1
|
Schulte AM, Vivien Q, Leene JH, Alachouzos G, Feringa BL, Szymanski W. Photocleavable Protecting Groups Using a Sulfite Self-Immolative Linker for High Uncaging Quantum Yield and Aqueous Solubility. Angew Chem Int Ed Engl 2024; 63:e202411380. [PMID: 39140843 DOI: 10.1002/anie.202411380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/15/2024]
Abstract
Using light as an external stimulus to control (bio)chemical processes offers many distinct advantages. Most importantly, it allows for spatiotemporal control simply through operating the light source. Photocleavable protecting groups (PPGs) are a cornerstone class of compounds that are used to achieve photocontrol over (bio)chemical processes. PPGs are able to release a payload of interest upon light irradiation. The successful application of PPGs hinges on their efficiency of payload release, captured in the uncaging Quantum Yield (QY). Heterolytic PPGs efficiently release low pKa payloads, but their efficiency drops significantly for payloads with higher pKa values, such as alcohols. For this reason, alcohols are usually attached to PPGs via a carbonate linker. The self-immolative nature of the carbonate linker results in concurrent release of CO2 with the alcohol payload upon irradiation. We introduce herein novel PPGs containing sulfites as self-immolative linkers for photocaged alcohol payloads, for which we discovered that the release of the alcohol proceeds with higher uncaging QY than an identical payload released from a carbonate-linked PPG. Furthermore, we demonstrate that uncaging of the sulfite-linked PPGs results in the release of SO2 and show that the sulfite linker improves water solubility as compared to the carbonate-based systems.
Collapse
Affiliation(s)
- Albert Marten Schulte
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Quentin Vivien
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Julia H Leene
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Radiology, Medical Imaging Center, University Medical Center, Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
2
|
Huang C, Zhao C, Sun Y, Feng T, Ren J, Qu X. A Hydrogen-Bonded Organic Framework-Based Mitochondrion-Targeting Bioorthogonal Platform for the Modulation of Mitochondrial Epigenetics. NANO LETTERS 2024; 24:8929-8939. [PMID: 38865330 DOI: 10.1021/acs.nanolett.4c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Bioorthogonal chemistry represents a powerful tool in chemical biology, which shows great potential in epigenetic modulation. As a proof of concept, the epigenetic modulation model of mitochondrial DNA (mtDNA) is selected because mtDNA establishes a relative hypermethylation stage under oxidative stress, which impairs the mitochondrion-based therapeutic effect during cancer therapy. Herein, we design a new biocompatible hydrogen-bonded organic framework (HOF) for a HOF-based mitochondrion-targeting bioorthogonal platform TPP@P@PHOF-2. PHOF-2 can activate a prodrug (pro-procainamide) in situ, which can specifically inhibit DNA methyltransferase 1 (DNMT1) activity and remodel the epigenetic modification of mtDNA, making it more susceptible to ROS damage. In addition, PHOF-2 can also catalyze artemisinin to produce large amounts of ROS, effectively damaging mtDNA and achieving better chemodynamic therapy demonstrated by both in vitro and in vivo studies. This work provides new insights into developing advanced bioorthogonal therapy and expands the applications of HOF and bioorthogonal catalysis.
Collapse
Affiliation(s)
- Congcong Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yue Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tingting Feng
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
3
|
Su K, Vázquez O. Enlightening epigenetics: optochemical tools illuminate the path. Trends Biochem Sci 2024; 49:290-304. [PMID: 38350805 DOI: 10.1016/j.tibs.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Optochemical tools have become potent instruments for understanding biological processes at the molecular level, and the past decade has witnessed their use in epigenetics and epitranscriptomics (also known as RNA epigenetics) for deciphering gene expression regulation. By using photoresponsive molecules such as photoswitches and photocages, researchers can achieve precise control over when and where specific events occur. Therefore, these are invaluable for studying both histone and nucleotide modifications and exploring disease-related mechanisms. We systematically report and assess current examples in the field, and identify open challenges and future directions. These outstanding proof-of-concept investigations will inspire other chemical biologists to participate in these emerging fields given the potential of photochromic molecules in research and biomedicine.
