1
|
Geng HQ, Zhao YH, Yang P, Wu XF. Copper-catalyzed carbonylative multi-component borylamidation of alkenes for synthesizing γ-boryl amides with CO as both methylene and carbonyl sources. Chem Sci 2024; 15:3996-4004. [PMID: 38487224 PMCID: PMC10935720 DOI: 10.1039/d4sc00156g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
A multi-component carbonylation reaction is an efficient strategy for the synthesis of valuable carbonyl compounds from simple and readily available substrates. However, there remain challenges in carbonylation reactions where two CO molecules are converted to different groups in the target product. Considering the merit of complex amides, we reported here a copper-catalyzed multi-component borylamidation for the synthesis of γ-boryl amides. This method provides access to a wide range of functional γ-boryl amides from alkenes, amines, B2pin2, and CO with good yields and excellent diastereomeric ratios. Notably, two CO molecules were converted to methylene and carbonyl groups in the target amides. A series of amines were successfully involved in the transformation, including arylamines, aliphatic amines, and hydrochloride salts of secondary aliphatic amines.
Collapse
Affiliation(s)
- Hui-Qing Geng
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Yan-Hua Zhao
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Peng Yang
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
2
|
Dewangan C, Kumawat S, Bhatt T, Natte K. Homogenous nickel-catalyzed chemoselective transfer hydrogenation of functionalized nitroarenes with ammonia-borane. Chem Commun (Camb) 2023. [PMID: 37997758 DOI: 10.1039/d3cc05173k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Homogeneous Ni-catalyzed highly selective transfer hydrogenation of nitroarenes was successfully established using NH3BH3 as a hydrogen source. A broad range of functional groups were selectively reduced to provide the corresponding anilines in good to high yields. Further, pharmaceutically active compounds can be prepared that would otherwise be challenging to access.
Collapse
Affiliation(s)
- Chitrarekha Dewangan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| | - Sandeep Kumawat
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| | - Tarun Bhatt
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| | - Kishore Natte
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| |
Collapse
|
3
|
Davis B, Genzer J, Efimenko K, Abolhasani M. Continuous Ligand-Free Catalysis Using a Hybrid Polymer Network Support. JACS AU 2023; 3:2226-2236. [PMID: 37654589 PMCID: PMC10466318 DOI: 10.1021/jacsau.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023]
Abstract
Although the pharmaceutical and fine chemical industries primarily utilize batch homogeneous reactions to carry out chemical transformations, emerging platforms seek to improve existing shortcomings by designing effective heterogeneous catalysis systems in continuous flow reactors. In this work, we present a versatile network-supported palladium (Pd) catalyst using a hybrid polymer of poly(methylvinylether-alt-maleic anhydride) and branched polyethyleneimine for intensified continuous flow synthesis of complex organic compounds via heterogeneous Suzuki-Miyaura cross-coupling and nitroarene hydrogenation reactions. The hydrophilicity of the hybrid polymer network facilitates the reagent mass transfer throughout the bulk of the catalyst particles. Through rapid automated exploration of the continuous and discrete parameters, as well as substrate scope screening, we identified optimal hybrid network-supported Pd catalyst composition and process parameters for Suzuki-Miyaura cross-coupling reactions of aryl bromides with steady-state yields up to 92% with a nominal residence time of 20 min. The developed heterogeneous catalytic system exhibits high activity and mechanical stability with no detectable Pd leaching at reaction temperatures up to 95 °C. Additionally, the versatility of the hybrid network-supported Pd catalyst is demonstrated by successfully performing continuous nitroarene hydrogenation with short residence times (<5 min) at room temperature. Room temperature hydrogenation yields of >99% were achieved in under 2 min nominal residence times with no leaching and catalyst deactivation for more than 20 h continuous time on stream. This catalytic system shows its industrial utility with significantly improved reaction yields of challenging substrates and its utility of environmentally-friendly solvent mixtures, high reusability, scalable and cost-effective synthesis, and multi-reaction successes.
Collapse
Affiliation(s)
- Bradley
A. Davis
- Department
of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jan Genzer
- Department
of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Kirill Efimenko
- Department
of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
- Biomanufacturing
Training and Education Center, North Carolina
State University, Raleigh, North Carolina 27606, United States
| | - Milad Abolhasani
- Department
of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
4
|
Capaldo L, Wen Z, Noël T. A field guide to flow chemistry for synthetic organic chemists. Chem Sci 2023; 14:4230-4247. [PMID: 37123197 PMCID: PMC10132167 DOI: 10.1039/d3sc00992k] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Flow chemistry has unlocked a world of possibilities for the synthetic community, but the idea that it is a mysterious "black box" needs to go. In this review, we show that several of the benefits of microreactor technology can be exploited to push the boundaries in organic synthesis and to unleash unique reactivity and selectivity. By "lifting the veil" on some of the governing principles behind the observed trends, we hope that this review will serve as a useful field guide for those interested in diving into flow chemistry.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Zhenghui Wen
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| |
Collapse
|
5
|
Lei Z, Ang HT, Wu J. Advanced In-Line Purification Technologies in Multistep Continuous Flow Pharmaceutical Synthesis. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Comito M, Monguzzi R, Tagliapietra S, Palmisano G, Cravotto G. Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules 2023; 28:molecules28031421. [PMID: 36771086 PMCID: PMC9919330 DOI: 10.3390/molecules28031421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Continuous-flow chemistry has become a mainstream process and a notable trend among emerging technologies for drug synthesis. It is routinely used in academic and industrial laboratories to generate a wide variety of molecules and building blocks. The advantages it provides, in terms of safety, speed, cost efficiency and small-equipment footprint compared to analog batch processes, have been known for some time. What has become even more important in recent years is its compliance with the quality objectives that are required by drug-development protocols that integrate inline analysis and purification tools. There can be no doubt that worldwide government agencies have strongly encouraged the study and implementation of this innovative, sustainable and environmentally friendly technology. In this brief review, we list and evaluate the development and applications of continuous-flow processes for antibiotic synthesis. This work spans the period of 2012-2022 and highlights the main cases in which either active ingredients or their intermediates were produced under continuous flow. We hope that this manuscript will provide an overview of the field and a starting point for a deeper understanding of the impact of flow chemistry on the broad panorama of antibiotic synthesis.
