Affiliation(s)
- Xiyu Yuan
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Jie Shen
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| |
Collapse
|
8
|
Pahan S, Dey S, George G, Mahapatra SP, Puneeth Kumar DRGKR, Gopi HN. Design of Chiral β-Double Helices from γ-Peptide Foldamers. Angew Chem Int Ed Engl 2024; 63:e202316309. [PMID: 38009917 DOI: 10.1002/anie.202316309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Chirality is ubiquitous in nature, and homochirality is manifested in many biomolecules. Although β-double helices are rare in peptides and proteins, they consist of alternating L- and D-amino acids. No peptide double helices with homochiral amino acids have been observed. Here, we report chiral β-double helices constructed from γ-peptides consisting of alternating achiral (E)-α,β-unsaturated 4,4-dimethyl γ-amino acids and chiral (E)-α,β-unsaturated γ-amino acids in both single crystals and in solution. The two independent strands of the same peptide intertwine to form a β-double helix structure, and it is stabilized by inter-strand hydrogen bonds. The peptides with chiral (E)-α,β-unsaturated γ-amino acids derived from α-L-amino acids adopt a (P)-β-double helix, whereas peptides consisting of (E)-α,β-unsaturated γ-amino acids derived from α-D-amino acids adopt an (M)-β-double helix conformation. The circular dichroism (CD) signature of the (P) and (M)-β-double helices and the stability of these peptides at higher temperatures were examined. Furthermore, ion transport studies suggested that these peptides transport ions across membranes. Even though the structural analogy suggests that these new β-double helices are structurally different from those of the α-peptide β-double helices, they retain ion transport activity. The results reported here may open new avenues in the design of functional foldamers.
Collapse
Affiliation(s)
- Saikat Pahan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sanjit Dey
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Gijo George
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Souvik Panda Mahapatra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - DRGKoppalu R Puneeth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
9
|
Lou XY, Zhang S, Wang Y, Yang YW. Smart organic materials based on macrocycle hosts. Chem Soc Rev 2023; 52:6644-6663. [PMID: 37661759 DOI: 10.1039/d3cs00506b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Innovative design of smart organic materials is of great importance for the advancement of modern technology. Macrocycle hosts, possessing cyclic skeletons, intrinsic cavities, and specific guest binding properties, have demonstrated pronounced potential for the elaborate fabrication of a variety of functional organic materials with smart stimuli-responsive characteristics. In this tutorial review, we outline the current development of smart organic materials based on macrocycle hosts as key building blocks, focusing on the design principles and functional mechanisms of the tailored systems. Three main types of macrocycle-based smart organic materials are exemplified as follows according to the distinct forms of construction patterns: (1) supramolecular polymeric materials and nanoassemblies; (2) adaptive molecular crystals; (3) smart porous organic materials. The responsive performances of macrocycle-containing smart materials in versatile aspects, including mechanically adaptive polymers, soft optoelectronic devices, data encryption, drug delivery systems, artificial transmembrane channels, crystalline-state gas adsorption/separation, and fluorescence sensing, are illustrated by discussing the representative studies as paradigms, where the roles of macrocycles in these systems are highlighted. We also provide in the conclusion part the perspectives and remaining challenges in this burgeoning field.
Collapse
Affiliation(s)
- Xin-Yue Lou
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Siyuan Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
10
|
Zhang Y, Chen L, Du X, Yu X, Zhang H, Meng Z, Zheng Z, Chen J, Meng Q. Selective Fluorescent Sensing for Iron in Aqueous Solution by A Novel Functionalized Pillar[5]arene. ChemistryOpen 2023; 12:e202300109. [PMID: 37803382 PMCID: PMC10558425 DOI: 10.1002/open.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Indexed: 10/08/2023] Open
Abstract
Iron ion is one of the most physiologically important elements in metabolic processes, indispensable for all living systems. Since its excess can lead to severe diseases, new approaches for its monitoring in water samples are urgently needed to meet requirements. Here, we firstly report a novel and universal route for the synthesis of a series of pillar[n]arene derivates containing one benzoquinone unit by photocatalysis. With this in hand, an anthracene - appended water - soluble pillar[5]arene (H) with excellent fluorescence sensing potency was prepared. H enabled the ultrasensitive detection of iron ions in aqueous solution with limits of detection of 10-8 M. Over a wide range of metal ions, H exhibited specific selectivity toward Fe3+ . More importantly, H could still properly operate in a simulated sewage sample, coexisting with multiple interference ions.
