1
|
Pacalon J, Audic G, Magnat J, Philip M, Golebiowski J, Moreau CJ, Topin J. Elucidation of the structural basis for ligand binding and translocation in conserved insect odorant receptor co-receptors. Nat Commun 2023; 14:8182. [PMID: 38081900 PMCID: PMC10713630 DOI: 10.1038/s41467-023-44058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
In numerous insects, the olfactory receptor family forms a unique class of heteromeric cation channels. Recent progress in resolving the odorant receptor structures offers unprecedented opportunities for deciphering their molecular mechanisms of ligand recognition. Unexpectedly, these structures in apo or ligand-bound states did not reveal the pathway taken by the ligands between the extracellular space and the deep internal cavities. By combining molecular modeling with electrophysiological recordings, we identified amino acids involved in the dynamic entry pathway and the binding of VUAA1 to Drosophila melanogaster's odorant receptor co-receptor (Orco). Our results provide evidence for the exact location of the agonist binding site and a detailed and original mechanism of ligand translocation controlled by a network of conserved residues. These findings would explain the particularly high selectivity of Orcos for their ligands.
Collapse
Affiliation(s)
- Jody Pacalon
- Université Côte d'Azur, Institut de Chimie de Nice UMR7272, CNRS, Nice, France
| | | | | | - Manon Philip
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Jérôme Golebiowski
- Department of Brain & Cognitive Sciences, DGIST, 333, Techno JungAng, Daero, HyeongPoong Myeon, Daegu, Republic of Korea
| | | | - Jérémie Topin
- Université Côte d'Azur, Institut de Chimie de Nice UMR7272, CNRS, Nice, France.
| |
Collapse
|
2
|
Miles SA, Nillama JA, Hunter L. Tinker, Tailor, Soldier, Spy: The Diverse Roles That Fluorine Can Play within Amino Acid Side Chains. Molecules 2023; 28:6192. [PMID: 37687021 PMCID: PMC10489206 DOI: 10.3390/molecules28176192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Side chain-fluorinated amino acids are useful tools in medicinal chemistry and protein science. In this review, we outline some general strategies for incorporating fluorine atom(s) into amino acid side chains and for elaborating such building blocks into more complex fluorinated peptides and proteins. We then describe the diverse benefits that fluorine can offer when located within amino acid side chains, including enabling 19F NMR and 18F PET imaging applications, enhancing pharmacokinetic properties, controlling molecular conformation, and optimizing target-binding.
Collapse
Affiliation(s)
| | | | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
3
|
Oluwatoba DS, Chakraborty P, Laor Bar-Yosef D, Limbach MN, Gazit E, Do TD. Self-Assembly of Cysteine into Nanofibrils Precedes Cystine Crystal Formation: Implications for Aggregation Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:32177-32187. [PMID: 37387421 DOI: 10.1021/acsami.3c03267] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The self-association of metabolites into well-ordered assemblies at the nanoscale has significant biological and medical implications. The thiol-containing amino acid cysteine (CYS) can assemble into amyloid-like nanofibrils, and its oxidized form, the disulfide-bonded cystine (CTE), forms hexagonal crystals as those found in cystinuria due to metabolic disorder. Yet, there have been no attempts to connect these two phenomena, especially the fibril-to-crystal transition. Here, we reveal that these are not separated events, and the CYS-forming amyloid fibrils are mechanistically linked to hexagonal CTE crystals. For the first time, we demonstrated that cysteine fibrils are a prerequisite for forming cystine crystals, as observed experimentally. To further understand this mechanism, we studied the effects of thiol-containing cystinuria drugs (tiopronin, TIO; and d-penicillamine, PEN) and the canonical epigallocatechin gallate (EGCG) amyloid inhibitor on fibril formation by CYS. The thiol-containing drugs do not solely interact with monomeric CYS via disulfide bond formation but can disrupt amyloid formation by targeting CYS oligomers. On the other hand, EGCG forms inhibitor-dominant complexes (more than one EGCG molecule per cysteine unit) to prevent CYS fibril formation. Interestingly, while CYS can be oxidized into CTE, the thiol drugs can reduce CTE back to CYS. We thus suggest that the formation of crystals in cystinuria could be halted at the initial stage by targeting CYS fibril formation as an alternative to solubilizing the water-insoluble hexagonal CTE crystals at a later stage. Taken together, we depicted a complex hierarchical organization in a simple amino acid assembly with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Damilola S Oluwatoba
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Poulami Chakraborty
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Laor Bar-Yosef
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Miranda N Limbach
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
4
|