Collapse
Affiliation(s)
- Marziale Comito
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Riccardo Monguzzi
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Giovanni Palmisano
- Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-7183
| |
Collapse
|
7
|
Horáková P, Kočí K. Continuous-Flow Chemistry and Photochemistry for Manufacturing of Active Pharmaceutical Ingredients. Molecules 2022; 27:molecules27238536. [PMID: 36500629 PMCID: PMC9738912 DOI: 10.3390/molecules27238536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
An active pharmaceutical ingredient (API) is any substance in a pharmaceutical product that is biologically active. That means the specific molecular entity is capable of achieving a defined biological effect on the target. These ingredients need to meet very strict limits; chemical and optical purity are considered to be the most important ones. A continuous-flow synthetic methodology which utilizes a continuously flowing stream of reactive fluids can be easily combined with photochemistry, which works with the chemical effects of light. These methods can be useful tools to meet these strict limits. Both of these methods are unique and powerful tools for the preparation of natural products or active pharmaceutical ingredients and their precursors with high structural complexity under mild conditions. This review shows some main directions in the field of active pharmaceutical ingredients' preparation using continuous-flow chemistry and photochemistry with numerous examples of industry and laboratory-scale applications.
Collapse
Affiliation(s)
- Pavlína Horáková
- Institute of Environmental Technology, CEET, VŠB-Technical University of Ostrava, 708 00 Ostrava, Czech Republic
- TEVA Czech Industries s.r.o., 747 70 Opava, Czech Republic
- Correspondence:
| | - Kamila Kočí
- Institute of Environmental Technology, CEET, VŠB-Technical University of Ostrava, 708 00 Ostrava, Czech Republic
| |
Collapse
|
8
|
Li W, Jiang M, Liu M, Ling X, Xia Y, Wan L, Chen F. Development of a Fully Continuous-Flow Approach Towards Asymmetric Total Synthesis of Tetrahydroprotoberberine Natural Alkaloids. Chemistry 2022; 28:e202200700. [PMID: 35357730 DOI: 10.1002/chem.202200700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/06/2022]
Abstract
Continuous flow synthetic technologies had been widely applied in the total synthesis in the past few decades. Fully continuous flow synthesis is still extremely focused on multi-step synthesis of complex natural pharmaceutical molecules. Thus, the development of fully continuous flow total synthesis of natural products is in demand but challenging. Herein, we demonstrated the first fully continuous flow approach towards asymmetric total synthesis of natural tetrahydroprotoberberine alkaloids, (-)-isocanadine, (-)-tetrahydropseudocoptisine, (-)-stylopine and (-)-nandinine. This method features a concise linear sequence involving four chemical transformations and three on-line work-up processing in an integrated flow platform, without any intermediate purification. The overall yield and enantioselectivity of this four-step continuous flow chemistry were up to 50 % and 92 %ee, respectively, in a total residence time of 32.5 min, corresponding to a throughput of 145 mg/h.
Collapse
Affiliation(s)
- Weijian Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Xu Ling
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yingqi Xia
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| |
Collapse
|
9
|
Sagmeister P, Ort FF, Jusner CE, Hebrault D, Tampone T, Buono FG, Williams JD, Kappe CO. Autonomous Multi-Step and Multi-Objective Optimization Facilitated by Real-Time Process Analytics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105547. [PMID: 35106974 PMCID: PMC8981902 DOI: 10.1002/advs.202105547] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Indexed: 05/04/2023]
Abstract
Autonomous flow reactors are becoming increasingly utilized in the synthesis of organic compounds, yet the complexity of the chemical reactions and analytical methods remains limited. The development of a modular platform which uses rapid flow NMR and FTIR measurements, combined with chemometric modeling, is presented for efficient and timely analysis of reaction outcomes. This platform is tested with a four variable single-step reaction (nucleophilic aromatic substitution), to determine the most effective optimization methodology. The self-optimization approach with minimal background knowledge proves to provide the optimal reaction parameters within the shortest operational time. The chosen approach is then applied to a seven variable two-step optimization problem (imine formation and cyclization), for the synthesis of the active pharmaceutical ingredient edaravone. Despite the exponentially increased complexity of this optimization problem, the platform achieves excellent results in a relatively small number of iterations, leading to >95% solution yield of the intermediate and up to 5.42 kg L-1 h-1 space-time yield for this pharmaceutically relevant product.
