1
|
Xia Y, Li X, Liu F. Targeted redox-responsive peptide for arterial chemoembolization therapy of orthotropic hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:3925-3934. [PMID: 38990300 PMCID: PMC11519146 DOI: 10.1007/s00261-024-04481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Transcatheter Arterial Chemoembolization (TACE) is the first choice for the treatment of advanced-stage hepatocellular carcinoma (HCC). However, TACE suffers from a lack of specificity and rapid drug release. Herein, a targeted redox-responsive peptide (TRRP) was synthesized and used as a carrier of doxorubicin (DOX) to enhance the efficacy of TACE through tumor cells targeting and controlled drug release. METHODS TRRP has a high loading capacity of DOX and a sensitive drug release behavior at high glutathione (GSH) concentration. Moreover, TRRP could bind to the transferrin receptor on the surface of tumor cells, which enhanced the efficacy of TACE and reduced side effects of TACE. TACE with TRRP@DOX dispersed in lipiodol shows an enhanced therapeutic outcome compared to the treatment with DOX + lipiodol emulsion in orthotopic rat HCC models. RESULTS TRRP has a high loading capacity of DOX and a sensitive drug release behavior at GSH concentration. Moreover, TRRP could bind to the transferrin receptor on the surface of tumor cells, which enhanced the efficacy of TACE and reduced side effects of TACE. TACE with TRRP@DOX dispersed in lipiodol shows an enhanced therapeutic outcome compared to the treatment with DOX + lipiodol emulsion in orthotopic rat HCC models. CONCLUSIONS This study demonstrated that TRRP was a promising therapeutic agent for enhancing TACE therapy for HCC treatment.
Collapse
Affiliation(s)
- Yimao Xia
- Chinese PLA Medical School, Beijing, 100853, China
| | - Xin Li
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Fengyong Liu
- Chinese PLA Medical School, Beijing, 100853, China.
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
2
|
Shi K, Fu W, Farhadi Sabet Z, Ye J, Liang S, Liu T, Liu Q, Guo M, You M, Wu J, Bai R, Liu Y, Hu B, Cui X, Li J, Chen C. Hydrogel-Mediated Jamming of Exosome Communications That Counter Tumor Adaption in the Tumor Immune Microenvironment. ACS NANO 2024. [PMID: 39441690 DOI: 10.1021/acsnano.4c07603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Hypoxia, a common occurrence within solid tumors, can stimulate the dissemination of deceptive tumor exosomes, which function as communicative bridges and orchestrate the recruitment of various supportive cell types for enhanced tumor adaptability in a tumor immune microenvironment. Current nanotechnology provides us intelligent strategies to combat the hypoxic tumor microenvironment. However, once exposed to external stimuli, such as chemotherapy, tumor cells simultaneously release malignant signals to develop tumor migration and immunosuppression, posing challenges to clinical practice. Taking advantage of the membrane-targeting therapeutic strategy, the application of a self-assembled short peptide (PepABS-py), affording hydrogels on tumor cell surfaces, can block exosome dissemination with fiber-like nanostructures and effectively limit the systemic adverse effects of traditional therapeutics. Moreover, PepABS-py can attenuate the hypoxic tumor microenvironment in vivo by carrying an inhibitor of the hypoxic tumor-overexpressed CA IX enzyme, where hypoxia is also a crucial regulator to induce tumor exosomes and mediate intercellular communications within the immune system. Herein, its application on jamming exosome communications can target the T cell-related signaling pathway by regulating microRNAs in exosome cargoes and ultimately enhances CD8+ T cell infiltration and alleviates inflammatory monocytes at metastasis sites. Collectively, with the capability of blocking exosome dissemination, PepABS-py can be applied as a promising tumor membrane-targeting therapeutic tool to counter tumor adaption within an immune microenvironment and further advance traditional chemotherapy.
Collapse
Affiliation(s)
- Kejian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Wenjiao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zeinab Farhadi Sabet
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jinmin Ye
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Shijian Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Qiaolin Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Min You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Junguang Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Bin Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
| |
Collapse
|
3
|
Chen Y, Tan BSN, Cheng Y, Zhao Y. Artificial Polymerizations in Living Organisms for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202410579. [PMID: 39086115 DOI: 10.1002/anie.202410579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Within living organisms, numerous nanomachines are constantly involved in complex polymerization processes, generating a diverse array of biomacromolecules for maintaining biological activities. Transporting artificial polymerizations from lab settings into biological contexts has expanded opportunities for understanding and managing biological events, creating novel cellular compartments, and introducing new functionalities. This review summarizes the recent advancements in artificial polymerizations, including those responding to external stimuli, internal environmental factors, and those that polymerize spontaneously. More importantly, the cutting-edge biomedical application scenarios of artificial polymerization, notably in safeguarding cells, modulating biological events, improving diagnostic performance, and facilitating therapeutic efficacy are highlighted. Finally, this review outlines the key challenges and technological obstacles that remain for polymerizations in biological organisms, as well as offers insights into potential directions for advancing their practical applications and clinical trials.
Collapse
Affiliation(s)
- Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Brynne Shu Ni Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
4
|
Sun M, Wang Y, Huang A, Wang H, Peng S, Gao F, Yang X, Song X, Feng C. Enhancing Biocatalysis through Chiral Supramolecular Scaffolds: Insights into the Structural Adaptability of Lipase. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48126-48138. [PMID: 39196803 DOI: 10.1021/acsami.4c10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
How to maintain high catalytic activity and stability in the process of biocatalysis is crucial, inspiring strategies to construct an appropriate catalytic microenvironment. Considering the lipase's inherent chirality and the necessity for a delicate hydrophilic-hydrophobic equilibrium, we crafted a chiral, nonaqueous catalytic microenvironment via the in situ coassembly of Boc-FLFL-NHNH2 (Bfl) and lipase. Benefiting from the chirality and distinct Bfl-lipase interactions, the lipase@Bfl supramolecular hybrid amplifies biological functionalities and can serve as a versatile and highly efficient catalyst. Kinetic investigations and molecular docking simulations uncover the strong lipase-substrate affinity and lipase-Bfl interactions, explaining the enhanced biological effects, catalytic activity, and stability. Our study establishes a suitable microenvironment to address the chirality and hydrophobicity during catalysis and highlights the potential of artificial chiral scaffolds and catalytic medium for enhancing lipase activity.
Collapse
Affiliation(s)
- Meng Sun
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuyang Wang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Anni Huang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Hanlu Wang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, First Affiliated Hospital Zhejiang University, Hangzhou, 310003, China
| | - Fengli Gao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu Yang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Xinqiang Song
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Lee YJ, Jung YJ, Lim YB. Adaptable Self-Assembly of a PEG Dendrimer-Coiled Coil Conjugate. Chempluschem 2024; 89:e202400114. [PMID: 38797707 DOI: 10.1002/cplu.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Self-assembly of designed molecules has enabled the construction of a variety of functional nanostructures. Specifically, adaptable self-assembly has demonstrated several advantageous features for smart materials. Here, we demonstrate that an α-helical coiled coil conjugated with a dendrimer can adapt to spatial restriction due to the strong steric repulsion between dendrimer chains. The adaptable transformation of a tetrameric coiled coil to a trimeric coiled coil can be confirmed using analytical ultracentrifugation upon conjugation of the dendrimer to the coiled coil-forming building block. Interestingly, circular dichroism spectroscopy analysis of the dendrimer conjugate revealed an unconventional trend: the multimerization of the coiled coil is inversely dependent on concentration. This result implies that the spatial crowding between the bulky dendritic chains is significantly stronger than that between linear chains, thereby affecting the overall assembly process. We further illustrated the application potential by decorating the surface of gold nanorods (AuNRs) with the adaptable coiled coil. The dendrimer-coiled coil peptide conjugate can be utilized to fabricate organic-inorganic nanohybrids with enhanced colloidal and thermal stabilities. This study demonstrates that the coiled coil can engage in the adaptable mode of self-assembly with the potential to form dynamic peptide-based materials.
Collapse
Affiliation(s)
- Young-Joo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - You-Jin Jung
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yong-Beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
6
|
Paschold A, Schäffler M, Miao X, Gardon L, Krüger S, Heise H, Röhr MIS, Ott M, Strodel B, Binder WH. Photocontrolled Reversible Amyloid Fibril Formation of Parathyroid Hormone-Derived Peptides. Bioconjug Chem 2024; 35:981-995. [PMID: 38865349 PMCID: PMC11261605 DOI: 10.1021/acs.bioconjchem.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
Peptide fibrillization is crucial in biological processes such as amyloid-related diseases and hormone storage, involving complex transitions between folded, unfolded, and aggregated states. We here employ light to induce reversible transitions between aggregated and nonaggregated states of a peptide, linked to the parathyroid hormone (PTH). The artificial light-switch 3-{[(4-aminomethyl)phenyl]diazenyl}benzoic acid (AMPB) is embedded into a segment of PTH, the peptide PTH25-37, to control aggregation, revealing position-dependent effects. Through in silico design, synthesis, and experimental validation of 11 novel PTH25-37-derived peptides, we predict and confirm the amyloid-forming capabilities of the AMPB-containing peptides. Quantum-chemical studies shed light on the photoswitching mechanism. Solid-state NMR studies suggest that β-strands are aligned parallel in fibrils of PTH25-37, while in one of the AMPB-containing peptides, β-strands are antiparallel. Simulations further highlight the significance of π-π interactions in the latter. This multifaceted approach enabled the identification of a peptide that can undergo repeated phototriggered transitions between fibrillated and defibrillated states, as demonstrated by different spectroscopic techniques. With this strategy, we unlock the potential to manipulate PTH to reversibly switch between active and inactive aggregated states, representing the first observation of a photostimulus-responsive hormone.
