1
|
Grählert E, Langton MJ. Transmembrane Delivery of an Aryl Azopyrazole Photo-switchable Ion Transporter Relay. Angew Chem Int Ed Engl 2024:e202421580. [PMID: 39591370 DOI: 10.1002/anie.202421580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
Stimuli-responsive synthetic ionophores allow for spatial and temporal control over ion transport, with promise for applications in targeted therapy. Relay transporters have emerged as a new class of ion transporters - these are anchored carriers that sit in both leaflets of the bilayer and mediate transport across the membrane by passing ions between them. The relays are themselves membrane impermeable, and so must be incorporated into the membrane during vesicle preparation. Here we show that relay transporters can be delivered to both sides of the membrane of vesicles using a synthetic flippase. By incorporating an aryl azopyrazole photo-switch into the movable arm of the relay transporters the ion transport activity can be very efficiently and reversibly switched between off and on states. This control is achieved by extension and contraction of their movable arms via photo-isomerization of the central aryl azopyrazole moiety, hence modulating the ability of the relays to pass ions across the membrane.
Collapse
Affiliation(s)
- Elin Grählert
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
2
|
Zhang Q, Liang Q, Wang G, Xie X, Cao Y, Sheng N, Zeng Z, Ren C. Highly Selective Artificial K + Transporters Reverse Liver Fibrosis In Vivo. JACS AU 2024; 4:3869-3883. [PMID: 39483224 PMCID: PMC11522913 DOI: 10.1021/jacsau.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 11/03/2024]
Abstract
Liver fibrosis is a life-threatening disease that currently lacks clinically effective therapeutic agents. Given the close correlation between dysregulated intracellular K+ homeostasis and the progression of liver fibrosis, developing artificial K+ transporters mimicking the essential function of their natural counterparts in regulating intracellular K+ levels might offer an appealing yet unexplored treatment strategy. Here, we present an unconventional class of artificial K+ transporters involving the "motional" collaboration between two K+ transporter molecules. In particular, 6C6 exhibits an impressive EC50 value of 0.28 μM (i.e., 0.28 mol % relative to lipid) toward K+ and an exceptionally high K+/Na+ selectivity of 15.5, representing one of the most selective artificial K+ transporters reported to date. Most importantly, our study demonstrates, for the first time, the potential therapeutic effect of K+-selective artificial ion transporters in reversing liver fibrosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Qiuping Zhang
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen
Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Qinghong Liang
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen
Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Guijiang Wang
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaopan Xie
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yin Cao
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Nan Sheng
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiping Zeng
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Changliang Ren
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen
Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| |
Collapse
|
3
|
Deng S, Li Z, Yuan L, Shen J, Zeng H. Light-Powered Propeller-like Transporter for Boosted Transmembrane Ion Transport. NANO LETTERS 2024; 24:10750-10758. [PMID: 39177063 DOI: 10.1021/acs.nanolett.4c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Membrane-active molecular machines represent a recently emerging, yet important line of expansion in the field of artificial transmembrane transporters. Their hitherto demonstrated limited types (molecular swing, ion fishers, shuttlers, rotors, etc.) certainly call for new inspiring developments. Here, we report a very first motorized ion-transporting carrier-type transporter, i.e., a modularly tunable, light-powered propeller-like transporter derived from Feringa's molecular motor for consistently boosting transmembrane ion transport under continuous UV light irradiation. Based on the EC50 values, the molecular propeller-mediated ion transport activities under UV light irradiation for 300 s are 2.31, 1.74, 2.29, 2.80, and 2.92 times those values obtained without irradiation for Li+, Na+, K+, Rb+, and Cs+ ions, respectively, with EC50 value as low as 0.71 mol % for K+ ion under light irradiation.
Collapse
Affiliation(s)
- Shaowen Deng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lin Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
4
|
Johnson TG, Sadeghi-Kelishadi A, Langton MJ. Length dependent reversible off-on activation of photo-switchable relay anion transporters. Chem Commun (Camb) 2024; 60:7160-7163. [PMID: 38910566 DOI: 10.1039/d4cc02603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A homologous series of azobenzene-derived photo-switchable ion relay transporters is reported. We reveal that both the length and geometry of the relay strongly affect transport rate, allowing the relative activity of the E and Z isomers to be reversed and hence the wavelengths of light used for on and off switching to be exchanged.