Collapse
Affiliation(s)
- Peter Sagmeister
- Institute of ChemistryUniversity of GrazNAWI Graz, Heinrichstrasse 28Graz8010Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13Graz8010Austria
| | - Florian F. Ort
- Institute of ChemistryUniversity of GrazNAWI Graz, Heinrichstrasse 28Graz8010Austria
| | - Clemens E. Jusner
- Institute of ChemistryUniversity of GrazNAWI Graz, Heinrichstrasse 28Graz8010Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13Graz8010Austria
| | - Dominique Hebrault
- Chemical Development USBoehringer Ingelheim Pharmaceuticals, Inc.900 Ridgebury RoadRidgefieldConnecticut06877USA
| | - Thomas Tampone
- Chemical Development USBoehringer Ingelheim Pharmaceuticals, Inc.900 Ridgebury RoadRidgefieldConnecticut06877USA
| | - Frederic G. Buono
- Chemical Development USBoehringer Ingelheim Pharmaceuticals, Inc.900 Ridgebury RoadRidgefieldConnecticut06877USA
| | - Jason D. Williams
- Institute of ChemistryUniversity of GrazNAWI Graz, Heinrichstrasse 28Graz8010Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13Graz8010Austria
| | - C. Oliver Kappe
- Institute of ChemistryUniversity of GrazNAWI Graz, Heinrichstrasse 28Graz8010Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13Graz8010Austria
| |
Collapse
|
10
|
Rodríguez DF, Moglie Y, Ramírez-Sarmiento CA, Singh SK, Dua K, Zacconi FC. Bio-click chemistry: a bridge between biocatalysis and click chemistry. RSC Adv 2022; 12:1932-1949. [PMID: 35425264 PMCID: PMC8979012 DOI: 10.1039/d1ra08053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/28/2021] [Indexed: 11/21/2022] Open
Abstract
The fields of click chemistry and biocatalysis have rapidly grown over the last two decades. The development of robust and active biocatalysts and the widespread use of straightforward click reactions led to significant interactions between these two fields. Therefore the name bio-click chemistry seems to be an accurate definition of chemoenzymatic reactions cooperating with click transformations. Bio-click chemistry can be understood as the approach towards molecules of high-value using a green and sustainable approach by exploiting the potential of biocatalytic enzyme activity combined with the reliable nature of click reactions. This review summarizes the principal bio-click chemistry reactions reported over the last two decades, with a special emphasis on small molecules. Contributions to the field of bio-click chemistry are manifold, but the synthesis of chiral molecules with applications in medicinal chemistry and sustainable syntheses will be especially highlighted.
Collapse
Affiliation(s)
- Diego F Rodríguez
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Chile
| | - Yanina Moglie
- Departamento de Química, INQUISUR, Universidad Nacional del Sur (UNS)-CONICET Argentina
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile Santiago Chile.,ANID - Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio) Santiago Chile
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney NSW 2007 Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney Ultimo Australia
| | - Flavia C Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Chile .,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile Santiago Chile.,Centro de Investigaciones en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile Santiago Chile
| |
Collapse
|
11
|
Ishitani H, Yu Z, Ichitsuka T, Koumura N, Onozawa S, Sato K, Kobayashi S. Two‐Step Continuous‐Flow Synthesis of Fungicide Metalaxyl through Catalytic C−N Bond‐Formation Processes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haruro Ishitani
- Green & Sustainable Chemistry Social Cooperation Laboratory Graduate School of Science The University of Tokyo Hongo, Bunkyo-ku Tokyo 133-0033 Japan
| | - Zhibo Yu
- Department of Chemistry School of Science The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Tomohiro Ichitsuka
- Research Institute of Chemical Process Technology National Institute of Advanced Industrial Science and Technology Nigatake 4-2-1 Sendai Miyagi 983-8551 Japan
- Interdisciplinary Research Center for Catalytic Chemistry National Institute of Advanced Industrial Science and Technology Central 5, Higashi 1-1-1 Tsukuba Ibaraki 305-8565 Japan
| | - Nagatoshi Koumura
- Interdisciplinary Research Center for Catalytic Chemistry National Institute of Advanced Industrial Science and Technology Central 5, Higashi 1-1-1 Tsukuba Ibaraki 305-8565 Japan
| | - Shun‐ya Onozawa
- Interdisciplinary Research Center for Catalytic Chemistry National Institute of Advanced Industrial Science and Technology Central 5, Higashi 1-1-1 Tsukuba Ibaraki 305-8565 Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry National Institute of Advanced Industrial Science and Technology Central 5, Higashi 1-1-1 Tsukuba Ibaraki 305-8565 Japan
| | - Shū Kobayashi
- Green & Sustainable Chemistry Social Cooperation Laboratory Graduate School of Science The University of Tokyo Hongo, Bunkyo-ku Tokyo 133-0033 Japan
- Department of Chemistry School of Science The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Interdisciplinary Research Center for Catalytic Chemistry National Institute of Advanced Industrial Science and Technology Central 5, Higashi 1-1-1 Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
12
|
Qiu W, Jin F, Hao Y, Bao X, Yuan D, Yao Y. Amine-catalyzed site- and stereo-selective coupling of epoxy amines and carbon dioxide to construct oxazolidinones. Org Chem Front 2022. [DOI: 10.1039/d2qo00583b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NEt3 catalyzed the cycloaddition of epoxy amine and CO2, which generated oxazolidinones. Reactions of chiral epoxy amine achieved 100% configuration inversion, enabling the synthesis of linezolid. DFT studies show that NEt3 acted as a nucleophile.