Collapse
Affiliation(s)
- Yahan Zhang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xiang Yu
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Han Zhang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of EducationTianjin Key Laboratory of Structure andPerformance for Functional MoleculesCollege of ChemistryTianjin Normal UniversityTianjin300387P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| |
Collapse
|
11
|
Lu J, Deng Y, Liu P, Han Q, Jin LY. Self-assembly of β-cyclodextrin-pillar[5]arene molecules into supramolecular nanoassemblies: morphology control by stimulus responsiveness and host-guest interactions. NANOSCALE 2023; 15:4282-4290. [PMID: 36762519 DOI: 10.1039/d2nr07097a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Macrocyclic molecules have attracted considerable attention as new functional materials owing to their unique pore size structure and excellent host-guest properties. With the development of macrocyclic compounds, the properties of mono-modified macrocyclic materials can be improved by incorporating pillar[n]arene or cyclodextrin derivatives through bridge bonds. Herein, we report the self-assembly of amphiphilic di-macrocyclic host molecules (H1-2) based on β-cyclodextrin and pillar[5]arene units linked by azophenyl or biphenyl groups. In a H2O/DMSO (19 : 1, v/v) mixed polar solvent, an amphiphile H1 with an azophenyl group self-assembled into unique nanorings and exhibited an obvious photoresponsive colour change. This photochromic behaviour makes H1 suitable for application in carbon paper materials on which arbitrary patterns can be erased and rewritten. The amphiphile H2, with a biphenyl unit, self-assembled into spherical micelles. These differences indicate that various linker units lead to changes in the intermolecular and hydrophilic-hydrophobic interactions. In a CHCl3/DMSO (19 : 1, v/v) mixed low-polarity solvent, the amphiphile H1 self-assembled into fibrous aggregates, whereas the molecule H2 assembled into unique nanoring aggregates. In this CHCl3/DMSO mixed solvent system, small nanosheet aggregates were formed by the addition of a guest molecule (G) composed of tetraphenylethene and hexanenitrile groups. With prolonged aggregation time, the small sheet aggregates further aggregated into cross-linked nanoribbons and eventually formed large nanosheet aggregates. The data reveal that the morphology of H1-2 can be controlled by tuning the intermolecular interactions of the molecules via the formation of host-guest complexes. Moreover, the polyhydroxy cyclodextrin unit on H1-2 can be strongly adsorbed on the stationary phase in column chromatography via multiple hydrogen bonds, and the singly modified pillar[5]arenes can be successfully separated by host-guest interactions.
Collapse
Affiliation(s)
- Jie Lu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, P. R. China.
| | - Yingying Deng
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, P. R. China.
| | - Peng Liu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, P. R. China.
| | - Qingqing Han
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, P. R. China.
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, P. R. China.
| |
Collapse
|
12
|
Xin P, Xu L, Dong W, Mao L, Guo J, Bi J, Zhang S, Pei Y, Chen CP. Synthetic K + Channels Constructed by Rebuilding the Core Modules of Natural K + Channels in an Artificial System. Angew Chem Int Ed Engl 2023; 62:e202217859. [PMID: 36583482 DOI: 10.1002/anie.202217859] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+ ≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+ , disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.
Collapse
Affiliation(s)
- Pengyang Xin
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Linqi Xu
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Wenpei Dong
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Linlin Mao
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Guo
- Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao, 999078, China
| | - Jingjing Bi
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Shouwei Zhang
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yan Pei
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Chang-Po Chen
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
13
|
Li C, Jiang Y, Wu Z, Zhang Y, Huang C, Cheng S, You Y, Zhang P, Chen W, Mao L, Jiang L. Mixed Matrix Membrane with Penetrating Subnanochannels: A Versatile Nanofluidic Platform for Selective Metal Ion Conduction. Angew Chem Int Ed Engl 2023; 62:e202215906. [PMID: 36374215 DOI: 10.1002/anie.202215906] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Biological ion channels penetrated through cell membrane form unique transport pathways for selective ionic conductance. Replicating the success of ion selectivity with mixed matrix membranes (MMMs) will enable new separation technologies but remains challenging. Herein, we report a soft substrate-assisted solution casting method to develop MMMs with penetrating subnanochannels for selective metal ion conduction. The MMMs are composed of penetrating Prussian white (PW) microcubes with subnanochannels in dense polyimide (PI) matrices, achieving selective monovalent metal ion conduction. The ion selectivity of K+ /Mg2+ is up to 14.0, and the ion conductance of K+ can reach 45.5 μS with the testing diameter of 5 mm, which can be further improved by increasing the testing area. Given the diversity of nanoporous materials and polymer matrices, we expect that the MMMs with penetrating subnanochannels could be developed into a versatile nanofluidic platform for various emerging applications.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zihan Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Youcai Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Cheng Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sha Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ya You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China.,Hubei Longzhong Laboratory, Xiangyang, 441000, P. R. China
| | - Pengchao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China.,Hubei Longzhong Laboratory, Xiangyang, 441000, P. R. China
| | - Wen Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
14
|
Zhu P, Kong L, Zhang Y, Liu Q, Liao X, Song Y, Yang B. Synthetic transmembrane channel molecules formed by acyclic cucurbiturils and pillararene: tuning cation selectivity and generating membrane potential. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
All-in-one functional supramolecular nanoparticles based on pillar[5]arene for controlled generation, storage and release of singlet oxygen. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Cholesterol-stabilized membrane-active nanopores with anticancer activities. Nat Commun 2022; 13:5985. [PMID: 36216956 PMCID: PMC9551035 DOI: 10.1038/s41467-022-33639-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Cholesterol-enhanced pore formation is one evolutionary means cholesterol-free bacterial cells utilize to specifically target cholesterol-rich eukaryotic cells, thus escaping the toxicity these membrane-lytic pores might have brought onto themselves. Here, we present a class of artificial cholesterol-dependent nanopores, manifesting nanopore formation sensitivity, up-regulated by cholesterol of up to 50 mol% (relative to the lipid molecules). The high modularity in the amphiphilic molecular backbone enables a facile tuning of pore size and consequently channel activity. Possessing a nano-sized cavity of ~ 1.6 nm in diameter, our most active channel Ch-C1 can transport nanometer-sized molecules as large as 5(6)-carboxyfluorescein and display potent anticancer activity (IC50 = 3.8 µM) toward human hepatocellular carcinomas, with high selectivity index values of 12.5 and >130 against normal human liver and kidney cells, respectively. Bacterial cells utilize cholesterol-enhanced pore formation to specifically target eukaryotic cells. Here, the authors present a class of bio-inspired, cholesterol-enhanced nanopores which display anticancer activities in vitro.