Ligand Binding Properties of Odorant-Binding Protein OBP5 from Mus musculus. BIOLOGY 2022; 12:biology12010002. [PMID: 36671695 PMCID: PMC9855133 DOI: 10.3390/biology12010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Odorant-binding proteins (OBPs) are abundant soluble proteins secreted in the nasal mucus of a variety of species that are believed to be involved in the transport of odorants toward olfactory receptors. In this study, we report the functional characterization of mouse OBP5 (mOBP5). mOBP5 was recombinantly expressed as a hexahistidine-tagged protein in bacteria and purified using metal affinity chromatography. The oligomeric state and secondary structure composition of mOBP5 were investigated using gel filtration and circular dichroism spectroscopy. Fluorescent experiments revealed that mOBP5 interacts with the fluorescent probe N-phenyl naphthylamine (NPN) with micromolar affinity. Competitive binding experiments with 40 odorants indicated that mOBP5 binds a restricted number of odorants with good affinity. Isothermal titration calorimetry (ITC) confirmed that mOBP5 binds these compounds with association constants in the low micromolar range. Finally, protein homology modeling and molecular docking analysis indicated the amino acid residues of mOBP5 that determine its binding properties.
Collapse
|
5
|
Xu X, Zhang T, Angioletti-Uberti S, Lv Y. Binding of Proteins to Copolymers of Varying Charges and Hydrophobicity: A Molecular Mechanism and Computational Strategies. Biomacromolecules 2022; 23:4118-4129. [PMID: 36166427 DOI: 10.1021/acs.biomac.2c00521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of their ability to selectively bind to a target protein, copolymer nanoparticles (NPs) containing a selected combination of hydrophobic and charged groups have been frequently reported as potent antibody-like analogues. However, due to the intrinsic disorder of the copolymer NP in terms of its random monomer sequence and the cross-linked copolymer matrix, the copolymer NP is indeed strikingly different from a well-folded protein antibody and the complexation between the copolymer NP and a target protein is likely not due to a lock-key type of interaction but possibly due to a novel and unexplored molecular mechanism. Here, we study a key biomarker protein, vimentin, interacting with a set of random copolymer chains using implicit-water explicit-ion coarse-grained (CG) molecular dynamics (MD) simulations along with biolayer interferometry (BLI) analysis. Due to the charge and hydrophobicity anisotropy on the vimentin dimer (VD) surface, a set of bound copolymers are found inhomogenously adsorbed on the VD, with energetic heterogeneity for different binding sites and cooperative effect in the adsorption. Increasing the charge or hydrophobicity of the copolymer may have different consequences on the adsorption. In this study, we found that with more copolymer charges, the protein coverage increases for copolymers of low hydrophobicity and decreases of high hydrophobicity, which is explained by the distribution and size of various functional patches on the VD in loading those copolymers. Employing a coverage-dependent Langmuir model, we propose a simulation protocol to address the full profile of the copolymer binding free energy through the fit to the simulated binding isotherm. The obtained results correlate well with those from the BLI experiment, indicating the significance of this method for the rational design of the copolymer NP with engineered protein binding affinity.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing210094, P. R. China
| | - Tong Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Stefano Angioletti-Uberti
- Department of Materials, Imperial College London, LondonSW7 2AZ, U.K.,Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, LondonSW7 2AZ, U.K
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
6
|
Accorsi M, Tiemann M, Wehrhan L, Finn LM, Cruz R, Rautenberg M, Emmerling F, Heberle J, Keller BG, Rademann J. Pentafluorophosphato‐Phenylalanines: Amphiphilic Phosphotyrosine Mimetics Displaying Fluorine‐Specific Protein Interactions. Angew Chem Int Ed Engl 2022; 61:e202203579. [PMID: 35303375 PMCID: PMC9323422 DOI: 10.1002/anie.202203579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/10/2022]
Abstract
Phosphotyrosine residues are essential functional switches in health and disease. Thus, phosphotyrosine biomimetics are crucial for the development of chemical tools and drug molecules. We report here the discovery and investigation of pentafluorophosphato amino acids as novel phosphotyrosine biomimetics. A mild acidic pentafluorination protocol was developed and two PF5‐amino acids were prepared and employed in peptide synthesis. Their structures, reactivities, and fluorine‐specific interactions were studied by NMR and IR spectroscopy, X‐ray diffraction, and in bioactivity assays. The mono‐anionic PF5 motif displayed an amphiphilic character binding to hydrophobic surfaces, to water molecules, and to protein‐binding sites, exploiting charge and H−F‐bonding interactions. The novel motifs bind 25‐ to 30‐fold stronger to the phosphotyrosine binding site of the protein tyrosine phosphatase PTP1B than the best current biomimetics, as rationalized by computational methods, including molecular dynamics simulations.