Collapse
Affiliation(s)
- André Paschold
- Macromolecular
Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle Wittenberg, von-Danckelmann-Platz 4, Halle 06120, Germany
| | - Moritz Schäffler
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Xincheng Miao
- Center
for Nanosystems Chemistry (CNC), Theodor-Boveri Weg, Universität Würzburg, Würzburg 97074, Germany
| | - Luis Gardon
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Stephanie Krüger
- Biozentrum,
Martin Luther University Halle-Wittenberg, Weinberweg 22, Halle 06120, Germany
| | - Henrike Heise
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Merle I. S. Röhr
- Center
for Nanosystems Chemistry (CNC), Theodor-Boveri Weg, Universität Würzburg, Würzburg 97074, Germany
| | - Maria Ott
- Institute
of Biophysics, Faculty of Natural Science I, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle 06120, Germany
| | - Birgit Strodel
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Wolfgang H. Binder
- Macromolecular
Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle Wittenberg, von-Danckelmann-Platz 4, Halle 06120, Germany
| |
Collapse
|
7
|
Zhang W, Zeng Y, Xiao Q, Wu Y, Liu J, Wang H, Luo Y, Zhan J, Liao N, Cai Y. An in-situ peptide-antibody self-assembly to block CD47 and CD24 signaling enhances macrophage-mediated phagocytosis and anti-tumor immune responses. Nat Commun 2024; 15:5670. [PMID: 38971872 PMCID: PMC11227529 DOI: 10.1038/s41467-024-49825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
Targeted immunomodulation for reactivating innate cells, especially macrophages, holds great promise to complement current adaptive immunotherapy. Nevertheless, there is still a lack of high-performance therapeutics for blocking macrophage phagocytosis checkpoint inhibitors in solid tumors. Herein, a peptide-antibody combo-supramolecular in situ assembled CD47 and CD24 bi-target inhibitor (PAC-SABI) is described, which undergoes biomimetic surface propagation on cancer cell membranes through ligand-receptor binding and enzyme-triggered reactions. By simultaneously blocking CD47 and CD24 signaling, PAC-SABI enhances the phagocytic ability of macrophages in vitro and in vivo, promoting anti-tumor responses in breast and pancreatic cancer mouse models. Moreover, building on the foundation of PAC-SABI-induced macrophage repolarization and increased CD8+ T cell tumor infiltration, sequential anti-PD-1 therapy further suppresses 4T1 tumor progression, prolonging survival rate. The in vivo construction of PAC-SABI-based nano-architectonics provides an efficient platform for bridging innate and adaptive immunity to maximize therapeutic potency.
Collapse
Affiliation(s)
- Weiqi Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinghua Zeng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuqun Xiao
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanyuan Wu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiale Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haocheng Wang
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Luo
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Zhan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ning Liao
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Dasgupta S, Sen S, Sathe RY, Pophali S, Kadu A, Jain R, Bera S, Roy S, Misra R. Conformation Controlled Hydrogelation of Minimalistic α, γ Hybrid Peptide. Biomacromolecules 2024; 25:3715-3723. [PMID: 38723225 DOI: 10.1021/acs.biomac.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A majority of short peptide (≤7 amino acids) hydrogels are primarily assembled via cross β-structure formation. In contrast to the natural trend, herein, we report the formation of supramolecular hydrogel from the ultrashort hybrid folded peptide composed of canonical α-amino acid and noncanonical γ-amino acid, Fmoc-γPhe-Phe-OH. The designed hybrid peptide hydrogel is composed of entangled fibers, has viscoelastic properties, exhibits proteolytic stability, and exhibits cytocompatibility with L929 fibroblast cells. Mutating the peptide sequence by altering the position of γPhe from the N-termini to C-termini transforms the self-assembly into crystalline aggregates. Combining FTIR, 2D NMR, and DFT calculations revealed that the hydrogel-forming peptide adopts a C9 H-bonded conformation, resembling the well-known γ-turn. However, the isomeric hybrid peptide adopts an extended structure. The present study highlights the importance of secondary structure in the higher order assembly of minimalist hybrid peptides and broadens the range of secondary structures to design short peptide-based hydrogels.
Collapse
Affiliation(s)
- Sneha Dasgupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Mohali, S.A.S. Nagar (Mohali) 160062, India
| | - Sourav Sen
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Rohit Y Sathe
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Salil Pophali
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Mohali, S.A.S. Nagar (Mohali) 160062, India
| | - Archit Kadu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Mohali, S.A.S. Nagar (Mohali) 160062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Mohali, S.A.S. Nagar (Mohali) 160062, India
| | - Santu Bera
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Rajkumar Misra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Mohali, S.A.S. Nagar (Mohali) 160062, India
| |
Collapse
|
9
|
Liao W, Lin H, Sun Y, Li Y, Wang X, Xie Y, Guo T, Du M, Lin L. Functionalized sampling swabs array-based portable ATP bioluminescence sensor with on-site enrichment and high specificity for live Salmonella detection. Talanta 2024; 272:125819. [PMID: 38417372 DOI: 10.1016/j.talanta.2024.125819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Live food-borne pathogens, featured with rapid proliferative capacity and high pathogenicity, pose an emerging food safety and public health crisis. The high-sensitivity detection of pathogens is particularly imperative yet remains challenging. This work developed a functionalized nylon swab array with enhanced affinity for Salmonella typhimurium (S.T.) for high-specificity ATP bioluminescence-based S.T. detection. In brief, the nylon swabs (NyS) were turned to N-methylation nylon (NyS-OH) by reacting with formaldehyde, and NyS-OH were further converted to NyS-CA by reacting with carboxylic groups of citric acid (CA) and EDC/NHS solution, for altering the NyS surface energy to favor biomodification. The antibody-immobilized nylon swab (MNyS-Ab) was ready for S.T.-specific adsorption. Three prepared MNyS-Ab were installed on a stirrer to form an MNyS-Ab array, allowing for on-site enrichment of S.T. through absorptive extraction. The enriched S.T. was quantified by measuring the bioluminescence of ATP released from cell lysis utilizing a portable ATP bioluminescence sensor. The bioassay demonstrated a detectable range of 102-107 CFU mL-1 with a detection limit (LOD) of 8 CFU/mL within 35 min. The signal of single MNyS-Ab swabs was 500 times stronger than the direct detection of 106 CFU/mL S.T. The MNyS-Ab array exhibited a 100-fold increase in extraction level compared to a single MNyS. This combination of a portable bioluminescent sensor and modified nylon swab array offers a novel strategy for point-of-care testing of live S.T. strains. It holds promise for high-sensitivity measurements of other pathogens and viruses.
Collapse
Affiliation(s)
- Wenjun Liao
- Department of Bioengineering, Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University, Beijing, 100048, China
| | - Haifeng Lin
- Department of Bioengineering, Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University, Beijing, 100048, China
| | - Yucheng Sun
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yuxuan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Xiaorui Wang
- Department of Bioengineering, Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University, Beijing, 100048, China
| | - Yaoshuang Xie
- Department of Bioengineering, Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University, Beijing, 100048, China
| | - Ting Guo
- Department of Bioengineering, Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University, Beijing, 100048, China
| | - Mingyang Du
- Department of Bioengineering, Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University, Beijing, 100048, China
| | - Ling Lin
- Department of Bioengineering, Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
10
|
Tyagi K, Venkatesh V. Emerging potential approaches in alkaline phosphatase (ALP) activatable cancer theranostics. RSC Med Chem 2024; 15:1148-1160. [PMID: 38665831 PMCID: PMC11042160 DOI: 10.1039/d3md00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 04/28/2024] Open
Abstract
Alkaline phosphatase (ALP) is known as one of the most crucial members of the phosphatase family and encompasses the enormous ability to hydrolyze the phosphate group in various biomolecules; by this, it regulates several events in the pool of biological medium. Owing to its overexpression in various cancer cells, recently, its potential has evolved as a prominent biomarker in cancer research. In this article, we have underlined the recent advances (2019 onwards) of alkaline phosphatase in the arena of emerging cancer theranostics. Herein, we mainly focused on phosphate-locked molecular systems such as peptides, prodrugs, and aggregation-induced emission (AIE)-based molecules. When these theranostics encounter cancer cell-overexpressed ALP, it results in the hydrolysis of the phosphate group, which leads to the release of highly cytotoxic agents along with turn-on fluorophore/pre-existing fluorophore.