Collapse
|
17
|
Liu Z, Li B, Li Z, Zhang H. Pillar[n]arene-Mimicking/Assisted/Participated Carbon Nanotube Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6119. [PMID: 36079500 PMCID: PMC9458132 DOI: 10.3390/ma15176119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The recent progress in pillar[n]arene-assisted/participated carbon nanotube hybrid materials were initially summarized and discussed. The molecular structure of pillar[n]arene could serve different roles in the fabrication of attractive carbon nanotube-based materials. Firstly, pillar[n]arene has the ability to provide the structural basis for enlarging the cylindrical pillar-like architecture by forming one-dimensional, rigid, tubular, oligomeric/polymeric structures with aromatic moieties as the linker, or forming spatially "closed", channel-like, flexible structures by perfunctionalizing with peptides and with intramolecular hydrogen bonding. Interestingly, such pillar[n]arene-based carbon nanotube-resembling structures were used as porous materials for the adsorption and separation of gas and toxic pollutants, as well as for artificial water channels and membranes. In addition to the art of organic synthesis, self-assembly based on pillar[n]arene, such as self-assembled amphiphilic molecules, is also used to promote and control the dispersion behavior of carbon nanotubes in solution. Furthermore, functionalized pillar[n]arene derivatives integrated carbon nanotubes to prepare advanced hybrid materials through supramolecular interactions, which could also incorporate various compositions such as Ag and Au nanoparticles for catalysis and sensing.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi’an Peihua University, Xi’an 710125, China
| | - Bing Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhizheng Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
18
|
Fu W, Huang Y, Deng L, Sun J, Li SL, Hu Y. Ultra-thin microporous membranes based on macrocyclic pillar[n]arene for efficient organic solvent nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Abstract
Multicharged cyclodextrin (CD) supramolecular assemblies, including those based on positively/negatively charged modified mono-6-deoxy-CDs, per-6-deoxy-CDs, and random 2,3,6-deoxy-CDs, as well as parent CDs binding positively/negatively charged guests, have been extensively applied in chemistry, materials science, medicine, biological science, catalysis, and other fields. In this review, we primarily focus on summarizing the recent advances in positively/negatively charged CDs and parent CDs encapsulating positively/negatively charged guests, especially the construction process of supramolecular assemblies and their applications. Compared with uncharged CDs, multicharged CDs display remarkably high antiviral and antibacterial activity as well as efficient protein fibrosis inhibition. Meanwhile, charged CDs can interact with oppositely charged dyes, drugs, polymers, and biomacromolecules to achieve effective encapsulation and aggregation. Consequently, multicharged CD supramolecular assemblies show great advantages in improving drug-delivery efficiency, the luminescence properties of materials, molecular recognition and imaging, and the toughness of supramolecular hydrogels, in addition to enabling the construction of multistimuli-responsive assemblies. These features are anticipated to not only promote the development of CD-based supramolecular chemistry but also contribute to the rapid exploitation of these assemblies in diverse interdisciplinary applications.
Collapse
Affiliation(s)
- Zhixue Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
20
|
Yang Q, Xu W, Cheng M, Zhang S, Kovaleva EG, Liang F, Tian D, Liu JA, Abdelhameed RM, Cheng J, Li H. Controlled release of drug molecules by pillararene-modified nanosystems. Chem Commun (Camb) 2022; 58:3255-3269. [PMID: 35195641 DOI: 10.1039/d1cc05584d] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stimuli-responsive nanosystems have attracted the interest of researchers due to their intelligent function of controlled release regulated by a variety of external stimuli and have been applied in biomedical fields. Pillar[n]arenes with the advantages of a rigid structure, electron holes and easy functionalization are considered as excellent candidates for the construction of host-guest nanosystems. In recent years, many pillararene modified nanosystems have been reported in response to different stimuli. In this feature article, we summarize the advance of stimuli-responsive pillararene modified nanosystems for controlled release of drugs from the perspectives of decomposition release and gated release, focusing on the control principles of these nanosystems. We expect that this review can enlighten and guide investigators in the field of stimuli-responsive controlled release.
Collapse
Affiliation(s)
- Qinglin Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Elena G Kovaleva
- Department of Technology for Organic Synthesis, Ural Federal University, Mira Street, 28, 620002 Yekaterinburg, Russia.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Jun-An Liu
- The Department of Applied Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Center, 33 El Buhouth St., Dokki, Siza, P.O. 12311, Egypt.
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| |
Collapse
|
21
|
Zhang H, Li X, Hou J, Jiang L, Wang H. Angstrom-scale ion channels towards single-ion selectivity. Chem Soc Rev 2022; 51:2224-2254. [PMID: 35225300 DOI: 10.1039/d1cs00582k] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Artificial ion channels with ion permeability and selectivity comparable to their biological counterparts are highly desired for efficient separation, biosensing, and energy conversion technologies. In the past two decades, both nanoscale and sub-nanoscale ion channels have been successfully fabricated to mimic biological ion channels. Although nanoscale ion channels have achieved intelligent gating and rectification properties, they cannot realize high ion selectivity, especially single-ion selectivity. Artificial angstrom-sized ion channels with narrow pore sizes <1 nm and well-defined pore structures mimicking biological channels have accomplished high ion conductivity and single-ion selectivity. This review comprehensively summarizes the research progress in the rational design and synthesis of artificial subnanometer-sized ion channels with zero-dimensional to three-dimensional pore structures. Then we discuss cation/anion, mono-/di-valent cation, mono-/di-valent anion, and single-ion selectivities of the synthetic ion channels and highlight their potential applications in high-efficiency ion separation, energy conversion, and biological therapeutics. The gaps of single-ion selectivity between artificial and natural channels and the connections between ion selectivity and permeability of synthetic ion channels are covered. Finally, the challenges that need to be addressed in this research field and the perspective of angstrom-scale ion channels are discussed.