Collapse
Affiliation(s)
- Toby G Johnson
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | |
Collapse
|
5
|
Zhang L, Tian J, Lin Z, Dong Z. Efficient Sodium Transmembrane Permeation through Helically Folded Nanopores with Natural Channel-Like Ion Selectivity. J Am Chem Soc 2024; 146:8500-8507. [PMID: 38483183 DOI: 10.1021/jacs.3c14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The selective transmembrane permeation of sodium ions achieved by biomimetic chemistry shows great potential to solve the problem of sodium ion transport blockade in diseases, but its implementation faces enormous difficulties. Herein, we design and synthesize a series of helically folded nanopores by employing a quinoline-oxadiazole structural sequence to finely replicate the pentahydrate structure of sodium ions. Surprisingly, these nanopores are capable of achieving sodium transmembrane permeation with ion selectivity at the level of natural sodium channels, as observed in rationally designed nanopores (M1-M5) with Na+/K+ ion selectivity ratio of up to 20.4. Moreover, slight structural variations in nanopore structures can switch ion transport modes between the channel and carrier. We found that, compared to the carrier mode, the channel mode not only transports ions faster but also has higher ion selectivity during transmembrane conduction, clearly illustrating that the trade-off phenomenon between ion selectivity and transport activity does not occur between the two transport modes of channel and carrier. At the same time, we also found that the spatial position and numbers of coordination sites are crucial for the sodium ion selectivity of the nanopores. Moreover, carrier M1 reported in this work is totally superior to the commercial Na+ carrier ETH2120, especially in terms of Na+/K+ ion selectivity, thus being a potentially practical Na+ carrier. Our study provides a new paradigm on the rational design of sodium-specific synthetic nanopores, which will open up the possibility for the application of artificial sodium-specific transmembrane permeation in biomedicine and disease treatment.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Tian
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ze Lin
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Yuan X, Shen J, Zeng H. Artificial transmembrane potassium transporters: designs, functions, mechanisms and applications. Chem Commun (Camb) 2024; 60:482-500. [PMID: 38111319 DOI: 10.1039/d3cc04488b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Potassium channels represent the most prevalent class of ion channels, exerting regulatory control over numerous vital biological processes, including muscle contraction, neurotransmitter release, cell proliferation, and apoptosis. The seamless integration of astonishing functions into a sophisticated structure, as seen in these protein channels, inspires the chemical community to develop artificial versions, gearing toward simplifying their structure while replicating their key functions. In particular, over the past ten years or so, a number of elegant artificial potassium transporters have emerged, demonstrating high selectivity, high transport efficiency or unprecedented transport mechanisms. In this review, we will provide a detailed exposition of these artificial potassium transporters that are derived from a single molecular backbone or self-assembled from multiple components, with their respective structural designs, channel functions, transport mechanisms and biomedical applications thoroughly reviewed.
Collapse
Affiliation(s)
- Xiyu Yuan
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Jie Shen
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| |
Collapse
|
7
|
Johnson TG, Langton MJ. Molecular Machines For The Control Of Transmembrane Transport. J Am Chem Soc 2023; 145:27167-27184. [PMID: 38062763 PMCID: PMC10740008 DOI: 10.1021/jacs.3c08877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Nature embeds some of its molecular machinery, including ion pumps, within lipid bilayer membranes. This has inspired chemists to attempt to develop synthetic analogues to exploit membrane confinement and transmembrane potential gradients, much like their biological cousins. In this perspective, we outline the various strategies by which molecular machines─molecular systems in which a nanomechanical motion is exploited for function─have been designed to be incorporated within lipid membranes and utilized to mediate transmembrane ion transport. We survey molecular machines spanning both switches and motors, those that act as mobile carriers or that are anchored within the membrane, mechanically interlocked molecules, and examples that are activated in response to external stimuli.
