1
|
Gajdoš M, Wagner J, Ospina F, Köhler A, Engqvist MKM, Hammer SC. Chiral Alcohols from Alkenes and Water: Directed Evolution of a Styrene Hydratase. Angew Chem Int Ed Engl 2023; 62:e202215093. [PMID: 36511829 PMCID: PMC10107627 DOI: 10.1002/anie.202215093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Enantioselective synthesis of chiral alcohols through asymmetric addition of water across an unactivated alkene is a highly sought-after transformation and a big challenge in catalysis. Herein we report the identification and directed evolution of a fatty acid hydratase from Marinitoga hydrogenitolerans for the highly enantioselective hydration of styrenes to yield chiral 1-arylethanols. While directed evolution for styrene hydration was performed in the presence of heptanoic acid to mimic fatty acid binding, the engineered enzyme displayed remarkable asymmetric styrene hydration activity in the absence of the small molecule activator. The evolved styrene hydratase provided access to chiral alcohols from simple alkenes and water with high enantioselectivity (>99 : 1 e.r.) and could be applied on a preparative scale.
Collapse
Affiliation(s)
- Matúš Gajdoš
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Jendrik Wagner
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Felipe Ospina
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Antonia Köhler
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Martin K M Engqvist
- Department of Biology and Biological Engineering., Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Stephan C Hammer
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
2
|
Biundo A, Stamm A, Gorgoglione R, Syrén PO, Curia S, Hauer B, Capriati V, Vitale P, Perna F, Agrimi G, Pisano I. REGIO- AND STEREOSELECTIVE BIOCATALYTIC HYDRATION OF FATTY ACIDS FROM WASTE COOKING OILS EN ROUTE TO HYDROXY FATTY ACIDS AND BIO-BASED POLYESTERS. Enzyme Microb Technol 2022; 163:110164. [DOI: 10.1016/j.enzmictec.2022.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
|
3
|
Prem S, Helmer CPO, Dimos N, Himpich S, Brück T, Garbe D, Loll B. Towards an understanding of oleate hydratases and their application in industrial processes. Microb Cell Fact 2022; 21:58. [PMID: 35397585 PMCID: PMC8994360 DOI: 10.1186/s12934-022-01777-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Fatty acid hydratases are unique to microorganisms. Their native function is the oxidation of unsaturated C–C bonds to enable detoxification of environmental toxins. Within this enzyme family, the oleate hydratases (Ohys), which catalyze the hydroxylation of oleic acid to 10-(R)-hydroxy stearic acid (10-HSA) have recently gained particular industrial interest. 10-HSA is considered to be a replacement for 12-(R)-hydroxy stearic acid (12-HSA), which has a broad application in the chemical and pharmaceutical industry. As 12-HSA is obtained through an energy consuming synthesis process, the biotechnological route for sustainable 10-HSA production is of significant industrial interest. All Ohys identified to date have a non-redox active FAD bound in their active site. Ohys can be divided in several subfamilies, that differ in their oligomerization state and the decoration with amino acids in their active sites. The latter observation indicates a different reaction mechanism across those subfamilies. Despite intensive biotechnological, biochemical and structural investigations, surprising little is known about substrate binding and the reaction mechanism of this enzyme family. This review, summarizes our current understanding of Ohys with a focus on sustainable biotransformation.
Collapse
|
4
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
5
|
Oleate Hydratase from Lactobacillus rhamnosus ATCC 53103: A FADH2-Dependent Enzyme with Remarkable Industrial Potential. Catalysts 2021. [DOI: 10.3390/catal11091051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recently, we described the preparation of the recombinant oleate hydratase from Lactobacillus rhamnosus ATCC 53103. We observed that the purified C-terminal His-tagged enzyme was completely inactive and the catalytic activity was partially restored only in presence of a large amount of flavin adenine dinucleotide (FAD). In the present work, we assess that this hydratase in the presence of the reduced form of flavin adenine dinucleotide (FADH2) is at least one hundred times as active as in the presence of the same concentration of FAD. By means of two different biochemical processes, we demonstrated unambiguously that oleate hydratase from Lactobacillus rhamnosus ATCC 53103 is a FADH2-dependent enzyme. As a first relevant application of this discovery, we devised a preparative procedure for the stereoselective synthesis of (R)-10-hydroxystearic acid. Accordingly, the hydration of oleic acid (up to 50 g/L) is performed on a multigram scale using the recombinant hydratase and FADH2 generated in situ as cofactor. The produced (R)-10-hydroxystearic acid (ee > 97%) precipitates from the reaction solvent (water/glycerol/ethanol) and is conveniently recovered by simple filtration (>90% yield).