Collapse
Affiliation(s)
- Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Xingya Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
22
|
Li Y, Fu Y, Hou J. Investigating ion transport through artificial transmembrane channels containing introverted groups. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ya‐Wei Li
- Department of Chemistry Fudan University, 220 Handan Road Shanghai 200433 China
| | - Yong‐Hong Fu
- Department of Chemistry Fudan University, 220 Handan Road Shanghai 200433 China
| | - Jun‐Li Hou
- Department of Chemistry Fudan University, 220 Handan Road Shanghai 200433 China
| |
Collapse
|
23
|
Ye Z, Yan ZJ, Zhang C, Hou JL, Yue S, Xiao L. Charged Tubular Supramolecule Boosting Multivalent Interactions for the Drastic Suppression of Aβ Fibrillation. NANO LETTERS 2021; 21:10494-10500. [PMID: 34855401 DOI: 10.1021/acs.nanolett.1c04007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anti-Aβ therapy has dominated clinical trials for the prevention and treatment of Alzheimer's disease (AD). However, suppressing Aβ aggregation and disintegrating mature fibrils simultaneously remains a great challenge. In this work, we developed a new strategy using a charged tubular supramolecule (CTS) with pillar[5]arene as the backbone and modifying amino and carboxyl groups at the tubular terminals (noted as CTS-A, CTS-A/C, and CTS-C, respectively) to suppress Aβ fibrillation for the first time. According to the spectroscopic and microscopic characterizations, Aβ40 fibrillation can be efficiently suppressed by CTS-A in a very low inhibitor:peptide (I:P) molar ratio (1:10). A greatly alleviated cytotoxic effect of Aβ peptides after the inhibition or disaggregation process is further disclosed. The well-organized supramolecular structure drives multivalent interaction and gains enhanced efficiency on amyloid fibrillar modulation. These results open a new path for the design of supramolecules in the application of AD treatment.
Collapse
Affiliation(s)
- Zhongju Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhao-Jun Yan
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Chenhong Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Shijing Yue
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Yudina ON, Gening ML, Talukdar P, Gerbst AG, Tsvetkov YE, Nifantiev NE. Synthesis of a cyclic tetramer of 3-amino-3-deoxyallose with axially oriented amino groups. Carbohydr Res 2021; 511:108476. [PMID: 34800752 DOI: 10.1016/j.carres.2021.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/01/2022]
Abstract
A linear tetramer of β-(1 → 6)-linked 3-azido-3-deoxy-d-allose containing glycosyl donor and glycosyl acceptor functions in the terminal monosaccharide units was prepared starting from 3-azido-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-allofuranose. Cyclization of the linear tetramer under glycosylation conditions afforded the corresponding cyclic tetrasaccharide in 77% yield; its deprotection and reduction of the azido groups resulted in the formation of the cyclic tetramer of 3-amino-3-deoxy-d-allose with axial amino groups, a potential scaffold for the synthesis of tetravalent functional clusters.
Collapse
Affiliation(s)
- Olga N Yudina
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp, 119991, Moscow, Russian Federation
| | - Marina L Gening
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp, 119991, Moscow, Russian Federation
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Alexey G Gerbst
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp, 119991, Moscow, Russian Federation
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp, 119991, Moscow, Russian Federation
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp, 119991, Moscow, Russian Federation.
| |
Collapse
|
25
|
Qiao D, Joshi H, Zhu H, Wang F, Xu Y, Gao J, Huang F, Aksimentiev A, Feng J. Synthetic Macrocycle Nanopore for Potassium-Selective Transmembrane Transport. J Am Chem Soc 2021; 143:15975-15983. [PMID: 34403582 DOI: 10.1021/jacs.1c04910] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reproducing the structure and function of biological membrane channels, synthetic nanopores have been developed for applications in membrane filtration technologies and biomolecular sensing. Stable stand-alone synthetic nanopores have been created from a variety of materials, including peptides, nucleic acids, synthetic polymers, and solid-state membranes. In contrast to biological nanopores, however, furnishing such synthetic nanopores with an atomically defined shape, including deliberate placement of each and every chemical group, remains a major challenge. Here, we introduce a chemosynthetic macromolecule-extended pillararene macrocycle (EPM)-as a chemically defined transmembrane nanopore that exhibits selective transmembrane transport. Our ionic current measurements reveal stable insertion of individual EPM nanopores into a lipid bilayer membrane and remarkable cation type-selective transport, with up to a 21-fold selectivity for potassium over sodium ions. Taken together, direct chemical synthesis offers a path to de novo design of a new class of synthetic nanopores with custom transport functionality imprinted in their atomically defined chemical structure.