Collapse
Affiliation(s)
- Toby G. Johnson
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford Mansfield Road, Oxford OX1 3TA United Kingdom
| | - Matthew J. Langton
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford Mansfield Road, Oxford OX1 3TA United Kingdom
| |
Collapse
|
8
|
Pang S, Liu J, Li T, Ye K, Yan Z, Zhao L, Bao C. Folding and Unfolding of a Fully Synthetic Transmembrane Receptor for ON/OFF Signal Transduction. J Am Chem Soc 2023; 145:20761-20766. [PMID: 37699413 DOI: 10.1021/jacs.3c07814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Signal transduction processes in living organisms are mainly transmitted through conformational changes in transmembrane protein receptors. So far, the development of signal transduction models induced by artificial simulation of conformational changes remains limited. We herein report a new artificial receptor that achieves controllable "ON/OFF" signal transduction through conformational changes between the folding and unfolding of a transmembrane foldamer moiety. The receptor contains three functional modules: a lipid-anchored cholic acid headgroup, a foldamer transmembrane moiety, and a precatalyst tailgroup. After inserting in the lipid membrane, the addition of Zn2+ induces unfolding of the foldamer, which changes the molecular conformation and activates the tailgroup to enter the cavity to perform its catalytic task, resulting in signal transduction in an "ON" state. By further adding a competitive ligand to bind Zn2+, the transduction can be turned "OFF". External signals can be used to reversibly switch intravesicular catalysis on and off, which provides a new model for constructing artificial signal transduction systems.
Collapse
Affiliation(s)
- Shihao Pang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiawei Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianlong Li
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Kai Ye
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zexin Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Johnson TG, Docker A, Sadeghi-Kelishadi A, Langton MJ. Halogen bonding relay and mobile anion transporters with kinetically controlled chloride selectivity. Chem Sci 2023; 14:5006-5013. [PMID: 37206385 PMCID: PMC10189858 DOI: 10.1039/d3sc01170d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Selective transmembrane transport of chloride over competing proton or hydroxide transport is key for the therapeutic application of anionophores, but remains a significant challenge. Current approaches rely on enhancing chloride anion encapsulation within synthetic anionophores. Here we report the first example of a halogen bonding ion relay in which transport is facilitated by the exchange of ions between lipid-anchored receptors on opposite sides of the membrane. The system exhibits non-protonophoric chloride selectivity, uniquely arising from the lower kinetic barrier to chloride exchange between transporters within the membrane, compared to hydroxide, with selectivity maintained across membranes with different hydrophobic thicknesses. In contrast, we demonstrate that for a range of mobile carriers with known high chloride over hydroxide/proton selectivity, the discrimination is strongly dependent on membrane thickness. These results demonstrate that the selectivity of non-protonophoric mobile carriers does not arise from ion binding discrimination at the interface, but rather through a kinetic bias in transport rates, arising from differing membrane translocation rates of the anion-transporter complexes.
Collapse
Affiliation(s)
- Toby G Johnson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Andrew Docker
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Amir Sadeghi-Kelishadi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
10
|
Jin L, Sun C, Li Z, Shen J, Zeng H. A K +-selective channel with a record-high K +/Na + selectivity of 20.1. Chem Commun (Camb) 2023; 59:3610-3613. [PMID: 36891811 DOI: 10.1039/d2cc04396c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
For compounds each containing a phenylalanine moiety with its two ends amidated to have a 15-crown-5 unit and an alkyl chain, a simple tuning of the alkyl chain length delivered a K+-selective channel with a record-high K+/Na+ selectivity of 20.1.
Collapse
Affiliation(s)
- Lei Jin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China
| | - Chang Sun
- College of Textile Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jie Shen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
11
|
He L, Zhang T, Zhu C, Yan T, Liu J. Crown Ether-Based Ion Transporters in Bilayer Membranes. Chemistry 2023; 29:e202300044. [PMID: 36723493 DOI: 10.1002/chem.202300044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
Bilayer membranes that enhance the stability of the cell are essential for cell survival, separating and protecting the interior of the cell from its external environment. Membrane-based channel proteins are crucial for sustaining cellular activities. However, dysfunction of these proteins would induce serial channelopathies, which could be substituted by artificial ion channel analogs. Crown ethers (CEs) are widely studied in the area of artificial ion channels owing to their intrinsic host-guest interaction with different kinds of organic and inorganic ions. Other advantages such as lower price, chemical stability, and easier modification also make CE a research hotspot in the field of synthetic transmembrane nanopores. And numerous CEs-based membrane-active synthetic ion channels were designed and fabricated in the past decades. Herein, the recent progress of CEs-based synthetic ion transporters has been comprehensively summarized in this review, including their design principles, functional mechanisms, controllable properties, and biomedical applications. Furthermore, this review has been concluded by discussing the future opportunities and challenges facing this research field. It is anticipated that this review could offer some inspiration for the future fabrication of novel CEs-derived ion transporters with more advanced structures, properties, and practical applications.