Collapse
Affiliation(s)
- Kartikay Tyagi
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| | - V Venkatesh
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| |
Collapse
|
11
|
Zhou Y, Xu L, Sun X, Zhan W, Liang G. In situ peptide assemblies for bacterial infection imaging and treatment. NANOSCALE 2024; 16:3211-3225. [PMID: 38288668 DOI: 10.1039/d3nr05557d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Bacterial infections, especially antibiotic-resistant ones, remain a major threat to human health. Advances in nanotechnology have led to the development of numerous antimicrobial nanomaterials. Among them, in situ peptide assemblies, formed by biomarker-triggered self-assembly of peptide-based building blocks, have received increasing attention due to their unique merits of good spatiotemporal controllability and excellent disease accumulation and retention. In recent years, a variety of "turn on" imaging probes and activatable antibacterial agents based on in situ peptide assemblies have been developed, providing promising alternatives for the treatment and diagnosis of bacterial infections. In this review, we introduce representative design strategies for in situ peptide assemblies and highlight the bacterial infection imaging and treatment applications of these supramolecular materials. Besides, current challenges in this field are proposed.
Collapse
Affiliation(s)
- Yanyan Zhou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Lingling Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
12
|
Zeng Y, Liao X, Guo Y, Liu F, Bu F, Zhan J, Zhang J, Cai Y, Shen M. Baicalin-peptide supramolecular self-assembled nanofibers effectively inhibit ferroptosis and attenuate doxorubicin-induced cardiotoxicity. J Control Release 2024; 366:838-848. [PMID: 38145663 DOI: 10.1016/j.jconrel.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Doxorubicin, an anthracycline chemotherapeutic agent, elicits a deleterious cardiotoxicity known as doxorubicin-induced cardiomyopathy (DIC) that circumscribes its chemotherapy utility for malignancies. Recent empirical evidence implicates ferroptosis, an iron-dependent form of regulated cell death, as playing a pivotal role in the pathogenesis of DIC. We postulated that anti-ferroptosis agents may constitute a novel therapeutic strategy for mitigating DIC. To test this hypothesis, we engineered baicalin-peptide supramolecular self-assembled nanofibers designed to selectively target the angiotensin II type I receptor (AT1R), which is upregulated in doxorubicin-damaged cardiomyocytes. This enabled targeted delivery of baicalin, a natural antioxidant compound, to inhibit ferroptosis in the afflicted myocardium. In vitro, the nanofibers ameliorated cardiomyocyte death by attenuating peroxide accumulation and suppressing ferroptosis. In a murine model of DIC, AT1R-targeted baicalin delivery resulted in efficacious cardiac accumulation and superior therapeutic effects compared to systemic administration. This investigation delineates a promising framework for developing targeted therapies that alleviate doxorubicin-induced cardiotoxicity by inhibiting the ferroptosis pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Yinghua Zeng
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Liao
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Sanya, China
| | - Fengjiao Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Bu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Sanya, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianwu Zhang
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China; Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China.
| | - Mingzhi Shen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of General Practice, Hainan Hospital of Chinese PLA General Hosptial, Sanya, China.
| |
Collapse
|
13
|
Hu JJ, Lin N, Zhang Y, Xia F, Lou X. Nanofibers in Organelles: From Structure Design to Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202313139. [PMID: 37889872 DOI: 10.1002/anie.202313139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
Nanofibers are one of the most important morphologies of molecular self-assemblies, the formation of which relies on the diverse intermolecular interactions of fibrous-forming units. In the past decade, rapid advances have been made in the biomedical application of nanofibers, such as bioimaging and tumor treatment. An important topic to be focused on is not only the nanofiber formation mechanism but also where it forms, because different destinations could have different influences on cells and its formation could be triggered by unique stimuli in organelles. It is therefore necessary and timely to summarize the nanofibers assembled in organelles. This minireview discusses the formation mechanism, triggering strategies, and biomedical applications of nanofibers, which may facilitate the rational design of nanofibers, improve our understanding of the relationship between nanofiber properties and organelle characteristics, allow a comprehensive recognition of organelles affected by materials, and enhance the therapeutic efficiency of nanofibers.
Collapse
Affiliation(s)
- Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Niya Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yunfan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
14
|
Min J, Rong X, Zhang J, Su R, Wang Y, Qi W. Computational Design of Peptide Assemblies. J Chem Theory Comput 2024; 20:532-550. [PMID: 38206800 DOI: 10.1021/acs.jctc.3c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.
Collapse
Affiliation(s)
- Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| |
Collapse
|
15
|
Hou DY, Cheng DB, Zhang NY, Wang ZJ, Hu XJ, Li X, Lv MY, Li XP, Jian LR, Ma JP, Sun T, Qiao ZY, Xu W, Wang H. In vivo assembly enhanced binding effect augments tumor specific ferroptosis therapy. Nat Commun 2024; 15:454. [PMID: 38212623 PMCID: PMC10784468 DOI: 10.1038/s41467-023-44665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024] Open
Abstract
Emerging evidence indicates that the activation of ferroptosis by glutathione peroxidase 4 (GPX4) inhibitors may be a prominent therapeutic strategy for tumor suppression. However, the wide application of GPX4 inhibitors in tumor therapy is hampered due to poor tumor delivery efficacy and the nonspecific activation of ferroptosis. Taking advantage of in vivo self-assembly, we develop a peptide-ferriporphyrin conjugate with tumor microenvironment specific activation to improve tumor penetration, endocytosis and GPX4 inhibition, ultimately enhancing its anticancer activity via ferroptosis. Briefly, a GPX4 inhibitory peptide is conjugated with an assembled peptide linker decorated with a pH-sensitive moiety and ferriporphyrin to produce the peptide-ferriporphyrin conjugate (Gi-F-CAA). Under the acidic microenvironment of the tumor, the Gi-F-CAA self-assembles into large nanoparticles (Gi-F) due to enhanced hydrophobic interaction after hydrolysis of CAA, improving tumor endocytosis efficiency. Importantly, Gi-F exhibits substantial inhibition of GPX4 activity by assembly enhanced binding (AEB) effect, augmenting the oxidative stress of ferriporphyrin-based Fenton reaction, ultimately enabling antitumor properties in multiple tumor models. Our findings suggest that this peptide-ferriporphyrin conjugate design with AEB effect can improve the therapeutic effect via induction of ferroptosis, providing an alternative strategy for overcoming chemoresistance.
Collapse
Affiliation(s)
- Da-Yong Hou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Zhi-Jia Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Xing-Jie Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Xin Li
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Mei-Yu Lv
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Xiang-Peng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Ling-Rui Jian
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Jin-Peng Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China.
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China.
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China.
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| |
Collapse
|
16
|
Sementa D, Dave D, Fisher RS, Wang T, Elbaum-Garfinkle S, Ulijn RV. Sequence-Tunable Phase Behavior and Intrinsic Fluorescence in Dynamically Interacting Peptides. Angew Chem Int Ed Engl 2023; 62:e202311479. [PMID: 37934145 DOI: 10.1002/anie.202311479] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
A conceptual framework towards understanding biological condensed phases is emerging, derived from biological, biomimetic, and synthetic sequences. However, de novo peptide condensate design remains a challenge due to an incomplete understanding of the structural and interactive complexity. We designed peptide modules based on a simple repeat motif composed of tripeptide spacers (GSG, SGS, GLG) interspersed with adhesive amino acids (R/H and Y). We show, using sequence editing and a combination of computation and experiment, that n→π* interactions in GLG backbones are a dominant factor in providing sufficient backbone structure, which in turn regulates the water interface, collectively promoting liquid droplet formation. Moreover, these R(GLG)Y and H(GLG)Y condensates unexpectedly display sequence-dependent emission that is a consequence of their non-covalent network interactions, and readily observable by confocal microscopy.
Collapse
Affiliation(s)
- Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Dhwanit Dave
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, City University of New York (CUNY), 695 Park Avenue, New York, NY 10065, USA
| | - Rachel S Fisher
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Tong Wang
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Shana Elbaum-Garfinkle
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, City University of New York (CUNY), 695 Park Avenue, New York, NY 10065, USA
| |
Collapse
|
17
|
Aloisio L, Moschetta M, Boschi A, Fleitas AG, Zangoli M, Venturino I, Vurro V, Magni A, Mazzaro R, Morandi V, Candini A, D'Andrea C, Paternò GM, Gazzano M, Lanzani G, Di Maria F. Insight on the Intracellular Supramolecular Assembly of DTTO: A Peculiar Example of Cell-Driven Polymorphism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302756. [PMID: 37364565 DOI: 10.1002/adma.202302756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Indexed: 06/28/2023]
Abstract
The assembly of supramolecular structures within living systems is an innovative approach for introducing artificial constructs and developing biomaterials capable of influencing and/or regulating the biological responses of living organisms. By integrating chemical, photophysical, morphological, and structural characterizations, it is shown that the cell-driven assembly of 2,6-diphenyl-3,5-dimethyl-dithieno[3,2-b:2',3'-d]thiophene-4,4-dioxide (DTTO) molecules into fibers results in the formation of a "biologically assisted" polymorphic form, hence the term bio-polymorph. Indeed, X-ray diffraction reveals that cell-grown DTTO fibers present a unique molecular packing leading to specific morphological, optical, and electrical properties. Monitoring the process of fiber formation in cells with time-resolved photoluminescence, it is established that cellular machinery is necessary for fiber production and a non-classical nucleation mechanism for their growth is postulated. These biomaterials may have disruptive applications in the stimulation and sense of living cells, but more crucially, the study of their genesis and properties broadens the understanding of life beyond the native components of cells.