Collapse
Affiliation(s)
- Dan Qiao
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Himanshu Joshi
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana Illinois 61801, United States
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Fushi Wang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yang Xu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jia Gao
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana Illinois 61801, United States
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
26
|
Kasal P, Jindřich J. Mono-6-Substituted Cyclodextrins-Synthesis and Applications. Molecules 2021; 26:5065. [PMID: 34443653 PMCID: PMC8400779 DOI: 10.3390/molecules26165065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 12/03/2022] Open
Abstract
Cyclodextrins are well known supramolecular hosts used in a wide range of applications. Monosubstitution of native cyclodextrins in the position C-6 of a glucose unit represents the simplest method how to achieve covalent binding of a well-defined host unit into the more complicated systems. These derivatives are relatively easy to prepare; that is why the number of publications describing their preparations exceeds 1400, and the reported synthetic methods are often very similar. Nevertheless, it might be very demanding to decide which of the published methods is the best one for the intended purpose. In the review, we aim to present only the most useful and well-described methods for preparing different types of mono-6-substituted derivatives. We also discuss the common problems encountered during their syntheses and suggest their optimal solutions.
Collapse
Affiliation(s)
| | - Jindřich Jindřich
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic;
| |
Collapse
|
27
|
Chen H, Liu Y, Cheng X, Fang S, Sun Y, Yang Z, Zheng W, Ji X, Wu Z. Self‐Assembly of Size‐Controlled
m
‐Pyridine–Urea Oligomers and Their Biomimetic Chloride Ion Channels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Yajing Liu
- School of Pharmaceutical Science Capital Medical University Beijing 100069 China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Senbiao Fang
- School of Computer Science and Engineering Central South University Changsha 410012 China
| | - Yuli Sun
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Zequn Yang
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Wei Zheng
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Xunming Ji
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
- Institute of Hypoxia Medicine Xuanwu Hospital Capital Medical University Beijing 100053 China
| | - Zehui Wu
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| |
Collapse
|
28
|
Zhang H, Guo Y, Chipot C, Cai W, Shao X. Nanomachine-Assisted Ion Transport Across Membranes: From Mechanism to Rational Design and Applications. J Phys Chem Lett 2021; 12:3281-3287. [PMID: 33764777 DOI: 10.1021/acs.jpclett.1c00525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Assisting ion transport across membranes by means of sophisticated molecular machines has promising applications in the treatment of diseases induced by dysregulated ion transport. To develop such nanoscale devices imbued with specific functions, rational de novo design, upstream from costly syntheses, is eminently desirable but would require the atomic detail of the translocation mechanism, which is still largely missing. We have explored the full ion capture-transport-release process over an aggregate simulation time of 60 μs, employing leading-edge enhanced-sampling algorithms to disentangle with unprecedented detail the mechanism that underlies ion transport mediated by a membrane-spanning [2]rotaxane composed of an ion carrier linked to a wheel threaded onto an axle. Beyond validating the reliability of our methodology through careful examination of the clockwork of a documented nanomachine, we put forth an original pH-controlled nano-object that can assist transient unidirectional ion transport across membranes.
Collapse
Affiliation(s)
- Hong Zhang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yichang Guo
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, UMR no. 7019, Université de Lorraine, BP 70239, Vandoeuvre-lès-Nancy F-54506, France
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Chen H, Liu Y, Cheng X, Fang S, Sun Y, Yang Z, Zheng W, Ji X, Wu Z. Self-Assembly of Size-Controlled m-Pyridine-Urea Oligomers and Their Biomimetic Chloride Ion Channels. Angew Chem Int Ed Engl 2021; 60:10833-10841. [PMID: 33624345 DOI: 10.1002/anie.202102174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/06/2023]
Abstract
The m-pyridine urea (mPU) oligomer was constructed by using the intramolecular hydrogen bond formed by the pyridine nitrogen atom and the NH of urea and the intermolecular hydrogen bond of the terminal carbonyl group and the NH of urea. Due to the synergistic effect of hydrogen bonds, mPU oligomer folds and exhibits strong self-assembly behaviour. Affected by folding, mPU oligomer generates a twisted plane, and one of its important features is that the carbonyl group of the urea group orientates outwards from the twisted plane, while the NHs tend to direct inward. This feature is beneficial to NH attraction for electron-rich species. Among them, the trimer self-assembles into helical nanotubes, and can efficiently transport chloride ions. This study provides a novel and efficient strategy for constructing self-assembled biomimetic materials for electron-rich species transmission.
Collapse
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Senbiao Fang
- School of Computer Science and Engineering, Central South University, Changsha, 410012, China
| | - Yuli Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Zequn Yang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China.,Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
30
|
Qi S, Zhang C, Yu H, Zhang J, Yan T, Lin Z, Yang B, Dong Z. Foldamer-Based Potassium Channels with High Ion Selectivity and Transport Activity. J Am Chem Soc 2021; 143:3284-3288. [PMID: 33645973 DOI: 10.1021/jacs.0c12128] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small molecules that independently perform natural channel-like functions show greatly potential in the treatment of human diseases. Taking advantage of aromatic helical scaffolds, we develop a kind of foldamer-based ion channels with lumen size varying from 3.8 to 2.3 Å through a sequence substitution strategy. Our results clearly elucidate the importance of channel size in ion transport selectivity in molecular detail, eventually leading to the discoveries of the best artificial K+ channel by far and a rare sodium-preferential channel as well. High K+ selectivity and transport activity together make foldamers promising in therapeutic applications.