Collapse
Affiliation(s)
- Lei He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Tianlong Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Canhong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| |
Collapse
|
12
|
Cholesterol-stabilized membrane-active nanopores with anticancer activities. Nat Commun 2022; 13:5985. [PMID: 36216956 PMCID: PMC9551035 DOI: 10.1038/s41467-022-33639-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Cholesterol-enhanced pore formation is one evolutionary means cholesterol-free bacterial cells utilize to specifically target cholesterol-rich eukaryotic cells, thus escaping the toxicity these membrane-lytic pores might have brought onto themselves. Here, we present a class of artificial cholesterol-dependent nanopores, manifesting nanopore formation sensitivity, up-regulated by cholesterol of up to 50 mol% (relative to the lipid molecules). The high modularity in the amphiphilic molecular backbone enables a facile tuning of pore size and consequently channel activity. Possessing a nano-sized cavity of ~ 1.6 nm in diameter, our most active channel Ch-C1 can transport nanometer-sized molecules as large as 5(6)-carboxyfluorescein and display potent anticancer activity (IC50 = 3.8 µM) toward human hepatocellular carcinomas, with high selectivity index values of 12.5 and >130 against normal human liver and kidney cells, respectively. Bacterial cells utilize cholesterol-enhanced pore formation to specifically target eukaryotic cells. Here, the authors present a class of bio-inspired, cholesterol-enhanced nanopores which display anticancer activities in vitro.
Collapse
|
13
|
Yang H, Yi J, Pang S, Ye K, Ye Z, Duan Q, Yan Z, Lian C, Yang Y, Zhu L, Qu DH, Bao C. A Light-Driven Molecular Machine Controls K + Channel Transport and Induces Cancer Cell Apoptosis. Angew Chem Int Ed Engl 2022; 61:e202204605. [PMID: 35442566 DOI: 10.1002/anie.202204605] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/21/2022]
Abstract
The design of artificial ion channels with high activity, selectivity and gating function is challenging. Herein, we designed the light-driven motor molecule MC2, which provides new design criteria to overcome these challenges. MC2 forms a selective K+ channel through a single molecular transmembrane mechanism, and the light-driven rotary motion significantly accelerates ion transport, which endows the irradiated motor molecule with excellent cytotoxicity and cancer cell selectivity. Mechanistic studies reveal that the rotary motion of MC2 promotes K+ efflux, generates reactive oxygen species and eventually activates caspase-3-dependent apoptosis in cancer cells. Combined with the spatiotemporally controllable advantages of light, we believe this strategy can be exploited in the structural design and application of next-generation synthetic cation transporters for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Huiting Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shihao Pang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kai Ye
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Duan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zexin Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Lian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Yang
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
14
|
Johnson TG, Sadeghi-Kelishadi A, Langton MJ. A Photo-responsive Transmembrane Anion Transporter Relay. J Am Chem Soc 2022; 144:10455-10461. [PMID: 35652660 PMCID: PMC9204766 DOI: 10.1021/jacs.2c02612] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 01/17/2023]
Abstract
Ion transport across lipid membranes in biology is controlled by stimuli-responsive membrane channels and molecular machine ion pumps such as ATPases. Here, we report a synthetic molecular machine-like ion transport relay, in which transporters on opposite sides of a lipid bilayer membrane facilitate transport by passing ions between them. By incorporating a photo-responsive telescopic arm into the relay design, this process is reversibly controlled in response to irradiation with blue and green light. Transport occurs only in the extended state when the length of the arm is sufficient to pass the anion between transporters located on opposite sides of the membrane. In contrast, the contracted state of the telescopic arm is too short to mediate effective transport. The system acts as a stimuli-responsive ensemble of machine-like components, reminiscent of robotic arms in a factory assembly line, working cooperatively to mediate ion transport. This work points to new prospects for using lipid bilayer membranes as scaffolds for confining, orientating, and controlling the relative positions of molecular machines, thus enabling multiple components to work in concert and opening up new applications in biological contexts.