Collapse
Affiliation(s)
- Ludovico Aloisio
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Matteo Moschetta
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Alex Boschi
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza S. Silvestro 12, Pisa, 56127, Italy
| | - Ariel García Fleitas
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Mattia Zangoli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Ilaria Venturino
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Vito Vurro
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Arianna Magni
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Raffaello Mazzaro
- Dipartimento di Fisica e Astronomia "Augusto Righi", Università di Bologna, Via C. Berti Pichat 6/2, Bologna, 40127, Italy
| | - Vittorio Morandi
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, 40129, Italy
| | - Andrea Candini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Cosimo D'Andrea
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Giuseppe Maria Paternò
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Massimo Gazzano
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Guglielmo Lanzani
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Francesca Di Maria
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| |
Collapse
|
18
|
Monti M, Scarel E, Hassanali A, Stener M, Marchesan S. Diverging conformations guide dipeptide self-assembly into crystals or hydrogels. Chem Commun (Camb) 2023; 59:10948-10951. [PMID: 37605851 DOI: 10.1039/d3cc02682e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The prediction of dipeptide assembly into crystals or gels is challenging. This work reveals the diverging conformational landscape that guides self-organization towards different outcomes. In silico and experimental data enabled deciphering of the electronic circular dichroism (ECD) spectra of self-assembling dipeptides to reveal folded or extended conformers as key players.
Collapse
Affiliation(s)
- M Monti
- Chem. Pharm. Sc. Dept., University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy.
| | - E Scarel
- Chem. Pharm. Sc. Dept., University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy.
| | - A Hassanali
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| | - M Stener
- Chem. Pharm. Sc. Dept., University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy.
| | - S Marchesan
- Chem. Pharm. Sc. Dept., University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy.
| |
Collapse
|
19
|
You H, Wang M, Wang S, Xu J, Hu S, Li T, Yu Z, Tang D, Gan N. Ultrasensitive and Specific Phage@DNAzyme Probe-Triggered Fluorescent Click Chemistry for On-Site Detection of Foodborne Pathogens Using a Smartphone. Anal Chem 2023. [PMID: 37471313 DOI: 10.1021/acs.analchem.3c00603] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Rapid, specific, and on-site detection of virulent foodborne pathogenic strains plays a key role in controlling food safety. In this work, an ultrasensitive and specific Phage@DNAzyme signal probe was designed to detect foodborne pathogens. The proposed sensing probe was composed of the selected phage and functionalized DNAzyme, which realized the specific recognition of target foodborne pathogens at the strain level and the efficient catalysis of copper(II) based azide-alkyne cycloaddition (CuAAC) click reaction with fluorescent signal, respectively. As a proof of concept, the virulent Escherichia coli O157:H7 (E. coli O157:H7) as the representative analyte was first enriched and purified from the complex food samples by a 4-mercaptophenylboronic acid-modified gold slide. Following, the Phage@DNAzyme probes were specifically combined with the captured E. coli O157: H7 and catalyzed the click reaction between 3-azido-7-hydroxycoumarin and 3-butyn-1-ol with the assistance of Cu(II) to generate a visual fluorescent signal. Finally, the corresponding fluorescent signals were measured by a smartphone to quantify the target concentrations. Under optimized conditions, the bioassay exhibited a wide linear range from 102 to 108 CFU/mL and the detection limit was 50 CFU/mL (S/N = 3). It was further extended to the detection of another foodborne pathogen Salmonella typhimurium with satisfying sensing performances. This work gives a new path for developing rapid, specific, and on-site detection methods for trace levels of pathogenic strains in foods.
Collapse
Affiliation(s)
- Hang You
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ming Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Shuai Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jie Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Shuhao Hu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Tianhua Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zhenzhong Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
20
|
Li J, Zhang A, Zhao A, Chen Z, Liang G, Liu H, Wu C. Weak acid-initiated slow release of Dexamethasone from hydrogel to treat orbital inflammation. Theranostics 2023; 13:4030-4041. [PMID: 37554273 PMCID: PMC10405854 DOI: 10.7150/thno.85627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Rationale: Orbital inflammation is a prevalent and prolonged ocular disease that poses a significant challenge to clinicians. Glucocorticoid Dexamethasone sodium phosphate (Dex) has demonstrated efficacy in the clinical treatment of nonspecific orbital inflammation. However, frequent administration is required due to the short half-life of Dex, which may lead to drug waste and adverse side effects. Methods: In this study, we co-assembled Dex with a weak acid responsive hydrogelator Py-Phe-Phe-Lys-Lys-OH (K) to obtain a novel supramolecular hydrogel Dex/K that could release Dex in a slow manner to treat orbital inflammation. The therapeutic effect of Gel Dex/K on orbital inflammation was verified by in vitro and in vivo experiments. Results: In vitro experiments indicated that co-assembly of Dex with K significantly increased mechanic strength of the hydrogel, enabling a continuous release of 40% of total Dex within 7 days. In vivo experiments further demonstrated that sustained release of Dex from Gel Dex/K could effectively alleviate the infiltration of inflammatory cells and the release of inflammatory factors in the orbit of mice, improving symptoms such as increased intraocular pressure and proptosis. Additionally, Gel Dex/K mitigated the degree of tissue fibrosis and fatty infiltration by reducing the development of local inflammation in the orbit. Conclusions: Our research results indicate that Gel Dex/K could more efficiently achieve responsive drug release in orbit, providing an innovative method for treating orbital inflammation.
Collapse
Affiliation(s)
- Jinjing Li
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Aichi Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Andi Zhao
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Zhaoxia Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
21
|
Zhou Y, Li Q, Wu Y, Li X, Zhou Y, Wang Z, Liang H, Ding F, Hong S, Steinmetz NF, Cai H. Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy. ACS NANO 2023; 17:8004-8025. [PMID: 37079378 DOI: 10.1021/acsnano.3c01452] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembly has emerged as an extensively used method for constructing biomaterials with sizes ranging from nanometers to micrometers. Peptides have been extensively investigated for self-assembly. They are widely applied owing to their desirable biocompatibility, biodegradability, and tunable architecture. The development of peptide-based nanoparticles often requires complex synthetic processes involving chemical modification and supramolecular self-assembly. Stimuli-responsive peptide nanoparticles, also termed "smart" nanoparticles, capable of conformational and chemical changes in response to stimuli, have emerged as a class of promising materials. These smart nanoparticles find a diverse range of biomedical applications, including drug delivery, diagnostics, and biosensors. Stimuli-responsive systems include external stimuli (such as light, temperature, ultrasound, and magnetic fields) and internal stimuli (such as pH, redox environment, salt concentration, and biomarkers), facilitating the generation of a library of self-assembled biomaterials for biomedical imaging and therapy. Thus, in this review, we mainly focus on peptide-based nanoparticles built by self-assembly strategy and systematically discuss their mechanisms in response to various stimuli. Furthermore, we summarize the diverse range of biomedical applications of peptide-based nanomaterials, including diagnosis and therapy, to demonstrate their potential for medical translation.
Collapse
Affiliation(s)
- Yang Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Ye Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Xinyu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ya Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Zhu Wang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Hui Liang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Nicole F Steinmetz
- Department of NanoEngineering, Department of Biongineering, Department of Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Center for Engineering in Cancer, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| |
Collapse
|
22
|
Sun Y, Lyu B, Yang C, He B, Zhang H, Wang X, Zhang Q, Dai W. An enzyme-responsive and transformable PD-L1 blocking peptide-photosensitizer conjugate enables efficient photothermal immunotherapy for breast cancer. Bioact Mater 2023; 22:47-59. [PMID: 36203955 PMCID: PMC9519467 DOI: 10.1016/j.bioactmat.2022.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 12/07/2022] Open
Abstract
Mild photothermal therapy combined with immune checkpoint blockade has received increasing attention for the treatment of advanced or metastatic cancers due to its good therapeutic efficacy. However, it remains a challenge to facilely integrate the two therapies and make it potential for clinical translation. This work designed a peptide-photosensitizer conjugate (PPC), which consisted of a PD-L1 antagonist peptide (CVRARTR), an MMP-2 specific cleavable sequence, a self-assembling motif, and the photosensitizer Purpurin 18. The single-component PPC can self-assemble into nanospheres which is suitable for intravenous injection. The PPC nanosphere is cleaved by MMP-2 when it accumulates in tumor sites, thereby initiating the cancer-specific release of the antagonist peptide. Simultaneously, the nanospheres gradually transform into co-assembled nanofibers, which promotes the retention of the remaining parts within the tumor. In vivo studies demonstrated that PPC nanospheres under laser irradiation promote the infiltration of cytotoxic T lymphocytes and maturation of DCs, which sensitize 4T1 tumor cells to immune checkpoint blockade therapy. Therefore, PPC nanospheres inhibit tumor growth efficiently both in situ and distally and blocked the formation of lung metastases. The present study provides a simple and efficient integrated strategy for breast cancer photoimmunotherapy. A peptide-photosensitizer conjugate (PPC) with self-assembled ability. Self-assembled PPC realized enzyme-responsive PD-L1 blocking peptide release. Shape transformation from nanospheres to co-assembled nanofibers. Efficient integrated strategy for breast cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Yanan Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bochen Lyu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chang Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| |
Collapse
|
23
|
Hamley IW. Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups. ACS APPLIED BIO MATERIALS 2023; 6:384-409. [PMID: 36735801 PMCID: PMC9945136 DOI: 10.1021/acsabm.2c01041] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The self-assembly and structural and functional properties of peptide conjugates containing bulky terminal aromatic substituents are reviewed with a particular focus on bioactivity. Terminal moieties include Fmoc [fluorenylmethyloxycarbonyl], naphthalene, pyrene, naproxen, diimides of naphthalene or pyrene, and others. These provide a driving force for self-assembly due to π-stacking and hydrophobic interactions, in addition to the hydrogen bonding, electrostatic, and other forces between short peptides. The balance of these interactions leads to a propensity to self-assembly, even for conjugates to single amino acids. The hybrid molecules often form hydrogels built from a network of β-sheet fibrils. The properties of these as biomaterials to support cell culture, or in the development of molecules that can assemble in cells (in response to cellular enzymes, or otherwise) with a range of fascinating bioactivities such as anticancer or antimicrobial activity, are highlighted. In addition, applications of hydrogels as slow-release drug delivery systems and in catalysis and other applications are discussed. The aromatic nature of the substituents also provides a diversity of interesting optoelectronic properties that have been demonstrated in the literature, and an overview of this is also provided. Also discussed are coassembly and enzyme-instructed self-assembly which enable precise tuning and (stimulus-responsive) functionalization of peptide nanostructures.