Collapse
Affiliation(s)
- Matteo Accorsi
- Department of Biology, Chemistry, Pharmacy Institute of Pharmacy Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Germany
| | - Markus Tiemann
- Department of Biology, Chemistry, Pharmacy Institute of Pharmacy Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Germany
| | - Leon Wehrhan
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Lauren M. Finn
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Ruben Cruz
- Department of Physics Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Max Rautenberg
- Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Str.11 12489 Berlin Germany
| | - Franziska Emmerling
- Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Str.11 12489 Berlin Germany
| | - Joachim Heberle
- Department of Physics Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Bettina G. Keller
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Jörg Rademann
- Department of Biology, Chemistry, Pharmacy Institute of Pharmacy Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Germany
| |
Collapse
|
7
|
Raee E, Liu B, Yang Y, Namani T, Cui Y, Sahai N, Li X, Liu T. Side Group of Hydrophobic Amino Acids Controls Chiral Discrimination among Chiral Counterions and Metal-Organic Cages. NANO LETTERS 2022; 22:4421-4428. [PMID: 35609117 DOI: 10.1021/acs.nanolett.2c00908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The self-assembly of chiral Pd12L24 metal-organic cages (MOCs) based on hydrophobic amino acids, including alanine (Ala), valine (Val), and leucine (Leu), into single-layered hollow spherical blackberry-type structures is triggered by nitrates through counterion-mediated attraction. In addition to nitrates, anionic N-(tert-butoxycarbonyl) (Boc)-protected Ala, Val, and Leu were used as chiral counterions during the self-assembly of d-MOCs. Previously, we showed that l-Ala suppresses the self-assembly process of d-Pd12Ala24 but has no effect on l-Pd12Ala24, i.e., chiral discrimination. Here, we indicate when the amino acid used as the chiral counterion has a bulkier side group than the amino acid in the MOC structure, no chiral discrimination exists; otherwise, chiral discrimination exists. For example, Ala can induce chiral discrimination in all chiral MOCs, whereas Leu can induce chiral discrimination only in Pd12Leu24. Moreover, chiral anionic d- and l-alanine-based surfactants have no chiral discrimination, indicating that bulkier chiral counterions with more hydropohobic side groups can erase chiral discrimination.