Collapse
Affiliation(s)
- Kaijun Su
- Department of Chemistry, University of Marburg, Marburg D-35043, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Marburg D-35043, Germany; Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Marburg D-35043, Germany.
| |
Collapse
|
4
|
Liu D, Yu B, Guan X, Song B, Pan H, Wang R, Feng X, Pan L, Huang H, Wang Z, Wu H, Qiu Z, Li Z, Bian J. Discovery of a photoactivatable dimerized STING agonist based on the benzo[ b]selenophene scaffold. Chem Sci 2023; 14:4174-4182. [PMID: 37063808 PMCID: PMC10094158 DOI: 10.1039/d2sc06860e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 03/14/2023] Open
Abstract
Stimulator of interferon genes (STING) agonism presents a powerful weapon for cancer immunotherapy. This study reports a novel dimerized STING agonist diBSP01, which exhibited promising STING binding and activation properties in vitro, based on the benzo[b]selenophene scaffold. Meanwhile, shielding the pharmacophores of diBSP01 with photoremovable protecting groups (PPGs) resulted in the generation of the first photoactivatable STING agonist, caged-diBSP01, that exerted no biological potency in the absence of light stimulation while regaining its STING agonistic activity after 400 nm irradiation. Optically controlled in vivo anticancer activity was also proven with caged-diBSP01 in a zebrafish xenograft model. Our study provides insights into developing novel STING agonists for cancer treatment and a solution for precise STING activation to avoid the on-target systemic inflammatory response responsible for normal cell damage caused by systemic STING agonism.
Collapse
Affiliation(s)
- Dongyu Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211100 P. R. China
| | - Bin Yu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211100 P. R. China
| | - Xin Guan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences Nanning 530007 P. R. China
| | - Bin Song
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211100 P. R. China
| | - Huikai Pan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211100 P. R. China
| | - Renbing Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211100 P. R. China
| | - Xi Feng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211100 P. R. China
| | - Lixia Pan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences Nanning 530007 P. R. China
| | - Huidan Huang
- Department of Pharmaceutical Engineering, School of Pharmacy, Wannan Medical College Wuhu China
| | - Zhe Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211100 P. R. China
| | - Hongxi Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211100 P. R. China
| | - Zhixia Qiu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211100 P. R. China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211100 P. R. China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211100 P. R. China
| |
Collapse
|
5
|
Offenbartl‐Stiegert D, Rottensteiner A, Dorey A, Howorka S. A Light-Triggered Synthetic Nanopore for Controlling Molecular Transport Across Biological Membranes. Angew Chem Int Ed Engl 2022; 61:e202210886. [PMID: 36318092 PMCID: PMC10098474 DOI: 10.1002/anie.202210886] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Controlling biological molecular processes with light is of interest in biological research and biomedicine, as light allows precise and selective activation in a non-invasive and non-toxic manner. A molecular process benefitting from light control is the transport of cargo across biological membranes, which is conventionally achieved by membrane-puncturing barrel-shaped nanopores. Yet, there is also considerable gain in constructing more complex gated pores. Here, we pioneer a synthetic light-gated nanostructure which regulates transport across membranes via a controllable lid. The light-triggered nanopore is self-assembled from six pore-forming DNA strands and a lid strand carrying light-switchable azobenzene molecules. Exposure to light opens the pore to allow small-molecule transport across membranes. Our light-triggered pore advances biomimetic chemistry and DNA nanotechnology and may be used in biotechnology, biosensing, targeted drug release, or synthetic cells.
Collapse
Affiliation(s)
- Daniel Offenbartl‐Stiegert
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Alexia Rottensteiner
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Adam Dorey
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Stefan Howorka
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| |
Collapse
|
6
|
Zhu C, Kou T, Kadi AA, Li J, Zhang Y. Molecular platforms based on biocompatible photoreactions for photomodulation of biological targets. Org Biomol Chem 2021; 19:9358-9368. [PMID: 34632469 DOI: 10.1039/d1ob01613j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoirradiation provides a convenient and biocompatible approach for spatiotemporal modulation of biological systems with photoresponsive components. The construction of molecular platforms with a photoresponse to be integrated into biomolecules for photomodulation has been of great research interest in optochemical biology. In this review, we summarize typical molecular platforms that are integratable with biomolecules for photomodulation purposes. We categorize these molecular platforms according to their excitation light source, namely ultraviolet (UV), visible (Vis) or near-infrared (NIR) light. The protype chemistry of these molecular platforms is introduced along with an overview of their most recent applications for spatiotemporal regulation of biomolecular function in living cells or mice models. Challenges and the outlook are also presented. We hope this review paper will contribute to further progress in the development of molecular platforms and their biomedical use.