Collapse
|
6
|
Hagedoorn PL, Hollmann F, Hanefeld U. Novel oleate hydratases and potential biotechnological applications. Appl Microbiol Biotechnol 2021; 105:6159-6172. [PMID: 34350478 PMCID: PMC8403116 DOI: 10.1007/s00253-021-11465-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Abstract Oleate hydratase catalyses the addition of water to the CC double bond of oleic acid to produce (R)-10-hydroxystearic acid. The enzyme requires an FAD cofactor that functions to optimise the active site structure. A wide range of unsaturated fatty acids can be hydrated at the C10 and in some cases the C13 position. The substrate scope can be expanded using ‘decoy’ small carboxylic acids to convert small chain alkenes to secondary alcohols, albeit at low conversion rates. Systematic protein engineering and directed evolution to widen the substrate scope and increase the conversion rate is possible, supported by new high throughput screening assays that have been developed. Multi-enzyme cascades allow the formation of a wide range of products including keto-fatty acids, secondary alcohols, secondary amines and α,ω-dicarboxylic acids. Key points • Phylogenetically distinct oleate hydratases may exhibit mechanistic differences. • Protein engineering to improve productivity and substrate scope is possible. • Multi-enzymatic cascades greatly widen the product portfolio.
Collapse
Affiliation(s)
- Peter Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
7
|
Zhang Y, Eser BE, Kougioumtzoglou G, Eser Z, Poborsky M, Kishino S, Takeuchi M, Ogawa J, Kristensen P, Guo Z. Effects of the engineering of a single binding pocket residue on specificity and regioselectivity of hydratases from Lactobacillus Acidophilus. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Roda S, Fernandez-Lopez L, Cañadas R, Santiago G, Ferrer M, Guallar V. Computationally Driven Rational Design of Substrate Promiscuity on Serine Ester Hydrolases. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sergi Roda
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Laura Fernandez-Lopez
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Rubén Cañadas
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Gerard Santiago
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
- Nostrum Biodiscovery S.L., Barcelona 08028, Spain
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
9
|
Tseliou V, Schilder D, Masman MF, Knaus T, Mutti FG. Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity. Chemistry 2021; 27:3315-3325. [PMID: 33073866 PMCID: PMC7898336 DOI: 10.1002/chem.202003140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/17/2020] [Indexed: 11/12/2022]
Abstract
The l-lysine-ϵ-dehydrogenase (LysEDH) from Geobacillus stearothermophilus naturally catalyzes the oxidative deamination of the ϵ-amino group of l-lysine. We previously engineered this enzyme to create amine dehydrogenase (AmDH) variants that possess a new hydrophobic cavity in their active site such that aromatic ketones can bind and be converted into α-chiral amines with excellent enantioselectivity. We also recently observed that LysEDH was capable of reducing aromatic aldehydes into primary alcohols. Herein, we harnessed the promiscuous alcohol dehydrogenase (ADH) activity of LysEDH to create new variants that exhibited enhanced catalytic activity for the reduction of substituted benzaldehydes and arylaliphatic aldehydes to primary alcohols. Notably, these novel engineered dehydrogenases also catalyzed the reductive amination of a variety of aldehydes and ketones with excellent enantioselectivity, thus exhibiting a dual AmDH/ADH activity. We envisioned that the catalytic bi-functionality of these enzymes could be applied for the direct conversion of alcohols into amines. As a proof-of-principle, we performed an unprecedented one-pot "hydrogen-borrowing" cascade to convert benzyl alcohol to benzylamine using a single enzyme. Conducting the same biocatalytic cascade in the presence of cofactor recycling enzymes (i.e., NADH-oxidase and formate dehydrogenase) increased the reaction yields. In summary, this work provides the first examples of enzymes showing "alcohol aminase" activity.