Collapse
Affiliation(s)
- Ehsan Raee
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Bingqing Liu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yuqing Yang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Trishool Namani
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yunpeng Cui
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Nita Sahai
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Tianbo Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
8
|
Accorsi M, Tiemann M, Wehrhan L, Finn LM, Cruz R, Rautenberg M, Emmerling F, Heberle J, Keller BG, Rademann J. Pentafluorophosphato‐Phenylalanines: Amphiphilic Phosphotyrosine Mimetics Displaying Fluorine‐Specific Protein Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matteo Accorsi
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy; Institute of Pharmacy GERMANY
| | - Markus Tiemann
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy GERMANY
| | - Leon Wehrhan
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry GERMANY
| | - Lauren M. Finn
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry GERMANY
| | - Ruben Cruz
- Freie Universität Berlin: Freie Universitat Berlin Department of Physics GERMANY
| | - Max Rautenberg
- Bundesanstalt für Materialforschung und -prüfung: Bundesanstalt fur Materialforschung und -prufung Structure Analysis GERMANY
| | - Franziska Emmerling
- Bundesanstalt für Materialforschung und -prüfung: Bundesanstalt fur Materialforschung und -prufung Structural Analytics GERMANY
| | - Joachim Heberle
- Freie Universität Berlin: Freie Universitat Berlin Department of Physics GERMANY
| | - Bettina G. Keller
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry GERMANY
| | - Jörg Rademann
- Freie Universitat Berlin, Institute of Pharmacy Medicinal Chemistry Königin-Luise-Str. 2+4 14195 Berlin GERMANY
| |
Collapse
|
9
|
Paulauskiene T, Uebe J, Ziogas M. Cellulose aerogel composites as oil sorbents and their regeneration. PeerJ 2021; 9:e11795. [PMID: 34414028 PMCID: PMC8344703 DOI: 10.7717/peerj.11795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/25/2021] [Indexed: 01/07/2023] Open
Abstract
Background With every oil tanker comes the risk of an accident and oil spill. Sorbents are the most suitable means to remove oil spills. Aerogels as sorbents have high porosity and can be made from cellulose from paper waste. The literature does not distinguish between paper and cardboard as sources of cellulose aerogels and little is known about composites of cellulose aerogels consisting of cellulose fibres and chemically untreated, unprocessed fibres or particles of straw, wool, macroalgae or cellulose acetate from cigarette butts. In this study, the sorption properties for marine diesel oil and biodiesel of such aerogels and their regenerative capacity with bioethanol were investigated. Methods Cellulose aerogels were prepared from office paper and cardboard waste without and with chemically untreated algae, straw, wool and cellulose acetate as a composite by freeze drying. All samples were hydrophobised with methylsilane. The density to calculate the porosity and the contact angle were determined. Then the sorption capacity was determined over five cycles of sorption of oil and regeneration with bioethanol. Results The average contact angle of all samples was 125°, indicating hydrophobicity. Paper-based aerogels were found to consistently have higher sorption capacities for biodiesel, marine diesel oil and bioethanol than cardboard-based aerogels. In particular, the wool/cellulose aerogel composite was found to have better sorption capacity for biodiesel, marine diesel oil and bioethanol than all other samples. The cellulose acetate/cellulose aerogel composite showed significantly higher sorption capacities than the paper and cardboard control samples (highest value is 32.25 g g−1) only when first used as a sorbent for biodiesel, but with a rapid decrease in the following cycles.
Collapse
Affiliation(s)
- Tatjana Paulauskiene
- Department of Engineering/Faculty of Marine Technology and Natural Sciences, Klaipeda University, Klaipeda, Lithuania
| | - Jochen Uebe
- Department of Engineering/Faculty of Marine Technology and Natural Sciences, Klaipeda University, Klaipeda, Lithuania
| | - Mindaugas Ziogas
- Department of Engineering/Faculty of Marine Technology and Natural Sciences, Klaipeda University, Klaipeda, Lithuania
| |
Collapse
|
10
|
Polewski L, Springer A, Pagel K, Schalley CA. Gas-Phase Structural Analysis of Supramolecular Assemblies. Acc Chem Res 2021; 54:2445-2456. [PMID: 33900743 DOI: 10.1021/acs.accounts.1c00080] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ion mobility spectrometry and gas-phase IR action spectroscopy are two structure-sensitive mass-spectrometric methods becoming more popular recently. While ion mobility spectrometry provides collision cross sections as a size and shape dependent parameter of an ion of interest, gas-phase spectroscopy identifies functional groups and is capable of distinguishing different isomers. Both methods have recently found application for the investigation of supramolecular assemblies. We here highlight several aspects.Starting with the characterization of switching states in azobenzene photoswitches as well as redox-switchable lasso-type pseudorotaxanes, structures of isomers can be distinguished and mechanistic details analyzed. Ion mobility mass spectrometry in combination with gas-phase H/D-exchange reactions unravels subtle structural details as described for the chiral recognition of crown ether amino acid complexes. Gas-phase IR spectroscopy allows identification of details of the binding patterns in dimeric amino acid clusters as well as the serine octamer. This research can be extended into the analysis of peptide assemblies that are of medical relevance, for example, in Alzheimer's disease, and into a general hydrophobicity scale for natural as well as synthetic amino acids. The development of ultracold gas-phase spectroscopy that for example makes use of ions trapped in liquid helium droplets provides access to very well resolved spectra. The combination of ion mobility separation of ions with subsequent spectroscopic analysis even permits separation of different isomers and studying them separately with respect to their structure. This represents a great advantage of these gas-phase methods over solution experiments, in which the supramolecular complexes under study typically equilibrate and thus prevent a separate investigation of different isomers. At the end of this overview, we will discuss larger and more complex supramolecules, among them giant halogen-bonded cages and complex intertwined topologies such as molecular knots and Solomon links.