Collapse
Affiliation(s)
- Shuaiwei Qi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chenyang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tengfei Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ze Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
31
|
Zhang H, Ye R, Mu Y, Li T, Zeng H. Small Molecule-Based Highly Active and Selective K + Transporters with Potent Anticancer Activities. NANO LETTERS 2021; 21:1384-1391. [PMID: 33464086 DOI: 10.1021/acs.nanolett.0c04134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report here a novel class of cation transporters with extreme simplicity, opening a whole new dimension of scientific research for finding small molecule-based cation transporters for therapeutic applications. Comprising three modular components (a headgroup, a flexible alkyl chain-derived body, and a crown ether-derived foot for ion binding), these transporters efficiently (EC50 = 0.18-0.41 mol % relative to lipid) and selectively (K+/Na+ selectivity = 7.0-9.5) move K+ ions across the membrane. Importantly, the most active (EC50 = 0.18-0.22 mol %) and highly selective series of transporters A12, B12, and C12 concurrently possess potent anticancer activities with IC50 values as low as 4.35 ± 0.91 and 6.00 ± 0.13 μM toward HeLa and PC3 cells, respectively. Notably, a mere replacement of the 18-crown-6 unit in the structure with 12-crown-4 or 15-crown-5 units completely annihilates the cation-transporting ability.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Ruijuan Ye
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Tianhu Li
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Huaqiang Zeng
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| |
Collapse
|
32
|
Yao J, Mizuno H, Xiao C, Wu W, Inoue Y, Yang C, Fukuhara G. Pressure-driven, solvation-directed planar chirality switching of cyclophano-pillar[5]arenes (molecular universal joints). Chem Sci 2021; 12:4361-4366. [PMID: 34168749 PMCID: PMC8179620 DOI: 10.1039/d0sc06988d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Planar chiral cyclophanopillar[5]arenes with a fused oligo(oxyethylene) or polymethylene subring (MUJs), existing as an equilibrium mixture of subring-included (in) and -excluded (out) conformers, respond to hydrostatic pressure to exhibit dynamic chiroptical property changes, leading to an unprecedented pressure-driven chirality inversion and the largest ever-reported leap of anisotropy (g) factor for the MUJ with a dodecamethylene subring. The pressure susceptivity of MUJs, assessed by the change in g per unit pressure, is a critical function of the size and nature of the subring incorporated and the solvent employed. Mechanistic elucidations reveal that the in-out equilibrium, as the origin of the MUJ's chiroptical property changes, is on a delicate balance of the competitive inclusion of subrings versus solvent molecules as well as the solvation of the excluded subring. The present results further encourage our use of pressure as a unique tool for dynamically manipulating various supramolecular devices/machines.
Collapse
Affiliation(s)
- Jiabin Yao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Hiroaki Mizuno
- Department of Chemistry, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Chao Xiao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Yoshihisa Inoue
- Department of Applied Chemistry, Osaka University Suita 565-0871 Japan
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
33
|
Yan T, Liu S, Luo Y, Zou Y, Liu J. Research Progress on the Macrocycle-Derived Artificial Transmembrane Ion Channels. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Strilets D, Fa S, Hardiagon A, Baaden M, Ogoshi T, Barboiu M. Biomimetic Approach for Highly Selective Artificial Water Channels Based on Tubular Pillar[5]arene Dimers. Angew Chem Int Ed Engl 2020; 59:23213-23219. [PMID: 32905651 DOI: 10.1002/anie.202009219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/17/2020] [Indexed: 11/08/2022]
Abstract
Artificial water channels mimicking natural aquaporins (AQPs) can be used for selective and fast transport of water. Here, we quantify the transport performances of peralkyl-carboxylate-pillar[5]arenes dimers in bilayer membranes. They can transport ≈107 water molecules/channel/second, within one order of magnitude of the transport rates of AQPs, rejecting Na+ and K+ cations. The dimers have a tubular structure, superposing pillar[5]arene pores of 5 Å diameter with twisted carboxy-phenyl pores of 2.8 Å diameter. This biomimetic platform, with variable pore dimensions within the same structure, offers size restriction reminiscent of natural proteins. It allows water molecules to selectively transit and prevents bigger hydrated cations from passing through the 2.8 Å pore. Molecular simulations prove that dimeric or multimeric honeycomb aggregates are stable in the membrane and form water pathways through the bilayer. Over time, a significant shift of the upper vs. lower layer occurs initiating new unexpected water permeation events through toroidal pores.
Collapse
Affiliation(s)
- Dmytro Strilets
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Arthur Hardiagon
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Marc Baaden
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 (Japan), Japan
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| |
Collapse
|
35
|
Deng Y, Li X, Han C, Dong S. Supramolecular control over LCST behavior of hybrid macrocyclic system based on pillar[5]arene and crown ether. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Strilets D, Fa S, Hardiagon A, Baaden M, Ogoshi T, Barboiu M. Biomimetic Approach for Highly Selective Artificial Water Channels Based on Tubular Pillar[5]arene Dimers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dmytro Strilets
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Arthur Hardiagon
- CNRS Université de Paris UPR 9080 Laboratoire de Biochimie Théorique 13 rue Pierre et Marie Curie F-75005 Paris France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild PSL Research University Paris France
| | - Marc Baaden
- CNRS Université de Paris UPR 9080 Laboratoire de Biochimie Théorique 13 rue Pierre et Marie Curie F-75005 Paris France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild PSL Research University Paris France
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute Kanazawa University Kakuma-machi Kanazawa 920-1192 (Japan) Japan
| | - Mihail Barboiu
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
37
|
Fang Y, Deng Y, Dehaen W. Tailoring pillararene-based receptors for specific metal ion binding: From recognition to supramolecular assembly. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213313] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
Shen Y, Zhong Y, Fei F, Sun J, Czajkowsky DM, Gong B, Shao Z. Ultrasensitive liposome-based assay for the quantification of fundamental ion channel properties. Anal Chim Acta 2020; 1112:8-15. [PMID: 32334685 DOI: 10.1016/j.aca.2020.03.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/16/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
One of the most widely used approaches to characterize transmembrane ion transport through nanoscale synthetic or biological channels is a straightforward, liposome-based assay that monitors changes in ionic flux across the vesicle membrane using pH- or ion-sensitive dyes. However, failure to account for the precise experimental conditions, in particular the complete ionic composition on either side of the membrane and the inherent permeability of ions through the lipid bilayer itself, can prevent quantifications and lead to fundamentally incorrect conclusions. Here we present a quantitative model for this assay based on the Goldman-Hodgkin-Katz flux theory, which enables accurate measurements and identification of optimal conditions for the determination of ion channel permeability and selectivity. Based on our model, the detection sensitivity of channel permeability is improved by two orders of magnitude over the commonly used experimental conditions. Further, rather than obtaining qualitative preferences of ion selectivity as is typical, we determine quantitative values of these parameters under rigorously controlled conditions even when the experimental results would otherwise imply (without our model) incorrect behavior. We anticipate that this simply employed ultrasensitive assay will find wide application in the quantitative characterization of synthetic or biological ion channels.