Collapse
Affiliation(s)
- Wenqin Qiu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Jin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yanhong Hao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Sagandira CR, Khasipo AZ, Watts P. Total Synthesis of Glipizide and Glibenclamide in Continuous Flow. Chemistry 2021; 27:16028-16035. [PMID: 34633700 DOI: 10.1002/chem.202103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 11/09/2022]
Abstract
Glipizide and glibenclamide remain some of the widely prescribed antidiabetic sulfonylurea drugs for the treatment of type 2 diabetes mellitus. Herein the authors report on an isocyanate-free synthetic procedure towards the preparation of these on demand drugs at multigram scale using continuous flow technology. The safety concern over the use of isocyanates in most of the existing synthetic routes was dealt with in this present work by using N-carbamates synthesised in situ from activation of amines with chloroformates as safer alternatives. An overall yield of 80-85 % was obtained for the semi-telescoped steps within 10 min total residence time.
Collapse
Affiliation(s)
- Cloudius R Sagandira
- Department of Chemistry, Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Agnes Z Khasipo
- Department of Chemistry, Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Paul Watts
- Department of Chemistry, Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| |
Collapse
|
14
|
Patil NB, Atapalkar RS, Chavan SP, Kulkarni AA. Multi-Step Synthesis of Miltefosine: Integration of Flow Chemistry with Continuous Mechanochemistry. Chemistry 2021; 27:17695-17699. [PMID: 34697844 DOI: 10.1002/chem.202103499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/09/2022]
Abstract
Herein we report for the first time, an advanced continuous flow synthesis of the blockbuster Leishmaniasis drug miltefosine from simple starting materials by a sequence involving four steps of chemical transformation including a continuous mechanochemical step. First three reaction steps were performed in simple tubular reactors in a telescopic mode, while in the last step the product precipitated from the 3rd step was used for a continuous mechanochemical synthesis of miltefosine. When compared to a typical batch protocol that takes 15 h, miltefosine was obtained in 58 % overall yield in flow synthesis mode at the laboratory scale in a total residence time 34 min at synthesis rate of 10 g/hr, which is sufficient to treat 4800 patients per day.
Collapse
Affiliation(s)
- Niteen B Patil
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ranjit S Atapalkar
- Chemical Engineering & Process Development, CSIR-National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subhash P Chavan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amol A Kulkarni
- Chemical Engineering & Process Development, CSIR-National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
15
|
Sagandira CR, Akwi FM, Sagandira MB, Watts P. Multistep Continuous Flow Synthesis of Stavudine. J Org Chem 2021; 86:13934-13942. [PMID: 34060836 DOI: 10.1021/acs.joc.1c01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we demonstrate an elegant multistep continuous flow synthesis for stavudine (d4T), a potent nucleoside chemotherapeutic agent for human immunodeficiency virus, acquired immunodeficiency syndrome (AIDS) and AIDS-related conditions. This was accomplished via six chemical transformations in five sequential continuous flow reactors from an affordable starting material, 5-methyluridine. In the first instance, single step continuous flow synthesis was demonstrated with an average of 97% yield, 21.4 g/h throughput per step, and a total of 15.5 min residence time. Finally, multistep continuous flow synthesis of d4T in 87% total yield with a total residence time of 19.9 min and 117 mg/h throughput without intermediate purification was demonstrated.
Collapse
Affiliation(s)
| | - Faith M Akwi
- Nelson Mandela University, University Way, Port Elizabeth 6031, South Africa
| | - Mellisa B Sagandira
- Nelson Mandela University, University Way, Port Elizabeth 6031, South Africa
| | - Paul Watts
- Nelson Mandela University, University Way, Port Elizabeth 6031, South Africa
| |
Collapse
|
16
|
Jiang M, Liu M, Huang H, Chen F. Fully Continuous Flow Synthesis of 5-(Aminomethyl)-2-methylpyrimidin-4-amine: A Key Intermediate of Vitamin B 1. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Meifen Jiang
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Engineering center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Department of Petroleum and Chemical Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China
| | - Huashan Huang
- Department of Petroleum and Chemical Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China
| | - Fener Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Engineering center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Department of Petroleum and Chemical Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China
| |
Collapse
|
17
|
Jiang M, Liu M, Yu C, Cheng D, Chen F. Fully Continuous Flow Synthesis of 3-Chloro-4-oxopentyl Acetate: An Important Intermediate for Vitamin B1. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meifen Jiang
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Department of Petroleum and Chemical Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China
| | - Chao Yu
- Department of Petroleum and Chemical Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China
| | - Dang Cheng
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
de Carvalho BL, Aguillon AR, Leão RA, de Souza RO. Two-step continuous flow synthesis of α-terpineol. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Ötvös SB, Kappe CO. Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:6117-6138. [PMID: 34671222 PMCID: PMC8447942 DOI: 10.1039/d1gc01615f] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Catalytic enantioselective transformations provide well-established and direct access to stereogenic synthons that are broadly distributed among active pharmaceutical ingredients (APIs). These reactions have been demonstrated to benefit considerably from the merits of continuous processing and microreactor technology. Over the past few years, continuous flow enantioselective catalysis has grown into a mature field and has found diverse applications in asymmetric synthesis of pharmaceutically active substances. The present review therefore surveys flow chemistry-based approaches for the synthesis of chiral APIs and their advanced stereogenic intermediates, covering the utilization of biocatalysis, organometallic catalysis and metal-free organocatalysis to introduce asymmetry in continuously operated systems. Single-step processes, interrupted multistep flow syntheses, combined batch/flow processes and uninterrupted one-flow syntheses are discussed herein.