Collapse
Affiliation(s)
- Lukasz Polewski
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20-22, 14195 Berlin, Germany
| | - Andreas Springer
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20-22, 14195 Berlin, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20-22, 14195 Berlin, Germany
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20-22, 14195 Berlin, Germany
| |
Collapse
|
11
|
Donets S, Guskova O, Sommer JU. Searching for Aquamelt Behavior among Silklike Biomimetics during Fibrillation under Flow. J Phys Chem B 2021; 125:3238-3250. [PMID: 33750140 DOI: 10.1021/acs.jpcb.1c00647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this paper, we elucidate a generic mechanism behind strain-induced phase transition in aqueous solutions of silk-inspired biomimetics by atomistic molecular dynamics simulations. We show the results of modeling of homopeptides polyglycine Gly30 and polyalanine Ala30 and a heteropeptide (Gly-Ala-Gly-Ala-Gly-Ser)5, i.e., the simplest and yet relevant sequences that could mimic the behavior of natural silk under stress conditions. First, we analyze hydrophobicities of the sequences by calculating the Gibbs free energy of hydration and inspecting the interchain hydrogen bonding and hydration by water. Second, the force-extension profiles are scanned and compared with the results for poly(ethylene oxide), the synthetic polymer for which the aquamelt behavior has been proved recently. Additionally, the conformational transitions of oligopeptides from coiled to extended states are characterized by a generalized order parameter and by the dependence of the solvent-accessible surface area of the chains on applied stretching. Fibrillation itself is surveyed using both the two-dimensional interchain pair correlation function and the SAXS/WAXS patterns for the aggregates formed under stress. These are compared with experimental data found in the literature on fibril structure of silk composite materials doped with oligoalanine peptides. Our results show that tensile stress introduced into aqueous oligopeptide solutions facilitates interchain interactions. The oligopeptides display both a greater resistance to extension as compared to poly(ethylene oxide) and a reduced ability for hydrogen bonding of the stretched chains between oligomers and with water. Fiber formation is proved for all simulated objects, but the most structured one is made of a heteropeptide (Gly-Ala-Gly-Ala-Gly-Ser)5: For this sequence, we obtain the highest degree of the secondary structure motifs in the fiber. We conclude that this is the most promising candidate among considered sequences to find the aquamelt behavior in further experimental studies.