Collapse
Affiliation(s)
- Yi Shen
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yulong Zhong
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY, 14260, United States
| | - Fan Fei
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daniel M Czajkowsky
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bing Gong
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY, 14260, United States.
| | - Zhifeng Shao
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
39
|
Ji J, Wu W, Wei X, Rao M, Zhou D, Cheng G, Gong Q, Luo K, Yang C. Synergetic effects in the enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by β-cyclodextrin-pillar[5]arene-hybridized hosts. Chem Commun (Camb) 2020; 56:6197-6200. [PMID: 32396589 DOI: 10.1039/d0cc02055a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tri-cavity hosts consisting of one pillar[5]arene (P5) sandwiched by two β-cyclodextrins (CDs) were synthesized, and their diastereoseparation was successfully accomplished. Photocyclodimerization of 2-anthracenecarboxylate with these hybrid hosts demonstrated the critical dependence of stereoselectivity on the absolute configuration of the central P5 and the conjugating positions on the β-CD, and gave the non-classical HT photodimers in up to 87% ee.
Collapse
Affiliation(s)
- Jiecheng Ji
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Healthy Food Evaluation Research Center and College of Chemistry, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ionophore constructed from non-covalent assembly of a G-quadruplex and liponucleoside transports K +-ion across biological membranes. Nat Commun 2020; 11:469. [PMID: 31980608 PMCID: PMC6981123 DOI: 10.1038/s41467-019-13834-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
The selective transport of ions across cell membranes, controlled by membrane proteins, is critical for a living organism. DNA-based systems have emerged as promising artificial ion transporters. However, the development of stable and selective artificial ion transporters remains a formidable task. We herein delineate the construction of an artificial ionophore using a telomeric DNA G-quadruplex (h-TELO) and a lipophilic guanosine (MG). MG stabilizes h-TELO by non-covalent interactions and, along with the lipophilic side chain, promotes the insertion of h-TELO within the hydrophobic lipid membrane. Fluorescence assays, electrophysiology measurements and molecular dynamics simulations reveal that MG/h-TELO preferentially transports K+-ions in a stimuli-responsive manner. The preferential K+-ion transport is presumably due to conformational changes of the ionophore in response to different ions. Moreover, the ionophore transports K+-ions across CHO and K-562 cell membranes. This study may serve as a design principle to generate selective DNA-based artificial transporters for therapeutic applications.
Collapse
|
41
|
Affiliation(s)
- Harekrushna Behera
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| | - Lu Yang
- Department of ChemistryWestern University London Ontario Canada
| | - Jun‐Li Hou
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| |
Collapse
|
42
|
He J, Zhang Y, Hu J, Li Y, Zhang Q, Qu W, Yao H, Wei T, Lin Q. Novel fluorescent supramolecular polymer metallogel based on Al
3+
coordinated cross‐linking of quinoline functionalized‐ pillar[5]arene act as multi‐stimuli‐responsive materials. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun‐Xia He
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - You‐Ming Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
- Natural Energy Research Institute Lanzhou Gansu 730046 P. R. China
| | - Jian‐Peng Hu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Ying‐Jie Li
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Qi Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Wen‐Juan Qu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Hong Yao
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Tai‐Bao Wei
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Qi Lin
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| |
Collapse
|
43
|
Xin P, Zhao L, Mao L, Xu L, Hou S, Kong H, Fang H, Zhu H, Jiang T, Chen CP. Effect of charge status on the ion transport and antimicrobial activity of synthetic channels. Chem Commun (Camb) 2020; 56:13796-13799. [DOI: 10.1039/d0cc05730d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The charge status of channels formed by pillararene–gramicidin hybrid molecules has a significant impact on their trans-membrane transport properties, membrane-association abilities and antimicrobial activities.
Collapse
|
44
|
Zeng LZ, Zhang H, Wang T, Li T. Enhancing K+ transport activity and selectivity of synthetic K+ channels via electron-donating effects. Chem Commun (Camb) 2020; 56:1211-1214. [DOI: 10.1039/c9cc08396k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electron-withdrawing groups enhance ion transport activity by 160% and selectivity by >50%, leading to high K+/Na+ selectivity of 14.0.