Collapse
Affiliation(s)
- Sándor B Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| |
Collapse
|
20
|
Knochel P, Djukanovic D, Heinz B, Mandrelli F, Mostarda S, Filipponi P, Martin B. Continuous Flow Acylation of (Hetero)aryllithiums with Polyfunctional N,N-Dimethylamides and Tetramethylurea in Toluene. Chemistry 2021; 27:13977-13981. [PMID: 34387898 PMCID: PMC8519161 DOI: 10.1002/chem.202102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 11/05/2022]
Abstract
The continuous flow reaction of various aryl or heteroaryl bromides in toluene in the presence of THF (1.0 equiv) with sec -BuLi (1.1 equiv) provided at 25 °C within 40 sec the corresponding aryllithiums which were acylated with various functionalized N,N-dimethylamides including easily enolizable amides at -20 °C within 27 sec, producing highly functionalized ketones in 48-90% yield (36 examples). This method was well suited for the preparation of α-chiral ketones such as naproxene and ibuprofen derived ketones with 99% ee . A one-pot stepwise bis-addition of two different lithium organometallics to 1,1,3,3-tetramethyurea (TMU) provided unsymmetrical ketones in 69-79% yield (9 examples).
Collapse
Affiliation(s)
- Paul Knochel
- Ludwig-Maximilians-Universitat Munchen, Department of Chemistry, Butenandtstr. 5-13, 81377, München, GERMANY
| | - Dimitrije Djukanovic
- Ludwig Maximillians University Munich: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Benjamin Heinz
- Ludwig Maximillians University Munich: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | | | - Serena Mostarda
- Novartis Pharma Schweiz AG, Chemical Development, SWITZERLAND
| | - Paolo Filipponi
- Novartis Pharma Schweiz AG, Chemical Development, SWITZERLAND
| | - Benjamin Martin
- Novartis Pharma Schweiz AG, Chemical Development, SWITZERLAND
| |
Collapse
|
21
|
Toda Y, Shishido M, Aoki T, Sukegawa K, Suga H. Switchable synthesis of cyclic carbamates by carbon dioxide fixation at atmospheric pressure. Chem Commun (Camb) 2021; 57:6672-6675. [PMID: 34132256 DOI: 10.1039/d1cc02493k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The base-promoted switchable synthesis of five- and six-membered cyclic carbamates using atmospheric pressure carbon dioxide as the C1 source was developed. The chemoselectivity of products was simply controlled by changing bases and solvents. The reaction proceeds effectively under mild conditions, affording valuable cyclic carbamates. Experimental results and DFT studies revealed the reaction mechanism.
Collapse
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Minoru Shishido
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Tatsuya Aoki
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Kimiya Sukegawa
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Hiroyuki Suga
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
22
|
Yun L, Zhao J, Tang X, Ma C, Yu Z, Meng Q. Selective Oxidation of Benzylic sp3 C–H Bonds using Molecular Oxygen in a Continuous-Flow Microreactor. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lei Yun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xiaofei Tang
- Xi’an Modern Chemistry Research Institute, Xi’an, Shanxi 710065, P.R. China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - QingWei Meng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| |
Collapse
|
23
|
Domokos A, Nagy B, Szilágyi B, Marosi G, Nagy ZK. Integrated Continuous Pharmaceutical Technologies—A Review. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00504] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- András Domokos
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Brigitta Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Botond Szilágyi
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, H-1111 Budapest, Hungary
| | - György Marosi
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| |
Collapse
|
24
|
Sarki N, Goyal V, Tyagi NK, Puttaswamy, Narani A, Ray A, Natte K. Simple RuCl
3
‐catalyzed
N
‐Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol. ChemCatChem 2021. [DOI: 10.1002/cctc.202001937] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Naina Sarki
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC Campus Joggers Road, Kamla Nehru Nagar Ghaziabad Uttar Pradesh 201 002 India
| | - Vishakha Goyal
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC Campus Joggers Road, Kamla Nehru Nagar Ghaziabad Uttar Pradesh 201 002 India
| | - Nitin Kumar Tyagi
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
| | - Puttaswamy
- Department of Chemistry Bangalore University Jnana Bharathi Campus Bangalore 560056 India
| | - Anand Narani
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- BioFuels Division CSIR-Indian Institute of Petroleum (CSIR-IIP) Haridwar Road Mohkampur Dehradun 248 005 India
| | - Anjan Ray
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- Analytical Sciences Division CSIR-Indian Institute of Petroleum (CSIR-IIP) Haridwar Road Mohkampur Dehradun 248 005 India
| | - Kishore Natte
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC Campus Joggers Road, Kamla Nehru Nagar Ghaziabad Uttar Pradesh 201 002 India
| |
Collapse
|
25
|
High-pressure asymmetric hydrogenation in a customized flow reactor and its application in multi-step flow synthesis of chiral drugs. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00143-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Miller SJ, Ishitani H, Furiya Y, Kobayashi S. High-Throughput Synthesis of ( S)-α-Phellandrene through Three-Step Sequential Continuous-Flow Reactions. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Samuel J. Miller
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruro Ishitani
- GSC Social Cooperation Laboratory, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuichi Furiya