Collapse
Affiliation(s)
- Sergii Donets
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Olga Guskova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany.,Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| | - Jens-Uwe Sommer
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany.,Institute of Theoretical Physics, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| |
Collapse
|
12
|
Shevchuk M, Wang Q, Pajkert R, Xu J, Mei H, Röschenthaler G, Han J. Recent Advances in Synthesis of Difluoromethylene Phosphonates for Biological Applications. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001464] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Shevchuk
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Qian Wang
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jingcheng Xu
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Haibo Mei
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Gerd‐Volker Röschenthaler
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jianlin Han
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
13
|
Wang L, Han J, Yuan Q, Cao W, Zhou X, Liu S, Wang XB. Electron Affinity and Electronic Structure of Hexafluoroacetone (HFA) Revealed by Photodetaching the [HFA] •- Radical Anion. J Phys Chem A 2021; 125:746-753. [PMID: 33295772 DOI: 10.1021/acs.jpca.0c08996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A great deal of effort has been focused on developing a metal-free catalytic system for epoxidation of unreactive alkenes. Fluoroketones are thought as remarkably promising catalysts for epoxidation reactions. The combination of fluorinated alcohols and catalytic amounts of hexafluoroacetone (HFA) gives a versatile and effective medium for epoxidation of various olefins with hydrogen peroxide. However, the fundamental physicochemical properties of HFA remained largely unclear, although they were very important to understand the related interactions. Here, we performed a joint study on the electron affinity and electronic structure of HFA employing negative ion photoelectron (NIPE) spectroscopy and quantum chemistry calculations. Two distinct bands with complicated vibrational progressions were observed in the 193 nm NIPE spectrum. The adiabatic/vertical detachment energies (ADE/VDE) were derived to be 1.42/2.06 and 4.43/4.86 eV for the ground singlet state and excited triplet state, respectively. Using the optimized geometries and vibrational frequencies of the anion and the neutral, the Franck-Condon factors were calculated for electron detachments to produce HFA in its lowest singlet and triplet states. Good agreements are obtained hereby for both bands between the experimental and calculated NIPE spectra, when taking into account combination vibrational excitations, unequivocally revealing that HFA possesses a singlet ground state with a giant singlet-triplet energy difference (ΔEST). The electron affinity (EA) and ΔEST of HFA were therefore determined to be EA = 1.42 ± 0.02 eV and ΔEST = -3.01 eV.
Collapse
Affiliation(s)
- Lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jia Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
14
|
Chowdhary S, Moschner J, Mikolajczak DJ, Becker M, Thünemann AF, Kästner C, Klemczak D, Stegemann A, Böttcher C, Metrangolo P, Netz RR, Koksch B. The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation. Chembiochem 2020; 21:3544-3554. [PMID: 33405360 PMCID: PMC7756607 DOI: 10.1002/cbic.202000373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/31/2020] [Indexed: 12/12/2022]
Abstract
The hexapeptide hIAPP22-27 (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild-type hIAPP's toxicity to β-cell death. In amyloid research, the role of hydrophobic and aromatic-aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic-aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues. We used thioflavin T staining, transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) to study the impact of side-chain halogenation on NFGAIL amyloid formation kinetics. Our data revealed a synergy between aggregation behavior and hydrophobicity of the phenylalanine residue. This study introduces systematic fluorination as a toolbox to further investigate the nature of the amyloid self-assembly process.
Collapse
Affiliation(s)
- Suvrat Chowdhary
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Johann Moschner
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Dorian J. Mikolajczak
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Maximilian Becker
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Andreas F. Thünemann
- Federal Institute for Materials Research and Testing (BAM)Unter den Eichen 8712205BerlinGermany
| | - Claudia Kästner
- Federal Institute for Materials Research and Testing (BAM)Unter den Eichen 8712205BerlinGermany
| | - Damian Klemczak
- Institute of PharmacyFreie Universität BerlinKönigin-Luise-Str. 2–414195BerlinGermany
| | - Anne‐Katrin Stegemann
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Christoph Böttcher
- Institute of Chemistry and Biochemistry and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | - Pierangelo Metrangolo
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanItaly
| | - Roland R. Netz
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Beate Koksch
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| |
Collapse
|
15
|