Collapse
Affiliation(s)
- Vasilis Tseliou
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Don Schilder
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Marcelo F. Masman
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
10
|
Radka CD, Batte JL, Frank MW, Young BM, Rock CO. Structure and mechanism of Staphylococcus aureus oleate hydratase (OhyA). J Biol Chem 2021; 296:100252. [PMID: 33376139 PMCID: PMC7948970 DOI: 10.1074/jbc.ra120.016818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 01/07/2023] Open
Abstract
Flavin adenine dinucleotide (FAD)-dependent bacterial oleate hydratases (OhyAs) catalyze the addition of water to isolated fatty acid carbon-carbon double bonds. Staphylococcus aureus uses OhyA to counteract the host innate immune response by inactivating antimicrobial unsaturated fatty acids. Mechanistic information explaining how OhyAs catalyze regiospecific and stereospecific hydration is required to understand their biological functions and the potential for engineering new products. In this study, we deduced the catalytic mechanism of OhyA from multiple structures of S. aureus OhyA in binary and ternary complexes with combinations of ligands along with biochemical analyses of relevant mutants. The substrate-free state shows Arg81 is the gatekeeper that controls fatty acid entrance to the active site. FAD binding engages the catalytic loop to simultaneously rotate Glu82 into its active conformation and Arg81 out of the hydrophobic substrate tunnel, allowing the fatty acid to rotate into the active site. FAD binding also dehydrates the active site, leaving a single water molecule connected to Glu82. This active site water is a hydronium ion based on the analysis of its hydrogen bond network in the OhyA•PEG400•FAD complex. We conclude that OhyA accelerates acid-catalyzed alkene hydration by positioning the fatty acid double bond to attack the active site hydronium ion, followed by the addition of water to the transient carbocation intermediate. Structural transitions within S. aureus OhyA channel oleate to the active site, curl oleate around the substrate water, and stabilize the hydroxylated product to inactivate antimicrobial fatty acids.
Collapse
Affiliation(s)
- Christopher D Radka
- The Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Justin L Batte
- The Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew W Frank
- The Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brandon M Young
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- The Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
11
|
Sun QF, Zheng YC, Chen Q, Xu JH, Pan J. Engineering of an oleate hydratase for efficient C10-Functionalization of oleic acid. Biochem Biophys Res Commun 2020; 537:64-70. [PMID: 33387884 DOI: 10.1016/j.bbrc.2020.12.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
Abstract
Oleate hydratase catalyzes the hydration of unsaturated fatty acids, giving access to C10-functionalization of oleic acid. The resultant 10-hydroxystearic acid is a key material for the synthesis of many biomass-derived value-added products. Herein, we report the engineering of an oleate hydratase from Paracoccus aminophilus (PaOH) with significantly improved catalytic efficiency (from 33 s-1 mM-1 to 119 s-1 mM-1), as well as 3.4 times increased half-life at 30 °C. The structural mechanism regarding the impact of mutations on the improved catalytic activity and thermostability was elucidated with the aid of molecular dynamics simulation. The practical feasibility of the engineered PaOH variant F233L/F122L/T15 N was demonstrated through the pilot synthesis of 10-hydroxystearic acid and 10-oxostearic acid via an optimized multi-enzymatic cascade reaction, with space-time yields of 540 g L-1 day-1 and 160 g L-1 day-1, respectively.
Collapse
Affiliation(s)
- Qi-Fan Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing and Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing and Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing and Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
12
|
Recombinant Oleate Hydratase from Lactobacillus rhamnosus ATCC 53103: Enzyme Expression and Design of a Reliable Experimental Procedure for the Stereoselective Hydration of Oleic Acid. Catalysts 2020. [DOI: 10.3390/catal10101122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Different microbial strains are able to transform oleic acid (OA) into 10-hydroxystearic acid (10-HSA) by means of the catalytic activity of the enzymes oleate hydratase (EC 4.2.1.53). Lactobacillus rhamnosus ATCC 53103 performs this biotransformation with very high stereoselectivity, affording enantiopure (R)-10-HSA. In this work, we cloned, in Escherichia coli, the oleate hydratase present in the above-mentioned probiotic strain. Our study demonstrated that the obtained recombinant hydratase retains the catalytic properties of the Lactobacillus strain but that its activity was greatly affected by the expression procedure. According to our findings, we devised a reliable procedure for the hydration of oleic acid using a recombinant E. coli whole-cell catalyst. We established that the optimal reaction conditions were pH 6.6 at 28 °C in phosphate buffer, using glycerol and ethanol as co-solvents. According to our experimental protocol, the biocatalyst does not show significant substrate inhibition as the hydration reaction can be performed at high oleic acid concentration (up to 50 g/L).
