1
|
Hota PK, Panda S, Phan H, Kim B, Siegler MA, Karlin KD. Dioxygenase Chemistry in Nucleophilic Aldehyde Deformylations Utilizing Dicopper O 2-Derived Peroxide Complexes. J Am Chem Soc 2024; 146:23854-23871. [PMID: 39141923 PMCID: PMC11472664 DOI: 10.1021/jacs.4c06243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The chemistry of copper-dioxygen complexes is relevant to copper enzymes in biology as well as in (ligand)Cu-O2 (or Cu2-O2) species utilized in oxidative transformations. For overall energy considerations, as applicable in chemical synthesis, it is beneficial to have an appropriate atom economy; both O-atoms of O2(g) are transferred to the product(s). However, examples of such dioxygenase-type chemistry are extremely rare or not well documented. Herein, we report on nucleophilic oxidative aldehyde deformylation reactivity by the peroxo-dicopper(II) species [Cu2II(BPMPO-)(O22-)]1+ {BPMPO-H = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} and [Cu2II(XYLO-)(O22-)]1+ (XYLO- = a BPMPO- analogue possessing bis(2-{2-pyridyl}ethyl)amine chelating arms). Their dicopper(I) precursors are dioxygenase catalysts. The O2(g)-derived peroxo-dicopper(II) intermediates react rapidly with aldehydes like 2-phenylpropionaldehyde (2-PPA) and cyclohexanecarboxaldehyde (CCA) in 2-methyltetrahydrofuran at -90 °C. Warming to room temperature (RT) followed by workup results in good yields of formate (HC(O)O-) along with ketones (acetophenone or cyclohexanone). Mechanistic investigation shows that [Cu2II(BPMPO-)(O22-)]1+ species initially reacts reversibly with the aldehydes to form detectable dicopper(II) peroxyhemiacetal intermediates, for which optical titrations provide the Keq (at -90 °C) of 73.6 × 102 M-1 (2-PPA) and 10.4 × 102 M-1 (CCA). In the reaction of [Cu2II(XYLO-)(O22-)]1+ with 2-PPA, product complexes characterized by single-crystal X-ray crystallography are the anticipated dicopper(I) complex, [Cu2I(XYLO-)]1+ plus a mixed-valent Cu(I)Cu(II)-formate species. Formate was further identified and confirmed by 1H NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) analysis. Using 18O2(g)-isotope labeling the reaction produced a high yield of 18-O incorporated acetophenone as well as formate. The overall results signify that true dioxygenase reactions have occurred, supported by a thorough mechanistic investigation.
Collapse
Affiliation(s)
- Pradip Kumar Hota
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hai Phan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Bohee Kim
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Doyle LM, Bienenmann RLM, Gericke R, Xu S, Farquhar ER, Que L, McDonald AR. Preparation and characterization of Mn IIMn III complexes with relevance to class Ib ribonucleotide reductases. J Inorg Biochem 2024; 257:112583. [PMID: 38733704 DOI: 10.1016/j.jinorgbio.2024.112583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
The Mn2 complex [MnII2(TPDP)(O2CPh)2](BPh4) (1, TPDP = 1,3-bis(bis(pyridin-2-ylmethyl)amino)propan-2-ol, Ph =phenyl) was prepared and subsequently characterized via single-crystal X-ray diffraction, X-ray absorption, electronic absorption, and infrared spectroscopies, and mass spectrometry. 1 was prepared in order to explore its properties as a structural and functional mimic of class Ib ribonucleotide reductases (RNRs). 1 reacted with superoxide anion (O2•-) to generate a peroxido-MnIIMnIII complex, 2. The electronic absorption and electron paramagnetic resonance (EPR) spectra of 2 were similar to previously published peroxido-MnIIMnIII species. Furthermore, X-ray near edge absorption structure (XANES) studies indicated the conversion of a MnII2 core in 1 to a MnIIMnIII state in 2. Treatment of 2 with para-toluenesulfonic acid (p-TsOH) resulted in the conversion to a new MnIIMnIII species, 3, rather than causing O-O bond scission, as previously encountered. 3 was characterized using electronic absorption, EPR, and X-ray absorption spectroscopies. Unlike other reported peroxido-MnIIMnIII species, 3 was capable of oxidative O-H activation, mirroring the generation of tyrosyl radical in class Ib RNRs, however without accessing the MnIIIMnIV state.