Collapse
Affiliation(s)
- Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Tianzhang Kou
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Wolffgramm J, Buchmuller B, Palei S, Muñoz‐López Á, Kanne J, Janning P, Schweiger MR, Summerer D. Light-Activation of DNA-Methyltransferases. Angew Chem Int Ed Engl 2021; 60:13507-13512. [PMID: 33826797 PMCID: PMC8251764 DOI: 10.1002/anie.202103945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/27/2022]
Abstract
5-Methylcytosine (5mC), the central epigenetic mark of mammalian DNA, plays fundamental roles in chromatin regulation. 5mC is written onto genomes by DNA methyltransferases (DNMT), and perturbation of this process is an early event in carcinogenesis. However, studying 5mC functions is limited by the inability to control individual DNMTs with spatiotemporal resolution in vivo. We report light-control of DNMT catalysis by genetically encoding a photocaged cysteine as a catalytic residue. This enables translation of inactive DNMTs, their rapid activation by light-decaging, and subsequent monitoring of de novo DNA methylation. We provide insights into how cancer-related DNMT mutations alter de novo methylation in vivo, and demonstrate local and tuneable cytosine methylation by light-controlled DNMTs fused to a programmable transcription activator-like effector domain targeting pericentromeric satellite-3 DNA. We further study early events of transcriptome alterations upon DNMT-catalyzed cytosine methylation. Our study sets a basis to dissect the order and kinetics of diverse chromatin-associated events triggered by normal and aberrant DNA methylation.
Collapse
Affiliation(s)
- Jan Wolffgramm
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| | - Benjamin Buchmuller
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| | - Shubhendu Palei
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| | - Álvaro Muñoz‐López
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| | - Julian Kanne
- Department of Epigenetics and Tumor Biology, Medical FacultyUniversity of CologneKerpener Str. 6250937KölnGermany
| | - Petra Janning
- Max-Planck-Institute for Molecular PhysiologyOtto-Hahn-Str. 1144227DortmundGermany
| | - Michal R. Schweiger
- Department of Epigenetics and Tumor Biology, Medical FacultyUniversity of CologneKerpener Str. 6250937KölnGermany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Str. 4a44227DortmundGermany
| |
Collapse
|
8
|
Wolffgramm J, Buchmuller B, Palei S, Muñoz‐López Á, Kanne J, Janning P, Schweiger MR, Summerer D. Light‐Activation of DNA‐Methyltransferases. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jan Wolffgramm
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Benjamin Buchmuller
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Shubhendu Palei
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Álvaro Muñoz‐López
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Julian Kanne
- Department of Epigenetics and Tumor Biology, Medical Faculty University of Cologne Kerpener Str. 62 50937 Köln Germany
| | - Petra Janning
- Max-Planck-Institute for Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Michal R. Schweiger
- Department of Epigenetics and Tumor Biology, Medical Faculty University of Cologne Kerpener Str. 62 50937 Köln Germany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|
9
|
Kato D, Shiraishi T, Kagechika H, Hirano T. 6-Arylcoumarin as a Scaffold of Photofunctional Molecules with OFF-ON-OFF Type Regulation. J Org Chem 2021; 86:2264-2270. [PMID: 33356259 DOI: 10.1021/acs.joc.0c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coumarin has been utilized as a core structure of photofunctional molecules, such as fluorescent sensors and photoremovable protecting groups. Here, we show that the 6-arylcoumarin moiety can provide OFF-ON-OFF type regulatory functionality for such compounds. To illustrate its utility, we synthesized a coumarin derivative bearing two phenolic hydroxy groups at 7-position and on 6-aryl group as a fluorescent sensor showing an OFF-ON-OFF change in fluorescence intensity in response to an increase in pH from a strongly acidic condition. Further, we show that the efficiency of photoreaction of other derivatives with the same hydroxyl groups is switched from "OFF" at pH 3 and 6 to "ON" at pH 9 and then to OFF at pH 12, enabling their application as switchable photoremovable protective groups. These features arise from sequential deprotonation of two hydroxyl groups: the monoanionic form is responsible for the photoinduced fluorescence and photoreaction.