Collapse
|
13
|
Zhang Y, Eser BE, Kristensen P, Guo Z. Fatty acid hydratase for value-added biotransformation: A review. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Zhang W, Lee JH, Younes SHH, Tonin F, Hagedoorn PL, Pichler H, Baeg Y, Park JB, Kourist R, Hollmann F. Photobiocatalytic synthesis of chiral secondary fatty alcohols from renewable unsaturated fatty acids. Nat Commun 2020; 11:2258. [PMID: 32382158 PMCID: PMC7206127 DOI: 10.1038/s41467-020-16099-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/09/2020] [Indexed: 12/03/2022] Open
Abstract
En route to a bio-based chemical industry, the conversion of fatty acids into building blocks is of particular interest. Enzymatic routes, occurring under mild conditions and excelling by intrinsic selectivity, are particularly attractive. Here we report photoenzymatic cascade reactions to transform unsaturated fatty acids into enantiomerically pure secondary fatty alcohols. In a first step the C=C-double bond is stereoselectively hydrated using oleate hydratases from Lactobacillus reuteri or Stenotrophomonas maltophilia. Also, dihydroxylation mediated by the 5,8-diol synthase from Aspergillus nidulans is demonstrated. The second step comprises decarboxylation of the intermediate hydroxy acids by the photoactivated decarboxylase from Chlorella variabilis NC64A. A broad range of (poly)unsaturated fatty acids can be transformed into enantiomerically pure fatty alcohols in a simple one-pot approach. Natural fatty acids are important starting materials in bio-based chemical production. Here, the authors developed a two-enzyme cascade to produce enantiomerically pure secondary fatty alcohols from natural unsaturated fatty acids in one pot.
Collapse
Affiliation(s)
- Wuyuan Zhang
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Jeong-Hoo Lee
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sabry H H Younes
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Fabio Tonin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Harald Pichler
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Yoonjin Baeg
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
15
|
Busch H, Tonin F, Alvarenga N, van den Broek M, Lu S, Daran JM, Hanefeld U, Hagedoorn PL. Exploring the abundance of oleate hydratases in the genus Rhodococcus-discovery of novel enzymes with complementary substrate scope. Appl Microbiol Biotechnol 2020; 104:5801-5812. [PMID: 32358760 PMCID: PMC7306040 DOI: 10.1007/s00253-020-10627-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 11/24/2022]
Abstract
Oleate hydratases (Ohys, EC 4.2.1.53) are a class of enzymes capable of selective water addition reactions to a broad range of unsaturated fatty acids leading to the respective chiral alcohols. Much research was dedicated to improving the applications of existing Ohys as well as to the identification of undescribed Ohys with potentially novel properties. This study focuses on the latter by exploring the genus Rhodococcus for its plenitude of oleate hydratases. Three different Rhodococcus clades showed the presence of oleate hydratases whereby each clade was represented by a specific oleate hydratase family (HFam). Phylogenetic and sequence analyses revealed HFam-specific patterns amongst conserved amino acids. Oleate hydratases from two Rhodococcus strains (HFam 2 and 3) were heterologously expressed in Escherichia coli and their substrate scope investigated. Here, both enzymes showed a complementary behaviour towards sterically demanding and multiple unsaturated fatty acids. Furthermore, this study includes the characterisation of the newly discovered Rhodococcus pyridinivorans Ohy. The steady-state kinetics of R. pyridinivorans Ohy was measured using a novel coupled assay based on the alcohol dehydrogenase and NAD+-dependent oxidation of 10-hydroxystearic acid.
Collapse
Affiliation(s)
- Hanna Busch
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Fabio Tonin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Natália Alvarenga
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Simona Lu
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
16
|
Fatty Acid Hydratases: Versatile Catalysts to Access Hydroxy Fatty Acids in Efficient Syntheses of Industrial Interest. Catalysts 2020. [DOI: 10.3390/catal10030287] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The utilization of hydroxy fatty acids has gained more and more attention due to its applicability in many industrial building blocks that require it, for example, polymers or fragrances. Furthermore, hydroxy fatty acids are accessible from biorenewables, thus contributing to a more sustainable raw material basis for industrial chemicals. Therefore, a range of investigations were done on fatty acid hydratases (FAHs), since these enzymes catalyze the addition of water to an unsaturated fatty acid, thus providing an elegant route towards hydroxy-substituted fatty acids. Besides the discovery and characterization of fatty acid hydratases (FAHs), the design and optimization of syntheses with these enzymes, the implementation in elaborate cascades, and the improvement of these biocatalysts, by way of mutation in terms of the substrate scope, has been investigated. This mini-review focuses on the research done on process development using fatty acid hydratases as a catalyst. It is notable that biotransformations, running at impressive substrate loadings of up to 280 g L−1, have been realized. A further topic of this mini-review is the implementation of fatty acid hydratases in cascade reactions. In such cascades, fatty acid hydratases were, in particular, combined with alcohol dehydrogenases (ADH), Baeyer-Villiger monooxygenases (BVMO), transaminases (TA) and hydrolases, thus enabling access to a broad variety of molecules that are of industrial interest.