Collapse
Affiliation(s)
- Lorna M Doyle
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Roel L M Bienenmann
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Robert Gericke
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Shuangning Xu
- Department of Chemistry and Centre for Metals in Biocatalysis, University of Minnesota, Minneapolis, 55455 MN, United States
| | - Erik R Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven National Laboratory Upton, NY, 11973 New York, United States
| | - Lawrence Que
- Department of Chemistry and Centre for Metals in Biocatalysis, University of Minnesota, Minneapolis, 55455 MN, United States
| | - Aidan R McDonald
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
3
|
Hota PK, Jose A, Panda S, Dunietz EM, Herzog AE, Wojcik L, Le Poul N, Belle C, Solomon EI, Karlin KD. Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties. J Am Chem Soc 2024; 146:13066-13082. [PMID: 38688016 PMCID: PMC11161030 DOI: 10.1021/jacs.3c14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper(I) complex [CuI2(BPMPO-)]1+ {BPMPOH = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper(II) peroxo [CuII2(BPMPO-)(O22-)]1+, hydroperoxo [CuII2(BPMPO-)(-OOH)]2+, and superoxo [CuII2(BPMPO-)(O2•-)]2+ species, characterized by UV-vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII2(BPMPO-)(O2•-)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII2(BPMPO-)(O22-)]1+ ⇄ [CuII2(BPMPO-)(O2•-)]2+, is established utilizing Me8Fc+/Cr(η6-C6H6)2, allowing for [CuII2(BPMPO-)(O2•-)]2+/[CuII2(BPMPO-)(O22-)]1+ reduction potential calculation, E°' = -0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°' = -0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII2(BPMPO-)(O22-)]1+ produces [CuII2(BPMPO-)(-OOH)]2+; using a phosphazene base, an acid-base equilibrium was achieved, pKa = 22.3 ± 0.7 for [CuII2(BPMPO-)(-OOH)]2+. The BDFEOO-H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII2(BPMPO-)(-OOH)]2+; this is further substantiated by H atom abstraction from O-H substrates by [CuII2(BPMPO-)(O2•-)]2+ forming [CuII2(BPMPO-)(-OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII2(BPMPO-)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO- framework and the resulting enhanced CuII-ion Lewis acidity.
Collapse
Affiliation(s)
- Pradip Kumar Hota
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anex Jose
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eleanor M Dunietz
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Austin E Herzog
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Laurianne Wojcik
- UMR CNRS 6521, Université de Bretagne Occidentale, 6 Avenue Le Gorgeu, CS 93837, Brest Cedex 3 29238, France
| | - Nicolas Le Poul
- UMR CNRS 6521, Université de Bretagne Occidentale, 6 Avenue Le Gorgeu, CS 93837, Brest Cedex 3 29238, France
| | - Catherine Belle
- Université Grenoble-Alpes, CNRS, DCM, UMR 5250, Grenoble 38058, France
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Kumar R, Maji A, Biswas B, Draksharapu A. Amphoteric reactivity of a putative Cu(II)- mCPBA intermediate. Dalton Trans 2024; 53:5401-5406. [PMID: 38426906 DOI: 10.1039/d3dt03747a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In copper-based enzymes, Cu-hydroperoxo/alkylperoxo species are proposed as key intermediates for their biological activity. A vast amount of literature is available on the functional and structural mimics of enzymatic systems with heme and non-heme ligand frameworks to stabilize high valent metal intermediates, mostly at low temperatures. Herein, we report a reaction between [CuI(NCCH3)4]+ and meta-chloroperoxybenzoic acid (mCPBA) in CH3CN that produces a putative CuII(mCPBA) species (1). 1 was characterized by UV/Vis, resonance Raman, and EPR spectroscopies. 1 can catalyze both electrophilic and nucleophilic reactions, demonstrating its amphoteric behavior. Additionally, 1 can also conduct electron transfer reactions with a weak reducing agent such as diacetyl ferrocene, making it one of the reactive copper-based intermediates. One of the most important aspects of the current work is the easy synthesis of a CuII(mCPBA) adduct with no complicated ligands for stabilization. Over time, 1 decays to form a CuII paddle wheel complex (2) and is found to be unreactive towards substrate oxidation.