- GSC Social Cooperation Laboratory, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu̅ Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- GSC Social Cooperation Laboratory, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Richter M, Vieira L, Sieber V. Sustainable Chemistry - An Interdisciplinary Matrix Approach. CHEMSUSCHEM 2021; 14:251-265. [PMID: 32945148 DOI: 10.1002/cssc.202001327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Within the framework of green chemistry, the continuous development of new and advanced tools for sustainable synthesis is essential. For this, multi-facetted underlying demands pose inherent challenges to individual chemical disciplines. As a solution, both interdisciplinary technology screening and research can enhance the possibility for groundbreaking innovation. To illustrate the stages from discovery to the implementing of combined technologies, a SusChem matrix model is proposed inspired by natural product biosynthesis. The model describes a multi-dimensional and dynamic exploratory space where necessary interaction is exclusively provided and guided by sustainable themes.
Collapse
Affiliation(s)
- Michael Richter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Bio- Electro-and Chemocatalysis BioCat Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Luciana Vieira
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Bio- Electro-and Chemocatalysis BioCat Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Volker Sieber
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Bio- Electro-and Chemocatalysis BioCat Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
- Technical University of Munich Campus, Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| |
Collapse
|
28
|
Goyal V, Sarki N, Natte K, Ray A. Pd/C-catalyzed transfer hydrogenation of aromatic nitro compounds using methanol as a hydrogen source. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Goyal V, Sarki N, Poddar MK, Narani A, Tripathi D, Ray A, Natte K. Biorenewable carbon-supported Ru catalyst for N-alkylation of amines with alcohols and selective hydrogenation of nitroarenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01654g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A renewable carbon-supported Ru catalyst (Ru/PNC-700) facilely prepared via simple impregnation followed by the pyrolysis process for N-alkylation of anilines with benzyl alcohol and chemoselective hydrogenation of nitroarenes.
Collapse
Affiliation(s)
- Vishakha Goyal
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Naina Sarki
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Mukesh Kumar Poddar
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Anand Narani
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Deependra Tripathi
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Anjan Ray
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Kishore Natte
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| |
Collapse
|
30
|
Liu C, Xie J, Wu W, Wang M, Chen W, Idres SB, Rong J, Deng LW, Khan SA, Wu J. Automated synthesis of prexasertib and derivatives enabled by continuous-flow solid-phase synthesis. Nat Chem 2021; 13:451-457. [PMID: 33875818 PMCID: PMC8054510 DOI: 10.1038/s41557-021-00662-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/16/2021] [Indexed: 02/02/2023]
Abstract
Recent advances in end-to-end continuous-flow synthesis are rapidly expanding the capabilities of automated customized syntheses of small-molecule pharmacophores, resulting in considerable industrial and societal impacts; however, many hurdles persist that limit the number of sequential steps that can be achieved in such systems, including solvent and reagent incompatibility between individual steps, cumulated by-product formation, risk of clogging and mismatch of timescales between steps in a processing chain. To address these limitations, herein we report a strategy that merges solid-phase synthesis and continuous-flow operation, enabling push-button automated multistep syntheses of active pharmaceutical ingredients. We demonstrate our platform with a six-step synthesis of prexasertib in 65% isolated yield after 32 h of continuous execution. As there are no interactions between individual synthetic steps in the sequence, the established chemical recipe file was directly adopted or slightly modified for the synthesis of twenty-three prexasertib derivatives, enabling both automated early and late-stage diversification.
Collapse
Affiliation(s)
- Chenguang Liu
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Jiaxun Xie
- grid.4280.e0000 0001 2180 6431Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Wenbin Wu
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Mu Wang
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Weihao Chen
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Shabana Binte Idres
- grid.4280.e0000 0001 2180 6431Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Republic of Singapore
| | - Jiawei Rong
- grid.4280.e0000 0001 2180 6431Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Lih-Wen Deng
- grid.4280.e0000 0001 2180 6431Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Republic of Singapore
| | - Saif A. Khan
- grid.4280.e0000 0001 2180 6431Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Jie Wu
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
31
|
Ötvös SB, Llanes P, Pericàs MA, Kappe CO. Telescoped Continuous Flow Synthesis of Optically Active γ-Nitrobutyric Acids as Key Intermediates of Baclofen, Phenibut, and Fluorophenibut. Org Lett 2020; 22:8122-8126. [PMID: 33026815 PMCID: PMC7573919 DOI: 10.1021/acs.orglett.0c03100] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 02/07/2023]
Abstract
The two-step flow asymmetric synthesis of chiral γ-nitrobutyric acids as key intermediates of the GABA analogues baclofen, phenibut, and fluorophenibut is reported on a multigram scale. The telescoped process comprises an enantioselective Michael-type addition facilitated by a polystyrene-supported heterogeneous organocatalyst under neat conditions followed by in situ-generated performic acid-mediated aldehyde oxidation. Simple access to valuable optically active substances is provided with key advances in terms of productivity and sustainability compared to those of previous batch approaches.