Collapse
|
24
|
Song Y, Zhang Z, Cao Y, Yu Z. Stimulus-Responsive Amino Acids Behind In Situ Assembled Bioactive Peptide Materials. Chembiochem 2023; 24:e202200497. [PMID: 36278304 DOI: 10.1002/cbic.202200497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/18/2022] [Indexed: 02/04/2023]
Abstract
In situ self-assembly of peptides into well-defined nanostructures represents one of versatile strategies for creation of bioactive materials within living cells with great potential in disease diagnosis and treatment. The intimate relationship between amino acid sequences and the assembling propensity of peptides has been thoroughly elucidated over the past few decades. This has inspired development of various controllable self-assembling peptide systems based on stimuli-responsive naturally occurring or non-canonical amino acids, including redox-, pH-, photo-, enzyme-responsive amino acids. This review attempts to summarize the recent progress achieved in manipulating in situ self-assembly of peptides by controllable reactions occurring to amino acids. We will highlight the systems containing non-canonical amino acids developed in our laboratory during the past few years, primarily including acid/enzyme-responsive 4-aminoproline, redox-responsive (seleno)methionine, and enzyme-responsive 2-nitroimidazolyl alanine. Utilization of the stimuli-responsive assembling systems in creation of bioactive materials will be specifically introduced to emphasize their advantages for addressing the concerns lying in disease theranostics. Eventually, we will provide the perspectives for the further development of stimulus-responsive amino acids and thereby demonstrating their great potential in development of next-generation biomaterials.
Collapse
Affiliation(s)
- Yanqiu Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Yawei Cao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China.,Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin, 300308, P. R. China
| |
Collapse
|
25
|
Zhang L, Li M, Wang M, Li L, Guo M, Ke Y, Zhou P, Wang W. Tailored Cross-β Assemblies Establish Peptide "Dominos" Structures for Anchoring Undruggable Pharmacophores. Angew Chem Int Ed Engl 2022; 61:e202212527. [PMID: 36102014 DOI: 10.1002/anie.202212527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 12/15/2022]
Abstract
β-sheets have the ability to hierarchically stack into assemblies, and much effort has been spent on designing different peptides to regulate their assembly behaviors. Although the progress is remarkable, it remains challenging to manipulate them in a controllable way for achieving both tailored structures and specific functions. In this study, we obtained bola-like peptides using de novo design and combinatorial chemical screening. By regulating the solvent-accessible surface area of the peptide chain, a series of assemblies with different tilt angles and active sites of the β-sheet were obtained, resembling collapsed dominos. The structure-activity relationship of the optimized peptide NQ40 system was established and its ability to target the PD-L1 was demonstrated. This study successfully established the structure-function relationship of β-sheets assemblies and has positive implications on the rational design of peptide assemblies that possess recognition abilities.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mingmei Guo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dongguan, 523803, P. R. China
| | - Peng Zhou
- College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, P. R. China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
26
|
Fasola E, Alboreggia G, Pieraccini S, Oliva F, Agharbaoui FE, Bollati M, Bertoni G, Recchia S, Marelli M, Piarulli U, Pellegrino S, Gazzola S. Conformational switch and multiple supramolecular structures of a newly identified self-assembling protein-mimetic peptide from Pseudomonas aeruginosa YeaZ protein. Front Chem 2022; 10:1038796. [PMID: 36583150 PMCID: PMC9792601 DOI: 10.3389/fchem.2022.1038796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Protein-mimetic peptides (PMPs) are shorter sequences of self-assembling proteins, that represent remarkable building blocks for the generation of bioinspired functional supramolecular structures with multiple applications. The identification of novel aminoacidic sequences that permit the access to valuable biocompatible materials is an attractive area of research. In this work, in silico analysis of the Pseudomonas aeruginosa YeaZ protein (PaYeaZ) led to the identification of a tetradecapeptide that represents the shortest sequence responsible for the YeaZ-YeaZ dimer formation. Based on its sequence, an innovative 20-meric peptide, called PMP-2, was designed, synthesized, and characterized in terms of secondary structure and self-assembly properties. PMP-2 conserves a helical character and self-assembles into helical nanofibers in non-polar solvents (DMSO and trifluoroethanol), as well as in dilute (0.5 mM) aqueous solutions. In contrast, at higher concentrations (>2 mM) in water, a conformational transition from α-helix to β-sheet occurs, which is accompanied by the Protein-mimetic peptide aggregation into 2D-sheets and formation supramolecular gel in aqueous environment. Our findings reveal a newly identified Protein-mimetic peptide that could turn as a promising candidate for future material applications.
Collapse
Affiliation(s)
- Elettra Fasola
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Giulia Alboreggia
- Science and High Technology Department, University of Insubria, Como, Italy
| | | | | | | | - Michela Bollati
- CNR and Department of Biosciences, Institute of Biophysics, University of Milan, Milan, Italy
| | | | - Sandro Recchia
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Marcello Marelli
- CNR-SCITEC—Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Milan, Italy
| | - Umberto Piarulli
- Science and High Technology Department, University of Insubria, Como, Italy,*Correspondence: Umberto Piarulli, ; Silvia Gazzola,
| | - Sara Pellegrino
- Pharmaceutical Science Department, University of Milan, Milan, Italy
| | - Silvia Gazzola
- Science and High Technology Department, University of Insubria, Como, Italy,*Correspondence: Umberto Piarulli, ; Silvia Gazzola,
| |
Collapse
|
27
|
Bagchi D, Maity A, De SK, Chakraborty A. Metal-Ion-Induced Evolution of Phenylalanine Self-Assembly: Structural Polymorphism of Novel Metastable Intermediates. J Phys Chem Lett 2022; 13:10409-10417. [PMID: 36322139 DOI: 10.1021/acs.jpclett.2c02882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The self-assembly of aromatic amino acids has been widely studied due to their ability to form well-defined amyloid-like fibrillar structures. Herein, for the first time, we report the existence of different metastable intermediate states of diverse morphologies, for example, droplets, spheres, vesicles, flowers, and toroids, that are sequentially formed in aqueous medium during the self-assembly process of phenylalanine in the presence of different divalent (Zn2+, Cd2+, and Hg2+) and trivalent (Al3+, Ga3+, and In3+) metal ions having low pKa values. Due to metal ion-amino acid coordination and strong hydrophobic interaction induced by these metal ions, spherical aggregates are obtained at the initial stage of the structural evolution and further transformed into other intermediate states. Our work may facilitate understanding of the role of metal ions in the amino acid self-assembly process and broaden future applications of the obtained nanostructures in drug delivery, tissue engineering, bioimaging, biocatalysis, and other fields.
Collapse
Affiliation(s)
- Debanjan Bagchi
- Indian Institute of Technology Indore, Department of Chemistry, Indore, 453552 Madhya Pradesh, India
| | - Avijit Maity
- Indian Institute of Technology Indore, Department of Chemistry, Indore, 453552 Madhya Pradesh, India
| | - Soumya Kanti De
- Indian Institute of Technology Indore, Department of Chemistry, Indore, 453552 Madhya Pradesh, India
| | - Anjan Chakraborty
- Indian Institute of Technology Indore, Department of Chemistry, Indore, 453552 Madhya Pradesh, India
| |
Collapse
|
28
|
Yang X, Wu B, Zhou J, Lu H, Zhang H, Huang F, Wang H. Controlling Intracellular Enzymatic Self-Assembly of Peptide by Host-Guest Complexation for Programming Cancer Cell Death. NANO LETTERS 2022; 22:7588-7596. [PMID: 35925772 DOI: 10.1021/acs.nanolett.2c02612] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlling the enzymatic reaction of macromolecules in living systems plays an essential role in determining the biological functions, which remains challenging in the synthetic system. This work shows that host-guest complexation could be an efficient strategy to tune the enzymatic self-assembly of the peptide. The formed host-guest complexation prevents the enzymatic kinetics of peptide assemblies on the cell surface and promotes cellular uptake of assemblies. For uptake inside cells, the host-guest complex undergoes dissociation in the acidic lysosome, and the released peptide further self-assembles inside the mitochondria. Accumulating assemblies at mitochondria induce the ferroptosis of cancer cells, resulting in cancer cell death in vitro and the tumor-bearing mice model. As the first example of using host-guest complexation to modulate the kinetics of enzymatic self-assembly, this work provides a general method to control enzymatic self-assembly in living cells for selective programming cancer cell death.