Collapse
Affiliation(s)
- Rakesh Kumar
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Anweshika Maji
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Bhargab Biswas
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Apparao Draksharapu
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
5
|
Doyle L, Magherusan A, Xu S, Murphy K, Farquhar ER, Molton F, Duboc C, Que L, McDonald AR. Class Ib Ribonucleotide Reductases: Activation of a Peroxido-Mn IIMn III to Generate a Reactive Oxo-Mn IIIMn IV Oxidant. Inorg Chem 2024; 63:2194-2203. [PMID: 38231137 PMCID: PMC10828993 DOI: 10.1021/acs.inorgchem.3c04163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
In the postulated catalytic cycle of class Ib Mn2 ribonucleotide reductases (RNRs), a MnII2 core is suggested to react with superoxide (O2·-) to generate peroxido-MnIIMnIII and oxo-MnIIIMnIV entities prior to proton-coupled electron transfer (PCET) oxidation of tyrosine. There is limited experimental support for this mechanism. We demonstrate that [MnII2(BPMP)(OAc)2](ClO4) (1, HBPMP = 2,6-bis[(bis(2 pyridylmethyl)amino)methyl]-4-methylphenol) was converted to peroxido-MnIIMnIII (2) in the presence of superoxide anion that converted to (μ-O)(μ-OH)MnIIIMnIV (3) via the addition of an H+-donor (p-TsOH) or (μ-O)2MnIIIMnIV (4) upon warming to room temperature. The physical properties of 3 and 4 were probed using UV-vis, EPR, X-ray absorption, and IR spectroscopies and mass spectrometry. Compounds 3 and 4 were capable of phenol oxidation to yield a phenoxyl radical via a concerted PCET oxidation, supporting the proposed mechanism of tyrosyl radical cofactor generation in RNRs. The synthetic models demonstrate that the postulated O2/Mn2/tyrosine activation mechanism in class Ib Mn2 RNRs is plausible and provides spectral insights into intermediates currently elusive in the native enzyme.
Collapse
Affiliation(s)
- Lorna Doyle
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Adriana Magherusan
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Shuangning Xu
- Department
of Chemistry and Centre for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Kayleigh Murphy
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Erik R. Farquhar
- Case
Western Reserve University Center for Synchrotron Biosciences, National
Synchrotron Light Source II, Brookhaven
National Laboratory Upton, New
York 11973, United States
| | - Florian Molton
- CNRS
UMR 5250, DCM, Univ. Grenoble Alpes, Grenoble F-38000, France
| | - Carole Duboc
- CNRS
UMR 5250, DCM, Univ. Grenoble Alpes, Grenoble F-38000, France
| | - Lawrence Que
- Department
of Chemistry and Centre for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Aidan R. McDonald
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
6
|
Battistella B, Lohmiller T, Cula B, Hildebrandt P, Kuhlmann U, Dau H, Mebs S, Ray K. A New Thiolate-Bound Dimanganese Cluster as a Structural and Functional Model for Class Ib Ribonucleotide Reductases. Angew Chem Int Ed Engl 2023; 62:e202217076. [PMID: 36583430 DOI: 10.1002/anie.202217076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
In class Ib ribonucleotide reductases (RNRs) a dimanganese(II) cluster activates superoxide (O2 ⋅- ) rather than dioxygen (O2 ), to access a high valent MnIII -O2 -MnIV species, responsible for the oxidation of tyrosine to tyrosyl radical. In a biomimetic approach, we report the synthesis of a thiolate-bound dimanganese complex [MnII 2 (BPMT)(OAc)2 ](ClO)4 (BPMT=(2,6-bis{[bis(2-pyridylmethyl)amino]methyl}-4-methylthiophenolate) (1) and its reaction with O2 ⋅- to form a [(BPMT)MnO2 Mn]2+ complex 2. Resonance Raman investigation revealed the presence of an O-O bond in 2, while EPR analysis displayed a 16-line St =1/2 signal at g=2 typically associated with a MnIII MnIV core, as detected in class Ib RNRs. Unlike all other previously reported Mn-O2 -Mn complexes, generated by O2 ⋅- activation at Mn2 centers, 2 proved to be a capable electrophilic oxidant in aldehyde deformylation and phenol oxidation reactions, rendering it one of the best structural and functional models for class Ib RNRs.