Collapse
Affiliation(s)
- Daiki Kato
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Shiraishi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tomoya Hirano
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
10
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
11
|
Jia S, Yang S, Ji H, Peng S, Chen K, He Z, Zhou X. Systematic investigation of bioorthogonal cellular DNA metabolic labeling in a photo-controlled manner. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Donnelly JL, Offenbartl-Stiegert D, Marín-Beloqui JM, Rizzello L, Battaglia G, Clarke TM, Howorka S, Wilden JD. Exploring the Relationship between BODIPY Structure and Spectroscopic Properties to Design Fluorophores for Bioimaging. Chemistry 2019; 26:863-872. [PMID: 31660647 DOI: 10.1002/chem.201904164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/25/2019] [Indexed: 12/17/2022]
Abstract
Designing chromophores for biological applications requires a fundamental understanding of how the chemical structure of a chromophore influences its photophysical properties. We here describe the synthesis of a library of BODIPY dyes, exploring diversity at various positions around the BODIPY core. The results show that the nature and position of substituents have a dramatic effect on the spectroscopic properties. Substituting in a heavy atom or adjusting the size and orientation of a conjugated system provides a means of altering the spectroscopic profiles with high precision. The insight from the structure-activity relationship was applied to devise a new BODIPY dye with rationally designed photochemical properties including absorption towards the near-infrared region. The dye also exhibited switch-on fluorescence to enable visualisation of cells with high signal-to-noise ratio without washing-out of unbound dye. The BODIPY-based probe is non-cytotoxic and compatible with staining procedures including cell fixation and immunofluorescence microscopy.
Collapse
Affiliation(s)
- Joanna L Donnelly
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Institute of Structural and Molecular Biology, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Daniel Offenbartl-Stiegert
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Institute of Structural and Molecular Biology, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - José M Marín-Beloqui
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Loris Rizzello
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Institute of Physics of Living System, University College London, Gower Street, London, WC1E 6BT, UK.,IBEC-Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Guiseppe Battaglia
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Institute of Physics of Living System, University College London, Gower Street, London, WC1E 6BT, UK.,IBEC-Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.,ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Tracey M Clarke
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Stefan Howorka
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Institute of Structural and Molecular Biology, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Jonathan D Wilden
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Institute of Structural and Molecular Biology, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
13
|
Nguyen HP, Stewart S, Kukwikila MN, Jones SF, Offenbartl‐Stiegert D, Mao S, Balasubramanian S, Beck S, Howorka S. A Photo-responsive Small-Molecule Approach for the Opto-epigenetic Modulation of DNA Methylation. Angew Chem Int Ed Engl 2019; 58:6620-6624. [PMID: 30773767 PMCID: PMC7027477 DOI: 10.1002/anie.201901139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Indexed: 12/12/2022]
Abstract
Controlling the functional dynamics of DNA within living cells is essential in biomedical research. Epigenetic modifications such as DNA methylation play a key role in this endeavour. DNA methylation can be controlled by genetic means. Yet there are few chemical tools available for the spatial and temporal modulation of this modification. Herein, we present a small-molecule approach to modulate DNA methylation with light. The strategy uses a photo-tuneable version of a clinically used drug (5-aza-2'-deoxycytidine) to alter the catalytic activity of DNA methyltransferases, the enzymes that methylate DNA. After uptake by cells, the photo-regulated molecule can be light-controlled to reduce genome-wide DNA methylation levels in proliferating cells. The chemical tool complements genetic, biochemical, and pharmacological approaches to study the role of DNA methylation in biology and medicine.
Collapse
Affiliation(s)
- Ha Phuong Nguyen
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | | | - Mikiembo N. Kukwikila
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Sioned Fôn Jones
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Daniel Offenbartl‐Stiegert
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Shiqing Mao
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeUK
- Cancer Research (UK) Cambridge InstituteUniversity of CambridgeRobinson WayCambridgeUK
| | - Shankar Balasubramanian
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeUK
- Cancer Research (UK) Cambridge InstituteUniversity of CambridgeRobinson WayCambridgeUK
| | | | - Stefan Howorka
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
14
|
Offenbartl-Stiegert D, Clarke TM, Bronstein H, Nguyen HP, Howorka S. Solvent-dependent photophysics of a red-shifted, biocompatible coumarin photocage. Org Biomol Chem 2019; 17:6178-6183. [DOI: 10.1039/c9ob00632j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel coumarin photocage with long-wavelength and high photolysis quantum yield shows solvent dependent photolysis.
Collapse
Affiliation(s)
- Daniel Offenbartl-Stiegert
- Department of Chemistry
- Institute of Structural Molecular Biology
- University College London
- London WC1H 0AJ
- UK
| | - Tracey M. Clarke
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | - Hugo Bronstein
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Ha Phuong Nguyen
- Department of Chemistry
- Institute of Structural Molecular Biology
- University College London
- London WC1H 0AJ
- UK
| | - Stefan Howorka
- Department of Chemistry
- Institute of Structural Molecular Biology
- University College London
- London WC1H 0AJ
- UK
| |
Collapse
|