Collapse
Affiliation(s)
- Toby G. Johnson
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Amir Sadeghi-Kelishadi
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Matthew J. Langton
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
15
|
Yang H, Yi J, Pang S, Ye K, Ye Z, Duan Q, Yan Z, Lian C, Yang Y, Zhu L, Qu D, Bao C. A Light‐Driven Molecular Machine Controls K
+
Channel Transport and Induces Cancer Cell Apoptosis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huiting Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shihao Pang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Kai Ye
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qi Duan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zexin Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Cheng Lian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yi Yang
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
16
|
Chen L, Wu X, Gilchrist AM, Gale PA. Organoplatinum Compounds as Anion-Tuneable Uphill Hydroxide Transporters. Angew Chem Int Ed Engl 2022; 61:e202116355. [PMID: 35192743 PMCID: PMC9310596 DOI: 10.1002/anie.202116355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/12/2022]
Abstract
Active transport of ions uphill, creating a concentration gradient across a cell membrane, is essential for life. It remains a significant challenge to develop synthetic systems that allow active uphill transport. Here, a transport process fuelled by organometallic compounds is reported that creates a pH gradient. The hydrolysis reaction of PtII complexes results in the formation of aqua complexes that established rapid transmembrane movement ("flip-flop") of neutral Pt-OH species, leading to protonation of the OH group in the inner leaflet, generating OH- ions, and so increasing the pH in the intravesicular solution. The organoplatinum complex effectively transports bound hydroxide ions across the membrane in a neutral complex. The initial net flow of the PtII complex into the vesicles generates a positive electric potential that can further drive uphill transport because the electric potential is opposed to the chemical potential of OH- . The OH- ions equilibrate with this transmembrane electric potential but cannot remove it due to the relatively low permeability of the charged species. As a result, effective hydroxide transport against its concentration gradient can be achieved, and multiple additions can continuously drive the generation of OH- against its concentration gradient up to ΔpH>2. Moreover, the external addition of different anions can control the generation of OH- depending on their anion binding affinity. When anions displayed very high binding affinities towards PtII compounds, such as halides, the external anions could dissipate the pH gradient. In contrast, a further pH increase was observed for weak binding anions, such as sulfate, due to the increase of positive electric potential.
Collapse
Affiliation(s)
- Li‐Jun Chen
- School of ChemistryThe University of SydneySydneyNSW 2006Australia
| | - Xin Wu
- School of ChemistryThe University of SydneySydneyNSW 2006Australia
| | | | - Philip A. Gale
- School of ChemistryThe University of SydneySydneyNSW 2006Australia
- The University of Sydney Nano Institute (SydneyNano)The University of SydneySydneyNSW 2006Australia
| |
Collapse
|
17
|
Yao L, Li Q, Pan S, Cheng J, Liu X. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH2 Metal-Organic Framework Based Composite Membrane. Front Bioeng Biotechnol 2022; 10:901507. [PMID: 35528210 PMCID: PMC9068881 DOI: 10.3389/fbioe.2022.901507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
Salinity-gradient directed osmotic energy between seawater and river water has been widely considered as a promising clean and renewable energy source, as there are numerous river estuaries on our planet. In the past few decades, reverse electrodialysis (RED) technique based on cation-selective membranes has been used as the key strategy to convert osmotic energy into electricity. From this aspect, developing high-efficiency anion-selective membranes will also have great potential for capturing osmotic energy, however, remains systematically unexplored. In nature, electric eels can produce electricity from ionic gradients by using their “sub-nanoscale” protein ion channels to transport ions selectively. Inspired by this, here we developed a UiO-66-NH2 metal-organic framework (MOF) based anion-selective composite membrane with sub-nanochannels, and achieved high-performance salinity-gradient power generation by mixing artificial seawater (0.5 M NaCl) and river water (0.01 M NaCl). The UiO-66-NH2 metal-organic framework based composite membranes can be easily and economically fabricated with dense structure and long-term working stability in saline, and its performance of power generation can also be adjusted by pH to enhance the surface charge density of the MOF sub-nanochannels. This study will inspire the exploitation of MOFs for investigating the sub-nanochannel directed high-performance salinity-gradient energy harvesting systems based on anion-selective ion transport.