Collapse
Affiliation(s)
- Beatrice Battistella
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Thomas Lohmiller
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany.,EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany
| | - Beatrice Cula
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Uwe Kuhlmann
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Holger Dau
- Institut für Physik, Freie Universität zu Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Stefan Mebs
- Institut für Physik, Freie Universität zu Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
7
|
Wang L, Chen Z, Fan G, Liu X, Liu P. Organophotoredox and Hydrogen Atom Transfer Cocatalyzed C-H Alkylation of Quinoxalin-2(1 H)-ones with Aldehydes, Amides, Alcohols, Ethers, or Cycloalkanes. J Org Chem 2022; 87:14580-14587. [PMID: 36206555 DOI: 10.1021/acs.joc.2c01967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Described is a mild method that merges organophotoredox catalysis with hydrogen atom transfer to enable C-H alkylation of quinoxalin-2(1H)-ones with feedstock aldehydes, amides, alcohols, ethers, or cycloalkanes. This reaction occurred under environmentally benign and external oxidant-free reaction conditions, providing a general and sustainable access to various C3-alkylated quinoxalinone derivatives with broad substituent diversity and good functional group compatibility.
Collapse
Affiliation(s)
- Liling Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhaoxing Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Guohua Fan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
8
|
Yadav O, Ansari M, Ansari A. Electronic structures, bonding aspects and spectroscopic parameters of homo/hetero valent bridged dinuclear transition metal complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121331. [PMID: 35597159 DOI: 10.1016/j.saa.2022.121331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Bridged dinuclear metal complexes have fascinated scientists worldwide, and remarkable success has been achieved to unravel the electronic structures, structure-function relationship, coordination environments, and fine mechanistic details of the enzymes owing to the repercussion of biomimetic studies carried out on dinuclear model systems. Molecular level study of these systems integrated with spectroscopic study helps in gaining deep insights about structural and electronic aspects of natural enzymatic systems. Considering the same, here first time we report DFT study on bridged non-heme metal complexes based on N-Et-HPTB ligand system containing homovalent (MIIMII); {[(MnII)2(O2CCH3)(N-Et-HPTB)]2+; Species I), [(FeII)2(O2CCH3)(N-Et-HPTB)]2+; Species II), [(CoII)2(O2CCH3)(N-Et-HPTB)]2+; Species III)} and heterovalent (MIIIMII): {[(MnIII)(MnII)(O2)(N-Et-HPTB)]2+; Species Ia) [(FeIII)(FeII)(O2)(N-Et-HPTB)]2+; Species IIa) and [(CoIII)(CoII)(O2)(N-Et-HPTB)]2+; Species IIIa)} dinuclear metal centres. Bridging oxygen bears a significant spin density which may prompt important chemical reactions involving activation of bonds like C-H/O-H/N-H etc. TD-DFT calculations for UV-Visible absorption have been carried out to further shed light on structural-functional and electronic structures of these dinuclear species. Studying these dinuclear species may be a good starting point for the study of active sites of the bimetallic centre of dinuclear enzymes and thus may serve as fascinating spectroscopic models. Further, FMO analysis, MEP mapping, and NBO calculations were employed to analyze bonding aspects predict theoretical reactivity behaviour and any kind of stabilizing interactions present in the reported species.