Collapse
|
17
|
Jung J, Braun J, Czabany T, Nidetzky B. Unexpected NADPH Hydratase Activity in the Nitrile Reductase QueF from Escherichia coli. Chembiochem 2020; 21:1534-1543. [PMID: 31850614 PMCID: PMC7317782 DOI: 10.1002/cbic.201900679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Indexed: 11/09/2022]
Abstract
The nitrile reductase QueF catalyzes NADPH-dependent reduction of the nitrile group of preQ0 (7-cyano-7-deazaguanine) into the primary amine of preQ1 (7-aminomethyl-7-deazaguanine), a biologically unique reaction important in bacterial nucleoside biosynthesis. Here we have discovered that the QueF from Escherichia coli-its D197A and E89L variants in particular (apparent kcat ≈10-2 min-1 )-also catalyze the slow hydration of the C5=C6 double bond of the dihydronicotinamide moiety of NADPH. The enzymatically C6-hydrated NADPH is a 3.5:1 mixture of R and S forms and rearranges spontaneously through anomeric epimerization (β→α) and cyclization at the tetrahydronicotinamide C6 and the ribosyl O2. NADH and 1-methyl- or 1-benzyl-1,4-dihydronicotinamide are not substrates of the enzymatic hydration. Mutagenesis results support a QueF hydratase mechanism, in which Cys190-the essential catalytic nucleophile for nitrile reduction-acts as the general acid for protonation at the dihydronicotinamide C5 of NADPH. Thus, the NADPH hydration in the presence of QueF bears mechanistic resemblance to the C=C double bond hydration in natural hydratases.
Collapse
Affiliation(s)
- Jihye Jung
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 10/12, 8010, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Jan Braun
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 10/12, 8010, Graz, Austria
| | - Tibor Czabany
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 10/12, 8010, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 10/12, 8010, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| |
Collapse
|
18
|
Schmidt S, Bornscheuer UT. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:231-281. [DOI: 10.1016/bs.enz.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Affiliation(s)
- Soumava Santra
- Department of ChemistryLovelyProfessional University, NH-41, Phagwara Punjab 144411 India
| |
Collapse
|
20
|
Eser BE, Poborsky M, Dai R, Kishino S, Ljubic A, Takeuchi M, Jacobsen C, Ogawa J, Kristensen P, Guo Z. Rational Engineering of Hydratase from
Lactobacillus acidophilus
Reveals Critical Residues Directing Substrate Specificity and Regioselectivity. Chembiochem 2019; 21:550-563. [DOI: 10.1002/cbic.201900389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Bekir Engin Eser
- Department of EngineeringAarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| | - Michal Poborsky
- Department of EngineeringAarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| | - Rongrong Dai
- Department of EngineeringAarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| | - Shigenobu Kishino
- Division of Applied Life SciencesGraduate School of AgricultureKyoto University Kitashirakawa-oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Anita Ljubic
- Division of Food Technology, National Food InstituteTechnical University of Denmark Kemitorvet, Building 202 2800 Kgs. Lyngby Denmark
| | - Michiki Takeuchi
- Division of Applied Life SciencesGraduate School of AgricultureKyoto University Kitashirakawa-oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Charlotte Jacobsen
- Division of Food Technology, National Food InstituteTechnical University of Denmark Kemitorvet, Building 202 2800 Kgs. Lyngby Denmark
| | - Jun Ogawa
- Division of Applied Life SciencesGraduate School of AgricultureKyoto University Kitashirakawa-oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Peter Kristensen
- Faculty of Engineering and ScienceDepartment of Chemistry and BioscienceAalborg University Frederik Bayers Vej 7H 9220 Aalborg Denmark
| | - Zheng Guo
- Department of EngineeringAarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| |
Collapse
|
21
|
Xu J, Peng Y, Wang Z, Hu Y, Fan J, Zheng H, Lin X, Wu Q. Exploiting Cofactor Versatility to Convert a FAD‐Dependent Baeyer–Villiger Monooxygenase into a Ketoreductase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Xu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Zhiguo Wang
- Institute of Aging Research School of Medicine Hangzhou Normal University Hangzhou 311121 China
| | - Yujing Hu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jiajie Fan
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - He Zheng