Yang B, Liu H, Liu Z, Doenen R, Nash MA. Influence of Fluorination on Single-Molecule Unfolding and Rupture Pathways of a Mechanostable Protein Adhesion Complex. NANO LETTERS 2020; 20:8940-8950. [PMID: 33191756 PMCID: PMC7729889 DOI: 10.1021/acs.nanolett.0c04178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/08/2020] [Indexed: 05/25/2023]
Abstract
We investigated the influence of fluorination on unfolding and unbinding reaction pathways of a mechanostable protein complex comprising the tandem dyad XModule-Dockerin bound to Cohesin. Using single-molecule atomic force spectroscopy, we mapped the energy landscapes governing the unfolding and unbinding reactions. We then used sense codon suppression to substitute trifluoroleucine in place of canonical leucine globally in XMod-Doc. Although TFL substitution thermally destabilized XMod-Doc, it had little effect on XMod-Doc:Coh binding affinity at equilibrium. When we mechanically dissociated global TFL-substituted XMod-Doc from Coh, we observed the emergence of a new unbinding pathway with a lower energy barrier. Counterintuitively, when fluorination was restricted to Doc, we observed mechano-stabilization of the non-fluorinated neighboring XMod domain. This suggests that intramolecular deformation is modulated by fluorination and highlights the differences between equilibrium thermostability and non-equilibrium mechanostability. Future work is poised to investigate fluorination as a means to modulate mechanical properties of synthetic proteins and hydrogels.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Haipei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Zhaowei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Regina Doenen
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| |
Collapse
|
16
|
Awad LF, Ayoup MS. Fluorinated phenylalanines: synthesis and pharmaceutical applications. Beilstein J Org Chem 2020; 16:1022-1050. [PMID: 32509033 PMCID: PMC7237815 DOI: 10.3762/bjoc.16.91] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/27/2020] [Indexed: 01/04/2023] Open
Abstract
Recent advances in the chemistry of peptides containing fluorinated phenylalanines (Phe) represents a hot topic in drug research over the last few decades. ᴅ- or ʟ-fluorinated phenylalanines have had considerable industrial and pharmaceutical applications and they have been expanded also to play an important role as potential enzyme inhibitors as well as therapeutic agents and topography imaging of tumor ecosystems using PET. Incorporation of fluorinated aromatic amino acids into proteins increases their catabolic stability especially in therapeutic proteins and peptide-based vaccines. This review seeks to summarize the different synthetic approaches in the literature to prepare ᴅ- or ʟ-fluorinated phenylalanines and their pharmaceutical applications with a focus on published synthetic methods that introduce fluorine into the phenyl, the β-carbon or the α-carbon of ᴅ-or ʟ-phenylalanines.
Collapse
Affiliation(s)
- Laila Fathy Awad
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| |
Collapse
|
17
|
Thibeault PE, LeSarge JC, Arends D, Fernandes M, Chidiac P, Stathopulos PB, Luyt LG, Ramachandran R. Molecular basis for activation and biased signaling at the thrombin-activated GPCR proteinase activated receptor-4 (PAR4). J Biol Chem 2020; 295:2520-2540. [PMID: 31892516 PMCID: PMC7039573 DOI: 10.1074/jbc.ra119.011461] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/28/2019] [Indexed: 01/09/2023] Open
Abstract
Proteinase-activated receptor (PAR)-4 is a member of the proteolytically-activated PAR family of G-protein-coupled receptors (GPCR) that represents an important target in the development of anti-platelet therapeutics. PARs are activated by proteolytic cleavage of their receptor N terminus by enzymes such as thrombin, trypsin, and cathepsin-G. This reveals the receptor-activating motif, termed the tethered ligand that binds intramolecularly to the receptor and triggers signaling. However, PARs are also activated by exogenous application of synthetic peptides derived from the tethered-ligand sequence. To better understand the molecular basis for PAR4-dependent signaling, we examined PAR4-signaling responses to a peptide library derived from the canonical PAR4-agonist peptide, AYPGKF-NH2, and we monitored activation of the Gαq/11-coupled calcium-signaling pathway, β-arrestin recruitment, and mitogen-activated protein kinase (MAPK) pathway activation. We identified peptides that are poor activators of PAR4-dependent calcium signaling but were fully competent in recruiting β-arrestin-1 and -2. Peptides that were unable to stimulate PAR4-dependent calcium signaling could not trigger MAPK activation. Using in silico docking and site-directed mutagenesis, we identified Asp230 in the extracellular loop-2 as being critical for PAR4 activation by both agonist peptide and the tethered ligand. Probing the consequence of biased signaling on platelet activation, we found that a peptide that cannot activate calcium signaling fails to cause platelet aggregation, whereas a peptide that is able to stimulate calcium signaling and is more potent for β-arrestin recruitment triggered greater levels of platelet aggregation compared with the canonical PAR4 agonist peptide. These findings uncover molecular determinants critical for agonist binding and biased signaling through PAR4.