Collapse
Affiliation(s)
- Oval Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Pawai 400076, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
9
|
Zhao R, Zhang BB, Liu Z, Cheng GJ, Wang ZX. DFT Mechanistic Insights into Aldehyde Deformylations with Biomimetic Metal-Dioxygen Complexes: Distinct Mechanisms and Reaction Rules. JACS AU 2022; 2:745-761. [PMID: 35373207 PMCID: PMC8970012 DOI: 10.1021/jacsau.2c00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 05/12/2023]
Abstract
Aldehyde deformylations occurring in organisms are catalyzed by metalloenzymes through metal-dioxygen active cores, attracting great interest to study small-molecule metal-dioxygen complexes for understanding relevant biological processes and developing biomimetic catalysts for aerobic transformations. As the known deformylation mechanisms, including nucleophilic attack, aldehyde α-H-atom abstraction, and aldehyde hydrogen atom abstraction, undergo outer-sphere pathways, we herein report a distinct inner-sphere mechanism based on density functional theory (DFT) mechanistic studies of aldehyde deformylations with a copper (II)-superoxo complex. The inner-sphere mechanism proceeds via a sequence mainly including aldehyde end-on coordination, homolytic aldehyde C-C bond cleavage, and dioxygen O-O bond cleavage, among which the C-C bond cleavage is the rate-determining step with a barrier substantially lower than those of outer-sphere pathways. The aldehyde C-C bond cleavage, enabled through the activation of the dioxygen ligand radical in a second-order nucleophilic substitution (SN2)-like fashion, leads to an alkyl radical and facilitates the subsequent dioxygen O-O bond cleavage. Furthermore, we deduced the rules for the reactions of metal-dioxygen complexes with aldehydes and nitriles via the inner-sphere mechanism. Expectedly, our proposed inner-sphere mechanisms and the reaction rules offer another perspective to understand relevant biological processes involving metal-dioxygen cores and to discover metal-dioxygen catalysts for aerobic transformations.
Collapse
Affiliation(s)
- Ruihua Zhao
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
- Warshel
Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Bei-Bei Zhang
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
| | - Zheyuan Liu
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Gui-Juan Cheng
- Warshel
Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Zhi-Xiang Wang
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
| |
Collapse
|
10
|
Son Y, Kim K, Kim S, Tripodi GL, Pereverzev A, Roithová J, Cho J. Spectroscopic Evidence for a Cobalt-Bound Peroxyhemiacetal Intermediate. JACS AU 2021; 1:1594-1600. [PMID: 34723262 PMCID: PMC8549039 DOI: 10.1021/jacsau.1c00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 05/26/2023]
Abstract
Aldehyde deformylation reactions by metal dioxygen adducts have been proposed to involve peroxyhemiacetal species as key intermediates. However, direct evidence of such intermediates has not been obtained to date. We report the spectroscopic characterization of a mononuclear cobalt(III)-peroxyhemiacetal complex, [Co(Me3-TPADP)(O2CH(O)CH(CH3)C6H5)]+ (2), in the reaction of a cobalt(III)-peroxo complex (1) with 2-phenylpropionaldehyde (2-PPA). The formation of 2 is also investigated by isotope labeling experiments and kinetic studies. The conclusion that the peroxyhemiacetalcobalt(III) intermediate is responsible for the aldehyde deformylation is supported by the product analyses. Furthermore, isotopic labeling suggests that the reactivity of the cobalt(III)-peroxo complex depends on the second reactant. The aldehyde inserts between the oxygen atoms of 1, whereas the reaction with acyl chlorides proceeds by a nucleophilic attack. The observation of the peroxyhemiacetal intermediate provides significant insight into the initial step of aldehyde deformylation by metalloenzymes.
Collapse
Affiliation(s)
- Yeongjin Son
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Korea
- Department
of Emerging Materials Science, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Kyungmin Kim
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Korea
- Department
of Emerging Materials Science, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Seonghan Kim
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Korea
- Department
of Emerging Materials Science, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Guilherme L. Tripodi
- Department
of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Aleksandr Pereverzev
- Department
of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jana Roithová
- Department
of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jaeheung Cho
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