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xianfu Lin
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
22
|
Xu J, Peng Y, Wang Z, Hu Y, Fan J, Zheng H, Lin X, Wu Q. Exploiting Cofactor Versatility to Convert a FAD-Dependent Baeyer-Villiger Monooxygenase into a Ketoreductase. Angew Chem Int Ed Engl 2019; 58:14499-14503. [PMID: 31423719 DOI: 10.1002/anie.201907606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Indexed: 12/21/2022]
Abstract
Cyclohexanone monooxygenases (CHMOs) show very high catalytic specificity for natural Baeyer-Villiger (BV) reactions and promiscuous reduction reactions have not been reported to date. Wild-type CHMO from Acinetobacter sp. NCIMB 9871 was found to possess an innate, promiscuous ability to reduce an aromatic α-keto ester, but with poor yield and stereoselectivity. Structure-guided, site-directed mutagenesis drastically improved the catalytic carbonyl-reduction activity (yield up to 99 %) and stereoselectivity (ee up to 99 %), thereby converting this CHMO into a ketoreductase, which can reduce a range of differently substituted aromatic α-keto esters. The improved, promiscuous reduction activity of the mutant enzyme in comparison to the wild-type enzyme results from a decrease in the distance between the carbonyl moiety of the substrate and the hydrogen atom on N5 of the reduced flavin adenine dinucleotide (FAD) cofactor, as confirmed using docking and molecular dynamics simulations.
Collapse
Affiliation(s)
- Jian Xu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yongzhen Peng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhiguo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yujing Hu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiajie Fan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - He Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
23
|
Engleder M, Strohmeier GA, Weber H, Steinkellner G, Leitner E, Müller M, Mink D, Schürmann M, Gruber K, Pichler H. Evolving the Promiscuity of Elizabethkingia meningoseptica Oleate Hydratase for the Regio- and Stereoselective Hydration of Oleic Acid Derivatives. Angew Chem Int Ed Engl 2019; 58:7480-7484. [PMID: 30848865 PMCID: PMC6563698 DOI: 10.1002/anie.201901462] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 12/15/2022]
Abstract
The addition of water to non-activated carbon-carbon double bonds catalyzed by fatty acid hydratases (FAHYs) allows for highly regio- and stereoselective oxyfunctionalization of renewable oil feedstock. So far, the applicability of FAHYs has been limited to free fatty acids, mainly owing to the requirement of a carboxylate function for substrate recognition and binding. Herein, we describe for the first time the hydration of oleic acid (OA) derivatives lacking this free carboxylate by the oleate hydratase from Elizabethkingia meningoseptica (OhyA). Molecular docking of OA to the OhyA 3D-structure and a sequence alignment uncovered conserved amino acid residues at the entrance of the substrate channel as target positions for enzyme engineering. Exchange of selected amino acids gave rise to OhyA variants which showed up to an 18-fold improved conversion of OA derivatives, while retaining the excellent regio- and stereoselectivity in the olefin hydration reaction.
Collapse
Affiliation(s)
- Matthias Engleder
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
| | - Gernot A. Strohmeier
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
- Institute of Organic ChemistryGraz University of Technology, NAWI GrazStremayrgasse 98010GrazAustria
| | - Hansjörg Weber
- Institute of Organic ChemistryGraz University of Technology, NAWI GrazStremayrgasse 98010GrazAustria
| | - Georg Steinkellner
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
- Innophore GmbHAm Eisernen Tor 38010GrazAustria
| | - Erich Leitner
- Institute of Analytical Chemistry and Food ChemistryGraz University of Technology, NAWI GrazStremayrgasse 98010GrazAustria
| | - Monika Müller
- InnoSyn B.V.Urmonderbaan 226167 RDGeleenThe Netherlands
| | - Daniel Mink
- InnoSyn B.V.Urmonderbaan 226167 RDGeleenThe Netherlands
| | | | - Karl Gruber
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
- Institute of Molecular BiosciencesUniversity of Graz, NAWI Graz, BioTechMed GrazHumboldtstrasse 508010GrazAustria
| | - Harald Pichler
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI Graz, BioTechMed GrazPetersgasse 148010GrazAustria
- ACIB GmbH—Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
| |
Collapse
|