Collapse
Affiliation(s)
- Xuejiao Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Department of Chemistry, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Bihan Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Department of Chemistry, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Honglei Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Department of Chemistry, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Hongyue Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Department of Chemistry, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Department of Chemistry, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
29
|
Wang T, Gao Z, Zhang Y, Hong Y, Tang Y, Shan K, Kong X, Wang Z, Shi Y, Ding D. A supramolecular self-assembled nanomaterial for synergistic therapy of immunosuppressive tumor. J Control Release 2022; 351:272-283. [PMID: 36116581 DOI: 10.1016/j.jconrel.2022.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
Abstract
Triple negative breast cancer (TNBC) is an immunosuppressive "cold" tumor that lacks immune cell infiltration and activation, resulting in a poor response to immune checkpoint blockade (ICB) therapies. In addition, TNBC is poorly responsive to targeted therapies due to the absence of efficient molecular targets. A strategy that can block molecular signal transduction, stimulate immunogenicity, and activate the immune response is a promising approach to achieve ideal clinical benefit. Herein, we designed and synthesized an aggregation-induced emission luminogen (AIEgen)-conjugated self-assembling peptide that targets epidermal growth factor receptor (EGFR), named TPA-FFG-LA. TPA-FFG-LA peptides form nanoassemblies on the surface of EGFR-positive TNBC cells and are internalized into cells through endocytosis, which inhibit EGFR signaling transduction and provoke lysosomal membrane permeabilization (LMP). Upon light irradiation, the aggregated AIEgens produce massive reactive oxygen species (ROS) to exacerbate LMP and trigger immunogenic cell death (ICD), resulting in elimination of residual EGFR-negative tumor cells and exerting long-term antitumor effects. The in vitro and in vivo experiments verified that TPA-FFG-LA nanoassemblies suppress tumor growth, provoke immune cell activation and infiltration, and cause EGFR degradation and LMP. These results suggest that the combination of supramolecular assembly induced molecular targeting effects and lysosome dysfunction with ICD-stimulated immune activation is a plausible strategy for the efficient therapy of immunosuppressive TNBC.
Collapse
Affiliation(s)
- Tianjiao Wang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufan Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Youhong Tang
- Australia-China Joint Centre for Personal Health Technologies, Medical Device Research Institute, Flinders University, South Australia 5042, Australia
| | - Ke Shan
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan 250353, China
| | - Xianglong Kong
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan 250353, China
| | - Zhiming Wang
- AIE Institute, Center for Aggregation-Induced Emission, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yang Shi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
30
|
Zhang L, Bo R, Wu Y, Li L, Zhu Z, Ma AH, Xiao W, Huang Y, Rojalin T, Yin X, Mao C, Wang F, Wang Y, Zhang H, Low KE, Lee K, Ajena Y, Jing D, Zhang D, Baehr CM, Liu R, Wang L, Li Y, Lam KS. Programmable Bispecific Nano-immunoengager That Captures T Cells and Reprograms Tumor Microenvironment. NANO LETTERS 2022; 22:6866-6876. [PMID: 35926215 PMCID: PMC9479133 DOI: 10.1021/acs.nanolett.2c00582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Immune checkpoint blockade (ICB) therapy has revolutionized clinical oncology. However, the efficacy of ICB therapy is limited by the ineffective infiltration of T effector (Teff) cells to tumors and the immunosuppressive tumor microenvironment (TME). Here, we report a programmable tumor cells/Teff cells bispecific nano-immunoengager (NIE) that can circumvent these limitations to improve ICB therapy. The peptidic nanoparticles (NIE-NPs) bind tumor cell surface α3β1 integrin and undergo in situ transformation into nanofibrillar network nanofibers (NIE-NFs). The prolonged retained nanofibrillar network at the TME captures Teff cells via the activatable α4β1 integrin ligand and allows sustained release of resiquimod for immunomodulation. This bispecific NIE eliminates syngeneic 4T1 breast cancer and Lewis lung cancer models in mice, when given together with anti-PD-1 antibody. The in vivo structural transformation-based supramolecular bispecific NIE represents an innovative class of programmable receptor-mediated targeted immunotherapeutics to greatly enhance ICB therapy against cancers.
Collapse
Affiliation(s)
- Lu Zhang
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruonan Bo
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Yi Wu
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Longmeng Li
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Zheng Zhu
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Ai-Hong Ma
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Wenwu Xiao
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Yanyu Huang
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Tatu Rojalin
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Xingbin Yin
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Chunping Mao
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fengyi Wang
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yongheng Wang
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Hongyong Zhang
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Kelmen E. Low
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Kiana Lee
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Yousif Ajena
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Di Jing
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Dalin Zhang
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Christopher M. Baehr
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Ruiwu Liu
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Lei Wang
- CAS
Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical
Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuanpei Li
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
| | - Kit S. Lam
- Department
of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California
Davis, Sacramento, California 95817, United States
- Division
of Hematology and Oncology, Department of Internal Medicine, School
of Medicine, University of California Davis, Sacramento, California 95817, United States
| |
Collapse
|
31
|
Zhang W, Wang H, Wang T, Ding D, Hou J, Shi Y, Huang Y. A Supramolecular Self-Assembling Nanoagent by Inducing Intracellular Aggregation of PSMA for Prostate Cancer Molecularly Targeted Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203325. [PMID: 35986691 DOI: 10.1002/smll.202203325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Prostate cancer (PCa) with prostate-specific membrane antigen (PSMA)-specific high expression is well suited for molecularly targeted theranostics. PSMA expression correlates with the malignancy of PCa, and its dimeric form can promote tumor progression by exerting enzymatic activity to activate downstream signal transduction. However, almost no studies have shown that arresting the procancer signaling of the PSMA receptors themselves can cause tumor cell death. Meanwhile, supramolecular self-assembling peptides are widely used to design anticancer agents due to their unique and excellent properties. Here, a PSMA-targeting supramolecular self-assembling nanotheranostic agent, DBT-2FFGACUPA, which actively targets PSMA receptors on PCa cell membranes and induces them to enter the cell and form large aggregates, is developed. This process not only selectively images PSMA-positive tumor cells but also suppresses the downstream procancer signals of PSMA, causing tumor cell death. This work provides an alternative approach and an advanced agent for molecularly targeted theranostics options in PCa that can induce tumor cell death without relying on any reported anticancer drugs.
Collapse
Affiliation(s)
- Weijie Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - He Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Tianjiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jianquan Hou
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215006, P. R. China
| | - Yang Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
32
|
Gao Y, Li Y, Cao H, Jia H, Wang D, Ren C, Wang Z, Yang C, Liu J. Hypertoxic self-assembled peptide with dual functions of glutathione depletion and biosynthesis inhibition for selective tumor ferroptosis and pyroptosis. J Nanobiotechnology 2022; 20:390. [PMID: 36045424 PMCID: PMC9429723 DOI: 10.1186/s12951-022-01604-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022] Open
Abstract
Abundant glutathione (GSH) is a biological characteristic of lots of tumor cells. A growing number of studies are utilizing GSH depletion as an effective adjuvant therapy for tumor. However, due to the compensatory effect of intracellular GSH biosynthesis, GSH is hard to be completely exhausted and the strategy of GSH depletion remains challenging. Herein, we report an l-buthionine-sulfoximine (BSO)-based hypertoxic self-assembled peptide derivative (NSBSO) with dual functions of GSH depletion and biosynthesis inhibition for selective tumor ferroptosis and pyroptosis. The NSBSO consists of a hydrophobic self-assembled peptide motif and a hydrophilic peptide derivative containing BSO that inhibits the synthesis of GSH. NSBSO was cleaved by GSH and thus experienced a morphological transformation from nanoparticles to nanofibers. NSBSO showed GSH-dependent cytotoxicity and depletion of intracellular GSH. In 4T1 cells with medium GSH level, it depleted intracellular GSH and inactivated GSH peroxidase 4 (GPX4) and thus induced efficient ferroptosis. While in B16 cells with high GSH level, it exhausted GSH and triggered indirect increase of intracellular ROS and activation of Caspase 3 and gasdermin E, resulting in severe pyroptosis. These findings demonstrate that GSH depletion- and biosynthesis inhibition-induced ferroptosis and pyroptosis strategy would provide insights in designing GSH-exhausted medicines.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yun Li
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Haixue Jia
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Dianyu Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Zhongyan Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
33
|
Xu Y, Wang H, Qiao Z. Precise Control of Self‐Assembly in Vivo Based on Polymer‐Peptide Conjugates. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yin‐Sheng Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| | - Zeng‐Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
34
|
Wang J, Wang X, Yang K, Hu S, Wang W. Self-Assembly of Small Organic Molecules into Luminophores for Cancer Theranostic Applications. BIOSENSORS 2022; 12:683. [PMID: 36140068 PMCID: PMC9496225 DOI: 10.3390/bios12090683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Self-assembled biomaterials have been widely explored for real-time fluorescence imaging, imaging-guided surgery, and targeted therapy for tumors, etc. In particular, small molecule-based self-assembly has been established as a reliable strategy for cancer theranostics due to the merits of small-sized molecules, multiple functions, and ease of synthesis and modification. In this review, we first briefly introduce the supramolecular chemistry of small organic molecules in cancer theranostics. Then, we summarize and discuss advanced small molecule-based self-assembly for cancer theranostics based on three types, including peptides, amphiphilic molecules, and aggregation-induced emission luminogens. Finally, we conclude with a perspective on future developments of small molecule-based self-assembled biomaterials integrating diagnosis and therapy for biomedical applications. These applications highlight the opportunities arising from the rational design of small organic molecules with self-assembly properties for precision medicine.