11
|
Zhu W, Jang S, Xiong J, Ezhov R, Li XX, Kim T, Seo MS, Lee YM, Pushkar Y, Sarangi R, Guo Y, Nam W. A Mononuclear Non-heme Iron(III)-Peroxo Complex with an Unprecedented High O-O Stretch and Electrophilic Reactivity. J Am Chem Soc 2021; 143:15556-15561. [PMID: 34529428 DOI: 10.1021/jacs.1c03358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A mononuclear non-heme iron(III)-peroxo complex, [Fe(III)(O2)(13-TMC)]+ (1), was synthesized and characterized spectroscopically; the characterization with electron paramagnetic resonance, Mössbauer, X-ray absorption, and resonance Raman spectroscopies and mass spectrometry supported a high-spin S = 5/2 Fe(III) species binding an O2 unit. A notable observation was an unusually high νO-O at ∼1000 cm-1 for the peroxo ligand. With regard to reactivity, 1 showed electrophilic reactivity in H atom abstraction (HAA) and O atom transfer (OAT) reactions. In the HAT reaction, a kinetic isotope effect (KIE) value of 5.8 was obtained in the oxidation of 9,10-dihydroanthracene. In the OAT reaction, a negative ρ value of -0.61 in the Hammett plot was determined in the oxidation of p-X-substituted thioanisoles. Another interesting observation was the electrophilic reactivity of 1 in the oxidation of benzaldehyde derivatives, such as a negative ρ value of -0.77 in the Hammett plot and a KIE value of 2.2. To the best of our knowledge, the present study reports the first example of a mononuclear non-heme iron(III)-peroxo complex with an unusually high νO-O value and unprecedented electrophilic reactivity in oxidation reactions.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Semin Jang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Roman Ezhov
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Taeyeon Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford, California 94025, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
12
|
Kripli B, Szávuly M, Csendes FV, Kaizer J. Functional models of nonheme diiron enzymes: reactivity of the μ-oxo-μ-1,2-peroxo-diiron(iii) intermediate in electrophilic and nucleophilic reactions. Dalton Trans 2020; 49:1742-1746. [PMID: 31967142 DOI: 10.1039/c9dt04551a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The reactivity of the previously reported peroxo-adduct [FeIII2(μ-O)(μ-1,2-O2)(IndH)2(solv)2]2+ (1) (IndH = 1,3-bis(2-pyridyl-imino)isoindoline) has been investigated in nucleophilic (e.g., deformylation of alkyl and aryl alkyl aldehydes) and electrophilic (e.g. oxidation of phenols) stoichiometric reactions as biomimics of ribonucleotide reductase (RNR-R2) and aldehyde deformylating oxygenase (ADO) enzymes. Based on detailed kinetic and mechanistic studies, we have found further evidence for the ambiphilic behaviour of the peroxo intermediates proposed for diferric oxidoreductase enzymes.
Collapse
Affiliation(s)
- Balázs Kripli
- Department of Chemistry, University of Pannonia, H-8201 Veszprém, Hungary.
| | | | | | | |
Collapse
|
13
|
Mukherjee G, Sastri CV. Eccentricities in Spectroscopy and Reactivity of Non‐Heme Metal Intermediates Contained in Bispidine Scaffolds. Isr J Chem 2020. [DOI: 10.1002/ijch.202000045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati, Assam 781039 India
| | - Chivukula V. Sastri
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati, Assam 781039 India
| |
Collapse
|
14
|
Kripli B, Csendes FV, Török P, Speier G, Kaizer J. Stoichiometric Aldehyde Deformylation Mediated by Nucleophilic Peroxo-diiron(III) Complex as a Functional Model of Aldehyde Deformylating Oxygenase. Chemistry 2019; 25:14290-14294. [PMID: 31448834 DOI: 10.1002/chem.201903727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Indexed: 11/11/2022]
Abstract
The reactivity of the previously reported peroxo adduct [FeIII 2 (μ-O2 )(MeBzim-Py)4 (CH3 CN)2 ]4+ (1) (MeBzim-Py=2-(2'-pyridyl)-N-methylbenzimidazole) towards aldehyde substrates including phenylacetaldehyde (PAA), hydrocinnamaldehyde (HCA), propionaldehyde (PA), 2-phenylpropionaldehyde (PPA), cyclohexanecarboxaldehyde (CCA), and para-substituted benzaldehydes (benzoyl chlorides) has been investigated. Complex 1 proved to be a nucleophilic oxidant in aldehyde deformylation reaction. These models, including detailed kinetic and mechanistic studies, may serve as the first biomimics of aldehyde deformylating oxygenase (ADO) enzymes.
Collapse
Affiliation(s)
- Balázs Kripli
- Department of Chemistry, University of Pannonia, 8201, Veszprém, Hungary
| | | | - Patrik Török
- Department of Chemistry, University of Pannonia, 8201, Veszprém, Hungary
| | - Gábor Speier
- Department of Chemistry, University of Pannonia, 8201, Veszprém, Hungary
| | - József Kaizer
- Department of Chemistry, University of Pannonia, 8201, Veszprém, Hungary
| |
Collapse
|