Collapse
Affiliation(s)
- Pierre E Thibeault
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Jordan C LeSarge
- Department of Chemistry, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - D'Arcy Arends
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Michaela Fernandes
- Department of Chemistry, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario, London, Ontario N6A5C1, Canada; Department of Oncology, University of Western Ontario, London, Ontario N6A5C1, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, Ontario N6C2R5, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada.
| |
Collapse
|
18
|
Zi Y, Lange M, Vilotijevic I. Enantioselective Lewis base catalyzed phosphonyldifluoromethylation of allylic fluorides using a C-silyl latent pronucleophile. Chem Commun (Camb) 2020; 56:5689-5692. [DOI: 10.1039/d0cc01815e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The first enantioselective phosphonyldifluoromethylation is enabled by the use of a latent silylated C-centered pronucleophile in the Lewis base catalyzed substitution of allylic fluorides.
Collapse
Affiliation(s)
- You Zi
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Markus Lange
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Ivan Vilotijevic
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| |
Collapse
|
19
|
Panigrahi K, Fei X, Kitamura M, Berkowitz DB. Rapid Entry into Biologically Relevant α,α-Difluoroalkylphosphonates Bearing Allyl Protection-Deblocking under Ru(II)/(IV)-Catalysis. Org Lett 2019; 21:9846-9851. [PMID: 31789041 DOI: 10.1021/acs.orglett.9b03707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient synthetic route to α,α-difluoroalkylphosphonates is described. Structurally diverse aldehydes are condensed with LiF2CP(O)(OCH2CH═CH2)2. The resultant alcohols are captured as the pentafluorophenyl thionocarbonates and efficiently deoxygenated with HSnBu3, BEt3, and O2, and then smoothly deblocked with CpRu(IV)(π-allyl)quinoline-2-carboxylate (1-2 mol %) in methanol as an allyl cation scavenger. These mild deprotection conditions provide access to free α,α-difluoroalkylphosphonates in nearly quantitative yield. This methodology is used to rapidly construct new bis-α,α-difluoroalkyl phosphonate inhibitors of PTPIB (protein phosphotyrosine phosphatase-1B).
Collapse
Affiliation(s)
- Kaushik Panigrahi
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Xiang Fei
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Masato Kitamura
- Graduate School of Pharmaceutical Sciences , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - David B Berkowitz
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| |
Collapse
|
20
|
Ross DH, Seguin RP, Xu L. Characterization of the Impact of Drug Metabolism on the Gas-Phase Structures of Drugs Using Ion Mobility-Mass Spectrometry. Anal Chem 2019; 91:14498-14507. [PMID: 31613088 DOI: 10.1021/acs.analchem.9b03292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Conventional strategies for drug metabolite identification employ a combination of liquid chromatography-mass spectrometry (LC-MS), which offers higher throughput but provides limited structural information, and nuclear magnetic resonance spectroscopy, which can achieves the most definitive identification but lacks throughput. Ion mobility-mass spectrometry (IM-MS) is a rapid, two-dimensional analysis that separates ions on the basis of their gas-phase size and shape (reflected by collision cross section, CCS) and their mass-to-charge (m/z) ratios. The rapid nature of IM separation combined with the structural information provided by CCS make IM-MS a promising technique for obtaining more structural information on drug metabolites without sacrificing analytical throughput. Here, we present an in vitro biosynthesis coupled with IM-MS strategy for rapid generation and analysis of drug metabolites. Drug metabolites were generated in vitro using pooled subcellular fractions derived from human liver and analyzed using a rapid flow injection-IM-MS method. We measured CCS values for 19 parent drugs and their 37 metabolites generated in vitro (78 values in total), representing a wide variety of metabolic modifications. Post-IM fragmentation and computational modeling were used to support metabolite identifications and explore the structural characteristics driving behaviors observed in IM separation. Overall, we found the effects of metabolic modifications on the gas-phase structures of the metabolites to be highly dependent upon the structural characteristics of the parent compounds and the specific position of the modification. This in vitro biosynthesis coupled with rapid IM-MS analysis workflow represents a promising platform for rapid and high-confidence identification of drug metabolites, applicable at a large scale.
Collapse
Affiliation(s)
- Dylan H Ross
- Department of Medicinal Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Ryan P Seguin
- Department of Medicinal Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Libin Xu
- Department of Medicinal Chemistry , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|