Collapse
Affiliation(s)
- Jing Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Xueliang Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Sijun Hu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Wanhe Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| |
Collapse
|
35
|
Synthesis, Self-Assembly, and Cell Responses of Aromatic IKVAV Peptide Amphiphiles. Molecules 2022; 27:molecules27134115. [PMID: 35807362 PMCID: PMC9267992 DOI: 10.3390/molecules27134115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Synthetic bioactive aromatic peptide amphiphiles have been recognized as key elements of emerging biomedical strategies due to their biocompatibility, design flexibility, and functionality. Inspired by natural proteins, we synthesized two supramolecular materials of phenyl-capped Ile-Lys-Val-Ala-Val (Ben-IKVAV) and perfluorophenyl-capped Ile-Lys-Val-Ala-Val (PFB-IKVAV). We employed UV-vis absorption, fluorescence, circular dichroism, and Fourier-transform infrared spectroscopy to examine the driving force in the self-assembly of the newly discovered materials. It was found that both compounds exhibited ordered π-π interactions and secondary structures, especially PFB-IKVAV. The cytotoxicity of human mesenchymal stem cells (hMSCs) and cell differentiation studies was also performed. In addition, the immunofluorescent staining for neuronal-specific markers of MAP2 was 4.6 times (neural induction medium in the presence of PFB-IKVAV) that of the neural induction medium (control) on day 7. From analyzing the expression of neuronal-specific markers in hMSCs, it can be concluded that PFB-IKVAV may be a potential supramolecular biomaterial for biomedical applications.
Collapse
|
36
|
Yang F, Zhang D, Zhou Q, Li M, Xie C, Li S, Wang X, Wang W, Guo Y, Xiao Q, Wang Y, Gao L. Peptides-modified polystyrene-based polymers as high-performance substrates for the growth and propagation of human embryonic stem cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Grebenko AK, Motovilov KA, Bubis AV, Nasibulin AG. Gentle Patterning Approaches toward Compatibility with Bio-Organic Materials and Their Environmental Aspects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200476. [PMID: 35315215 DOI: 10.1002/smll.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Advances in material science, bioelectronic, and implantable medicine combined with recent requests for eco-friendly materials and technologies inevitably formulate new challenges for nano- and micropatterning techniques. Overall, the importance of creating micro- and nanostructures is motivated by a large manifold of fundamental and applied properties accessible only at the nanoscale. Lithography is a crucial family of fabrication methods to create prototypes and produce devices on an industrial scale. The pure trend in the miniaturization of critical electronic semiconducting components has been recently enhanced by implementing bio-organic systems in electronics. So far, significant efforts have been made to find novel lithographic approaches and develop old ones to reach compatibility with delicate bio-organic systems and minimize the impact on the environment. Herein, such delicate materials and sophisticated patterning techniques are briefly reviewed.
Collapse
Affiliation(s)
- Artem K Grebenko
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, Dolgoprudny, 141701, Russia
| | - Konstantin A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, Dolgoprudny, 141701, Russia
| | - Anton V Bubis
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Institute of Solid State Physics, Russian Academy of Sciences, 2 Academician Ossipyan str., Chernogolovka, 142432, Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| |
Collapse
|
38
|
Criado-Gonzalez M, Mecerreyes D. Thioether-based ROS responsive polymers for biomedical applications. J Mater Chem B 2022; 10:7206-7221. [PMID: 35611805 DOI: 10.1039/d2tb00615d] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) play a key role in several biological functions of living organisms such as regulation of cell signalling, production of some hormones, modulation of protein function or mediation of inflammation. In this regard, ROS responsive polymers are ideal candidates for the development of stimuli-responsive biomaterials for target therapies. Among different ROS-responsive polymers, those containing thioether groups are widely investigated in the biomedical field due to their hydrophobic to hydrophilic phase transition under oxidative conditions. This feature makes them able to self-assemble in aqueous solutions forming micellar-type nanoparticles or hydrogels to be mainly used as drug carriers for local therapies in damaged body areas characterized by high ROS production. This review article collects the main findings about the synthesis of thioether-based ROS responsive polymers and polypeptides, their self-assembly properties and ROS responsive behaviour for use as injectable nanoparticles or hydrogels. Afterward, the foremost applications of the thioether-based ROS responsive nanoparticles and hydrogels in the biomedical field, where cancer therapies are a key objective, will be discussed.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain. .,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
39
|
Wang T, Wang J, Jiang H, Ni M, Zou Y, Chen Y, Wu T, Ding D, Xu H, Li X. Targeted regulation of tumor microenvironment through the inhibition of MDSCs by curcumin loaded self-assembled nano-filaments. Mater Today Bio 2022; 15:100304. [PMID: 35711288 PMCID: PMC9194645 DOI: 10.1016/j.mtbio.2022.100304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 10/28/2022]
|
40
|
Wang T, Ménard-Moyon C, Bianco A. Self-assembly of amphiphilic amino acid derivatives for biomedical applications. Chem Soc Rev 2022; 51:3535-3560. [PMID: 35412536 DOI: 10.1039/d1cs01064f] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amino acids are one of the simplest biomolecules and they play an essential role in many biological processes. They have been extensively used as building blocks for the synthesis of functional nanomaterials, thanks to their self-assembly capacity. In particular, amphiphilic amino acid derivatives can be designed to enrich the diversity of amino acid-based building blocks, endowing them with specific properties and/or promoting self-assembly through hydrophobic interactions, hydrogen bonding, and/or π-stacking. In this review, we focus on the design of various amphiphilic amino acid derivatives able to self-assemble into different types of nanostructures that were exploited for biomedical applications, thanks to their excellent biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Tengfei Wang
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| |
Collapse
|
41
|
Wang B, Wu C, He S, Wang Y, Wang D, Tao H, Wang C, Pang X, Li F, Yuan Y, Gross ER, Liang G, Zhang Y. V1-Cal hydrogelation enhances its effects on ventricular remodeling reduction and cardiac function improvement post myocardial infarction. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 433:134450. [PMID: 36338580 PMCID: PMC9634955 DOI: 10.1016/j.cej.2021.134450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Myocardial infarction (MI) is a major cause of disability and mortality worldwide. A cell permeable peptide V1-Cal has shown remarkable therapeutic effects on ML However, using V1-Cal to improve long-term cardiac function after MI is presently limited by its short half-life. Herein, we co-assembled V1-Cal with a well-known hydrogelator Nap-Phe-Phe-Tyr (NapFFY) to obtain a new supramolecular hydrogel V1-Cal/NapFFY. We found that the hydrogel could significantly enhance the therapeutic effects of V1-Cal on ventricular remodeling reduction and cardiac function improvement in a myocardial infarction rat model. In vitro experiments indicated that co-assembly of V1-Cal with NapFFY significantly increased mechanic strength of the hydrogel, enabling a sustained release of V1-Cal for more than two weeks. In vivo experiments supported that sustained release of V1-Cal from V1-Cal/NapFFY hydrogel could effectively decrease the expression and activation of TRPV1, reduce apoptosis and the release of inflammatory factors in a MI rat model. In particular, V1-Cal/NapFFY hydrogel significantly decreased infarct size and fibrosis, while improved cardiac function 28 days post MI. We anticipate that V1-Cal/NapFFY hydrogel could be used clinically to treat MI in the near future.
Collapse
Affiliation(s)
- Bin Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| | - Chengfan Wu
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China
| | - Shufang He
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| | - Yaguang Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| | - Di Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| | - Hui Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| | - Chenchen Wang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China
| | - Xiaoxi Pang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| | - Fei Li
- Department of Nuclear Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| | - Yue Yuan
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China
| | - Eric R. Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China
- State Key Laboratory of Bioelectronics School of Biological Sciences and Medical Engineering Southeast University, 2 Sipailou Road, Nanjing 210096, PR China
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| |
Collapse
|
42
|
Abstract
Supramolecular assemblies are essential components of living organisms. Cellular scaffolds, such as the cytoskeleton or the cell membrane, are formed via secondary interactions between proteins or lipids and direct biological processes such as metabolism, proliferation and transport. Inspired by nature’s evolution of function through structure formation, a range of synthetic nanomaterials has been developed in the past decade, with the goal of creating non-natural supramolecular assemblies inside living mammalian cells. Given the intricacy of biological pathways and the compartmentalization of the cell, different strategies can be employed to control the assembly formation within the highly crowded, dynamic cellular environment. In this Review, we highlight emerging molecular design concepts aimed at creating precursors that respond to endogenous stimuli to build nanostructures within the cell. We describe the underlying reaction mechanisms that can provide spatial and temporal control over the subcellular formation of synthetic nanostructures. Showcasing recent advances in the development of bioresponsive nanomaterials for intracellular self-assembly, we also discuss their impact on cellular function and the challenges associated with establishing structure–bioactivity relationships, as well as their relevance for the discovery of novel drugs and imaging agents, to address the shortfall of current solutions to pressing health issues. ![]()
Creating artificial nanostructures inside living cells requires the careful design of molecules that can transform into active monomers within a complex cellular environment. This Review explores the recent development of bioresponsive precursors for the controlled formation of intracellular supramolecular assemblies.