Collapse
Affiliation(s)
| | - Hao Zhang
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Tianxiang Wang
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Tianhu Li
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| |
Collapse
|
45
|
Shurpik DN, Mostovaya OA, Sevastyanov DA, Lenina OA, Sapunova AS, Voloshina AD, Petrov KA, Kovyazina IV, Cragg PJ, Stoikov II. Supramolecular neuromuscular blocker inhibition by a pillar[5]arene through aqueous inclusion of rocuronium bromide. Org Biomol Chem 2019; 17:9951-9959. [PMID: 31729508 DOI: 10.1039/c9ob02215e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A water-soluble pillar[5]arene, decafunctionalized with thioether and carboxylate fragments, was synthesized as a structural analogue of Sugammadex. Its ability to restore the contraction of the diaphragm muscle by encapsulating the muscle relaxant rocuronium bromide was demonstrated. Using UV-vis, NMR and fluorescence spectroscopy, it was shown that the muscle relaxant is associated with the pillar[5]arene with an association constant of 4500 M-1 and a stoichiometry of 1 : 1. The structure of the inclusion complex of the pillar[5]arene with rocuronium bromide was additionally investigated by quantum chemical methods.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemical Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chen F, Shen J, Li N, Roy A, Ye R, Ren C, Zeng H. Pyridine/Oxadiazole-Based Helical Foldamer Ion Channels with Exceptionally High K + /Na + Selectivity. Angew Chem Int Ed Engl 2019; 59:1440-1444. [PMID: 31584221 DOI: 10.1002/anie.201906341] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/18/2019] [Indexed: 01/12/2023]
Abstract
Protein channels are characterized by high transport selectivity, which is essential for maintaining cellular function. Efforts to reproduce such high selectivity over the past four decades have not been very successful. We report a novel series of aromatic foldamer-based polymeric channels where the backbone is stabilized by differential electrostatic repulsions among heteroatoms helically arrayed along the helical backbone. Nanotubes averaging 2.3 and 2.7 nm in length mediate highly efficient transport of K+ ions as a consequence of hydrophilic electron-rich hollow cavities that are 3 Å in diameter. Exceptionally high K+ and Na+ selectivity values of 16.3 and 12.6, respectively, are achieved.
Collapse
Affiliation(s)
- Feng Chen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Jie Shen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Ning Li
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Arundhati Roy
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Ruijuan Ye
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Changliang Ren
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Huaqiang Zeng
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| |
Collapse
|
47
|
Chen F, Shen J, Li N, Roy A, Ye R, Ren C, Zeng H. Pyridine/Oxadiazole‐Based Helical Foldamer Ion Channels with Exceptionally High K
+
/Na
+
Selectivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Feng Chen
- The NanoBio Lab 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Jie Shen
- The NanoBio Lab 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Ning Li
- The NanoBio Lab 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Arundhati Roy
- The NanoBio Lab 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Ruijuan Ye
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Changliang Ren
- The NanoBio Lab 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Huaqiang Zeng
- The NanoBio Lab 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| |
Collapse
|
48
|
Tapia L, Pérez Y, Bolte M, Casas J, Solà J, Quesada R, Alfonso I. pH‐Dependent Chloride Transport by Pseudopeptidic Cages for the Selective Killing of Cancer Cells in Acidic Microenvironments. Angew Chem Int Ed Engl 2019; 58:12465-12468. [DOI: 10.1002/anie.201905965] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/09/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Lucía Tapia
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR FacilityIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Michael Bolte
- Institut für Anorganische ChemieJ.-W.-Goethe-Universität Max-von-Laue-Str.7 60438 Frankfurt/Main Germany
| | - Josefina Casas
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
- CIBER Enfermedades Hepaticas y Digestivas (CIBEREHD) Spain
| | - Jordi Solà
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Roberto Quesada
- Departamento de QuímicaFacultad de CienciasUniversidad de Burgos 09001 Burgos Spain
| | - Ignacio Alfonso
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| |
Collapse
|
49
|
Lou X, Song N, Yang Y. Enhanced Solution and Solid‐State Emission and Tunable White‐Light Emission Harvested by Supramolecular Approaches. Chemistry 2019; 25:11975-11982. [DOI: 10.1002/chem.201902700] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/12/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Xin‐Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of, Nano-Micro Architecture ChemistryCollege of ChemistryJilin University 2699 Qianjin Street Changchun 130012 P.R. China
| | - Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of, Nano-Micro Architecture ChemistryCollege of ChemistryJilin University 2699 Qianjin Street Changchun 130012 P.R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of, Nano-Micro Architecture ChemistryCollege of ChemistryJilin University 2699 Qianjin Street Changchun 130012 P.R. China
- The State Key Laboratory of Refractories and MetallurgySchool of Chemistry and Chemical EngineeringWuhan University of Science and Technology Wuhan 430081 P.R. China
| |
Collapse
|
50
|
Tapia L, Pérez Y, Bolte M, Casas J, Solà J, Quesada R, Alfonso I. pH‐Dependent Chloride Transport by Pseudopeptidic Cages for the Selective Killing of Cancer Cells in Acidic Microenvironments. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Lucía Tapia
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR FacilityIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Michael Bolte
- Institut für Anorganische ChemieJ.-W.-Goethe-Universität Max-von-Laue-Str.7 60438 Frankfurt/Main Germany
| | - Josefina Casas
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
- CIBER Enfermedades Hepaticas y Digestivas (CIBEREHD) Spain
| | - Jordi Solà
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Roberto Quesada
- Departamento de QuímicaFacultad de CienciasUniversidad de Burgos 09001 Burgos Spain
| | - Ignacio Alfonso
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| |
Collapse
|