Collapse
Affiliation(s)
- Sándor B. Ötvös
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center
for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
| | - Patricia Llanes
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, E-43007 Tarragona, Spain
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, E-43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), E-08028 Barcelona, Spain
| | - C. Oliver Kappe
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center
for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
| |
Collapse
|
32
|
Antoniv M, Chang S, Al‐Jabri N, Zhu SS. Surfactant‐free synthesis of poly (styrene‐
co
‐acrylamide) monodisperse nanoparticles using hybrid flow‐to‐batch chemistry. J Appl Polym Sci 2020. [DOI: 10.1002/app.49905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marta Antoniv
- Aramco Services Company: Aramco Research Center–Boston Cambridge Massachusetts USA
| | - Sehoon Chang
- Aramco Services Company: Aramco Research Center–Boston Cambridge Massachusetts USA
| | | | - S. Sherry Zhu
- Aramco Services Company: Aramco Research Center–Boston Cambridge Massachusetts USA
| |
Collapse
|
33
|
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C 2-C 6 Platform Chemicals Derived from Biomass. Chem Rev 2020; 120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ever increasing industrial production of commodity and specialty chemicals inexorably depletes the finite primary fossil resources available on Earth. The forecast of population growth over the next 3 decades is a very strong incentive for the identification of alternative primary resources other than petro-based ones. In contrast with fossil resources, renewable biomass is a virtually inexhaustible reservoir of chemical building blocks. Shifting the current industrial paradigm from almost exclusively petro-based resources to alternative bio-based raw materials requires more than vibrant political messages; it requires a profound revision of the concepts and technologies on which industrial chemical processes rely. Only a small fraction of molecules extracted from biomass bears significant chemical and commercial potentials to be considered as ubiquitous chemical platforms upon which a new, bio-based industry can thrive. Owing to its inherent assets in terms of unique process experience, scalability, and reduced environmental footprint, flow chemistry arguably has a major role to play in this context. This review covers a selection of C2 to C6 bio-based chemical platforms with existing commercial markets including polyols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,4-butanediol, xylitol, and sorbitol), furanoids (furfural and 5-hydroxymethylfurfural) and carboxylic acids (lactic acid, succinic acid, fumaric acid, malic acid, itaconic acid, and levulinic acid). The aim of this review is to illustrate the various aspects of upgrading bio-based platform molecules toward commodity or specialty chemicals using new process concepts that fall under the umbrella of continuous flow technology and that could change the future perspectives of biorefineries.
Collapse
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet 45, Zone Industrielle C, B-7180 Seneffe, Belgium
| | - Patricia Luis
- Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Materials & Process Engineering (iMMC-IMAP), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| |
Collapse
|
34
|
Rogers L, Briggs N, Achermann R, Adamo A, Azad M, Brancazio D, Capellades G, Hammersmith G, Hart T, Imbrogno J, Kelly LP, Liang G, Neurohr C, Rapp K, Russell MG, Salz C, Thomas DA, Weimann L, Jamison TF, Myerson AS, Jensen KF. Continuous Production of Five Active Pharmaceutical Ingredients in Flexible Plug-and-Play Modules: A Demonstration Campaign. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Dynamic Optimization of a Fed-Batch Nosiheptide Reactor. Processes (Basel) 2020. [DOI: 10.3390/pr8050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nosiheptide is a sulfur-containing peptide antibiotic, showing exceptional activity against critical pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) with livestock applications that can be synthesized via fed-batch fermentation. A simplified mechanistic fed-batch fermentation model for nosiheptide production considers temperature- and pH-dependence of biomass growth, substrate consumption, nosiheptide production and oxygen mass transfer into the broth. Herein, we perform dynamic simulation over a broad range of possible feeding policies to understand and visualize the region of attainable reactor performances. We then formulate a dynamic optimization problem for maximization of nosiheptide production for different constraints of batch duration and operability limits. A direct method for dynamic optimization (simultaneous strategy) is performed in each case to compute the optimal control trajectories. Orthogonal polynomials on finite elements are used to approximate the control and state trajectories allowing the continuous problem to be converted to a nonlinear program (NLP). The resultant large-scale NLP is solved using IPOPT. Optimal operation requires feedrate to be manipulated in such a way that the inhibitory mechanism of the substrate can be avoided, with significant nosiheptide yield improvement realized.