Collapse
|
43
|
Bai Q, Teng L, Zhang X, Dong C. Multifunctional Single-Component Polypeptide Hydrogels: The Gelation Mechanism, Superior Biocompatibility, High Performance Hemostasis, and Scarless Wound Healing. Adv Healthc Mater 2022; 11:e2101809. [PMID: 34865324 DOI: 10.1002/adhm.202101809] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Polymeric hydrogels have been increasingly studied for wound sealants, adhesives, hemostats, and dressings, however, multi-component gelation, adhesion-causing tissue damage, inefficient hemostasis, and skin scarring in wound healing hamper their advances. So it is urgent to develop multifunctional single-component polymeric hydrogels with benign tissue detachment, high performance hemostasis, and scarless wound healing attributes. Herein, a dopamine-modified poly(l-glutamate) hydrogel at an ultralow concentration of 0.1 wt% is serendipitously constructed by physical treatments, in which a gelation mechanism is disclosed via oxidative catechol-crosslinking and sequential dicatechol-carboxyl hydrogen-bonding interactions. The covalent/H-bonding co-crosslinked and highly negative-charged networks enable the polypeptide hydrogels thermo-, salt-, urea-resistant, self-healing, injectable, and adhesive yet detachable. In vitro and in vivo assays demonstrate they have superior biocompatibility with ≈0.5% hemolysis and negligible inflammation. The polypeptide/graphene oxide hybrid hydrogel performs fast and efficient hemostasis of 12 s and 1.4% blood loss, surpassing some hydrogels and commercial counterparts. Remarkably, the polypeptide hydrogels achieve scarless and full wound healing and regenerate thick dermis with some embedded hair follicles within 14 days, presenting superior full-thickness wound healing and skin scar-preventing capabilities. This work provides a simple and practicable method to construct multifunctional polypeptide hemostatic and healing hydrogels that overcome some above-mentioned hurdles.
Collapse
Affiliation(s)
- Qian Bai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lin Teng
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chang‐Ming Dong
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
44
|
Coste M, Suárez-Picado E, Ulrich S. Hierarchical self-assembly of aromatic peptide conjugates into supramolecular polymers: it takes two to tango. Chem Sci 2022; 13:909-933. [PMID: 35211257 PMCID: PMC8790784 DOI: 10.1039/d1sc05589e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
Supramolecular polymers are self-assembled materials displaying adaptive and responsive "life-like" behaviour which are often made of aromatic compounds capable of engaging in π-π interactions to form larger assemblies. Major advances have been made recently in controlling their mode of self-assembly, from thermodynamically-controlled isodesmic to kinetically-controlled living polymerization. Dynamic covalent chemistry has been recently implemented to generate dynamic covalent polymers which can be seen as dynamic analogues of biomacromolecules. On the other hand, peptides are readily-available and structurally-rich building blocks that can lead to secondary structures or specific functions. In this context, the past decade has seen intense research activity in studying the behaviour of aromatic-peptide conjugates through supramolecular and/or dynamic covalent chemistries. Herein, we review those impressive key achievements showcasing how aromatic- and peptide-based self-assemblies can be combined using dynamic covalent and/or supramolecular chemistry, and what it brings in terms of the structure, self-assembly pathways, and function of supramolecular and dynamic covalent polymers.
Collapse
Affiliation(s)
- Maëva Coste
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Esteban Suárez-Picado
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| |
Collapse
|
45
|
Wang J, Hu L, Zhang H, Fang Y, Wang T, Wang H. Intracellular Condensates of Oligopeptide for Targeting Lysosome and Addressing Multiple Drug Resistance of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104704. [PMID: 34632634 DOI: 10.1002/adma.202104704] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Biomolecular condensates have been demonstrated as a ubiquitous phenomenon in biological systems and play a crucial role in controlling cellular functions. However, the spatiotemporal construction of artificial biomolecular condensates with functions remains challenging and has been less explored. Herein, a general approach is reported to construct biomolecular condensates (e.g., hydrogel) in the lysosome of living cells for cancer therapy and address multiple drug resistance induced by lysosome sequestration. Aromatic-motif-appended pH-responsive hexapeptide (LTP) derived from natural insulin can be uptaken by cancer cells mainly through caveolae-dependent endocytosis, ensuring the proton-triggered phase transformation (solution to hydrogel) of LTP inside the lysosome specifically. Lysosomal hydrogelation further leads to enlargement of the lysosome in cancer cells and increases the permeability of the lysosome, resulting in cancer cell death. Importantly, lysosomal assemblies can significantly improve the efficiency of current chemotherapy drugs toward multidrug resistance (MDR) cells in vitro and in xenograft tumor models. As an example of functional artificial condensates in lysosomes, this work provides a new strategy for controlling functional condensates formation precisely in the organelles of living cells and addressing MDR in cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Liangbo Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| | - Hongyue Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| | - Yu Fang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| | - Tingliang Wang
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| |
Collapse
|
46
|
Ji S, Li J, Duan X, Zhang J, Zhang Y, Song M, Li S, Chen H, Ding D. Targeted Enrichment of Enzyme‐Instructed Assemblies in Cancer Cell Lysosomes Turns Immunologically Cold Tumors Hot. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shenglu Ji
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
- The Key Laboratory of Biomedical Materials School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 China
| | - Jun Li
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Xingchen Duan
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Jingtian Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Yufan Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Mengqing Song
- The Key Laboratory of Biomedical Materials School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 China
| | - Songge Li
- The Key Laboratory of Biomedical Materials School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 China
| | - Hongli Chen
- The Key Laboratory of Biomedical Materials School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 China
| | - Dan Ding
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| |
Collapse
|
47
|
Das S, Das D. Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications. Front Chem 2021; 9:770102. [PMID: 34869218 PMCID: PMC8635208 DOI: 10.3389/fchem.2021.770102] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Peptide-based hydrogels have captivated remarkable attention in recent times and serve as an excellent platform for biomedical applications owing to the impressive amalgamation of unique properties such as biocompatibility, biodegradability, easily tunable hydrophilicity/hydrophobicity, modular incorporation of stimuli sensitivity and other functionalities, adjustable mechanical stiffness/rigidity and close mimicry to biological molecules. Putting all these on the same plate offers smart soft materials that can be used for tissue engineering, drug delivery, 3D bioprinting, wound healing to name a few. A plethora of work has been accomplished and a significant progress has been realized using these peptide-based platforms. However, designing hydrogelators with the desired functionalities and their self-assembled nanostructures is still highly serendipitous in nature and thus a roadmap providing guidelines toward designing and preparing these soft-materials and applying them for a desired goal is a pressing need of the hour. This review aims to provide a concise outline for that purpose and the design principles of peptide-based hydrogels along with their potential for biomedical applications are discussed with the help of selected recent reports.
Collapse
Affiliation(s)
- Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
48
|
Sun X, Dong Y, Liu Y, Song N, Li F, Yang D. Self-assembly of artificial architectures in living cells — design and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1091-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Guo RC, Zhang XH, Fan PS, Song BL, Li ZX, Duan ZY, Qiao ZY, Wang H. In Vivo Self-Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization. Angew Chem Int Ed Engl 2021; 60:25128-25134. [PMID: 34549872 DOI: 10.1002/anie.202111839] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/23/2022]
Abstract
Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self-assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self-assembles in situ, which induces the aggregation of ALP and the protein-lipid phase separation on cell membrane. Consequently, KYp internalization is 2-fold enhanced compared to non-responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self-assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.
Collapse
Affiliation(s)
- Ruo-Chen Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.,School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrongdao, Tianjin, 300130, China
| | - Xue-Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Peng-Sheng Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Zhi-Xiang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Zhong-Yu Duan
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrongdao, Tianjin, 300130, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
50
|
Boas D, Reches M. A Novel Copper-Binding Peptide That Self-Assembles Into a Transparent Antibacterial and Antiviral Coating. Front Bioeng Biotechnol 2021; 9:736679. [PMID: 34746103 PMCID: PMC8564293 DOI: 10.3389/fbioe.2021.736679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
The health, economy, and quality of life all over the world are greatly affected by bacterial infections and viral outbreaks. Bacterial cells and viruses, such as influenza, can spread through contaminated surfaces and fomites. Therefore, a possible way to fight these pathogens is to utilize antibacterial and antiviral coatings, which reduce their numbers on contaminated surfaces. Here, we present a novel short peptide that can self-assemble, adhere to various surfaces, and bind different metal ions such as copper, which provides the surface with antibacterial and antiviral properties. For these functions, the peptide incorporates the amino acid 3,4-dihydroxyphenylalanine (DOPA), which provides the peptide with adhesive capabilities; a diphenylalanine motif that induces the self-assembly of the peptide; the metal-binding hexahistidine sequence. Our results demonstrate that the coating, which releases monovalent cuprous ions and hydrogen peroxide, provides the surfaces with significant antibacterial and antiviral properties. Additionally, the coating remains transparent, which is favorable for many objects and especially for display screens.
Collapse
Affiliation(s)
| | - Meital Reches
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|