Collapse
|
36
|
Abstract
A reactor capable of efficiently collecting kinetic data in flow is presented. Conversion over time data is obtained by cycling a discrete reaction slug back and forth between two residence coils, with analysis performed each time the solution is passed between the two. In contrast to a traditional steady-state continuous flow system, which requires upward of 5× the total reaction time to obtain reaction progress data, this design achieves much higher efficiency by collecting all data during a single reaction. In combination with minimal material consumption (reactions performed in 300 μL slugs), this represents an improvement in efficiency for typical kinetic experimentation in batch as well. Application to kinetic analysis of a wide variety of transformations (acylation, SNAr, silylation, solvolysis, Pd catalyzed C-S cross-coupling and cycloadditions) is demonstrated, highlighting both the versatility of the reactor and the benefits of performing kinetic analysis as a routine part of reaction optimization/development. Extension to the monitoring of multiple reactions simultaneously is also realized by operating the reactor with multiple reaction slugs at the same time.
Collapse
Affiliation(s)
- Ryan J Sullivan
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
37
|
Rana A, Mahajan B, Ghosh S, Srihari P, Singh AK. Integrated multi-step continuous flow synthesis of daclatasvir without intermediate purification and solvent exchange. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00323a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rapid transmission of viral diseases can cause massive economic damage and loss of life.
Collapse
Affiliation(s)
- Abhilash Rana
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Bhushan Mahajan
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Subhash Ghosh
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Pabbaraja Srihari
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ajay K. Singh
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
38
|
Fülöp Z, Szemesi P, Bana P, Éles J, Greiner I. Evolution of flow-oriented design strategies in the continuous preparation of pharmaceuticals. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00273a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the flow-oriented design (FOD) in the multi-step continuous-flow synthesis of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Zsolt Fülöp
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- 1521 Budapest
- Hungary
| | - Péter Szemesi
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- 1521 Budapest
- Hungary
| | | | | | | |
Collapse
|
39
|
Bloemendal VRLJ, Janssen MACH, van Hest JCM, Rutjes FPJT. Continuous one-flow multi-step synthesis of active pharmaceutical ingredients. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00087f] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review highlights a selection of multistep continuous flow (one-flow) processes leading to the synthesis of active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
| | | | - Jan C. M. van Hest
- Bio-organic chemistry
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | | |
Collapse
|
40
|
Damião MCFCB, Marçon HM, Pastre JC. Continuous flow synthesis of the URAT1 inhibitor lesinurad. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00483a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A 5-steps continuous flow synthesis of lesinurad is provided and delivers this API in 68% overall yield.
Collapse
|
41
|
Ötvös SB, Pericàs MA, Kappe CO. Multigram-scale flow synthesis of the chiral key intermediate of (-)-paroxetine enabled by solvent-free heterogeneous organocatalysis. Chem Sci 2019; 10:11141-11146. [PMID: 32206263 PMCID: PMC7069365 DOI: 10.1039/c9sc04752b] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
The catalytic enantioselective synthesis of the chiral key intermediate of the antidepressant (-)-paroxetine is demonstrated as a continuous flow process on multi-gram scale. The critical step is a solvent-free organocatalytic conjugate addition followed by a telescoped reductive amination-lactamization-amide/ester reduction sequence. Due to the efficient heterogeneous catalysts and the solvent-free or highly concentrated conditions applied, the flow method offers key advances in terms of productivity and sustainability compared to earlier batch approaches.
Collapse
Affiliation(s)
- Sándor B Ötvös
- Institute of Chemistry , University of Graz , NAWI Graz , Heinrichstrasse 28 , A-8010 Graz , Austria .
| | - Miquel A Pericàs
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology (BIST) , Av. Països Catalans 16 , E-43007 Tarragona , Spain
- Departament de Química Inorgànica i Orgànica , Universitat de Barcelona (UB) , E-08028 Barcelona , Spain
| | - C Oliver Kappe
- Institute of Chemistry , University of Graz , NAWI Graz , Heinrichstrasse 28 , A-8010 Graz , Austria .
- Center for Continuous Synthesis and Processing (CCFLOW) , Research Center Pharmaceutical Engineering (RCPE) , Inffeldgasse 13 , A-8010 Graz , Austria .
| |
Collapse
|
42
|
Development of a continuous flow synthesis of propranolol: tackling a competitive side reaction. J Flow Chem 2019. [DOI: 10.1007/s41981-019-00047-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Dynamic Modelling and Optimisation of the Batch Enzymatic Synthesis of Amoxicillin. Processes (Basel) 2019. [DOI: 10.3390/pr7060318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Amoxicillin belongs to the β-lactam family of antibiotics, a class of highly consumed pharmaceutical products used for the treatment of respiratory and urinary tract infections, and is listed as a World Health Organisation (WHO) “Essential Medicine”. The demonstrated batch enzymatic synthesis of amoxicillin is composed of a desired synthesis and two undesired hydrolysis reactions of the main substrate (6-aminopenicillanic acid (6-APA)) and amoxicillin. Dynamic simulation and optimisation can be used to establish optimal control policies to attain target product specification objectives for bioprocesses. This work performed dynamic modelling, simulation and optimisation of the batch enzymatic synthesis of amoxicillin. First, kinetic parameter regression at different operating temperatures was performed, followed by Arrhenius parameter estimation to allow for non-isothermal modelling of the reaction network. Dynamic simulations were implemented to understand the behaviour of the design space, followed by the formulation and solution of a dynamic non-isothermal optimisation problem subject to various product specification constraints. Optimal reactor temperature (control) and species concentration (state) trajectories are presented for batch enzymatic amoxicillin synthesis.
Collapse
|
44
|
Seven steps, no stops. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|