Collapse
Affiliation(s)
- Lu Yao
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, China
| | - Qi Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Shangfa Pan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Junmei Cheng
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, China
- *Correspondence: Junmei Cheng, ; Xueli Liu,
| | - Xueli Liu
- College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao, China
- *Correspondence: Junmei Cheng, ; Xueli Liu,
| |
Collapse
|
18
|
Abstract
Both biological and artificial membrane transporters mediate passive transmembrane ion flux predominantly via either channel or carrier mechanisms, tightly regulating the transport of materials entering and exiting the cell. One early elegant example unclassifiable as carriers or channels was reported by Smith who derivatized a phospholipid molecule into an anion transporter, facilitating membrane transport via a two-station relay mechanism (Smith et al. J. Am. Chem. Soc. 2008, 130, 17274-17275). Our journey toward blurring or even breaking the boundaries defined by the carrier and channel mechanisms starts in January of 2018 when seeing a child swinging on the swing at the playground park. Since then, I have been wondering whether we could build a nanoscale-sized molecular swing able to perform the swing function at the molecular level to induce transmembrane ion flux. Such research journey culminates in several membrane-active artificial molecular machines, including molecular swings, ion fishers, ion swimmers, rotors, tetrapuses and dodecapuses that permeabilize the membrane via swinging, ion-fishing, swimming, rotating, or swing-relaying actions, respectively. Except for molecular ion swimmers, these unconventional membrane transporters in their most stable states readily span across the entire membrane in a way akin to channels. With built-in flexible arms that can swing or bend in the dynamic membrane environment, they transport ions via constantly changing ion permeation pathways that are more defined than carriers but less defined than channels. Applying the same benzo-crown ether groups as the sole ion-binding and -transporting units, these transporters however differ immensely in ion transport property. While the maximal K+ transport activity is achieved by the molecular swing also termed "motional channel" that displays an EC50 value of 0.021 mol % relative to lipid and transports K+ ions at rate 27% faster than gramicidin A, the highest K+/Na+ selectivity of 18.3 is attained by the molecular ion fisher, with the highest Na+/K+ selectivity of 13.7 by the molecular dodecapus. Having EC50 values of 0.49-1.60 mol % and K+/Na+ values of 1.1-6.3, molecular rotors and tetrapuses are found to be generally active but weakly to moderately K+-selective. For molecular ion swimmers that contain 10 to 14 carbon atom alkyl linkers, they all turn out to be highly active (EC50 = 0.18-0.41 mol %) and highly selective (RK+/RNa+ = 7.0-9.5) transporters. Of special note are crown ether-appended molecular dodecapuses that establish the C60-fullerene core as an excellent platform to allow for a direct translation of solution binding affinity to transmembrane ion transport selectivity, providing a de novo basis for rationally designing artificial ion transporters with high transport selectivity. Considering remarkable cytotoxic activities displayed by molecular swings and ion swimmers, the varied types of existing and emerging unconventional membrane transporters with enhanced activities and selectivities eventually might lead to medical benefits in the future.
Collapse
Affiliation(s)
- Jie Shen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Changliang Ren
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| |
Collapse
|
19
|
Picci G, Marchesan S, Caltagirone C. Ion Channels and Transporters as Therapeutic Agents: From Biomolecules to Supramolecular Medicinal Chemistry. Biomedicines 2022; 10:biomedicines10040885. [PMID: 35453638 PMCID: PMC9032600 DOI: 10.3390/biomedicines10040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Ion channels and transporters typically consist of biomolecules that play key roles in a large variety of physiological and pathological processes. Traditional therapies include many ion-channel blockers, and some activators, although the exact biochemical pathways and mechanisms that regulate ion homeostasis are yet to be fully elucidated. An emerging area of research with great innovative potential in biomedicine pertains the design and development of synthetic ion channels and transporters, which may provide unexplored therapeutic opportunities. However, most studies in this challenging and multidisciplinary area are still at a fundamental level. In this review, we discuss the progress that has been made over the last five years on ion channels and transporters, touching upon biomolecules and synthetic supramolecules that are relevant to biological use. We conclude with the identification of therapeutic opportunities for future exploration.
Collapse
Affiliation(s)
- Giacomo Picci
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.M.); (C.C.)
| | - Claudia Caltagirone
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
- Correspondence: (S.M.); (C.C.)
| |
Collapse
|
20
|
Chen L, Wu X, Gilchrist AM, Gale PA. Organoplatinum Compounds as Anion‐Tuneable Uphill Hydroxide Transporters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li‐Jun Chen
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Xin Wu
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | | | - Philip A. Gale
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute (SydneyNano) The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
21
|
Miao M, Shao X, Cai W. Conformational Change from U- to I-Shape of Ion Transporters Facilitates K + Transport across Lipid Bilayers. J Phys Chem B 2022; 126:1520-1528. [PMID: 35142530 DOI: 10.1021/acs.jpcb.1c09423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated, at the atomic level, the ion-fishing mechanism underlying the ion transport across membranes mediated by an artificial ion transporter composed of a hydroxyl-rich cholesterol group, a flexible alkyl chain, and a crown ether. Our results show that the transporter can spontaneously insert into the membrane and switch between the folded (U-shaped) and extended (I-shaped) conformations. The free-energy profile associated with the conformational transition indicates that compared with the U-shaped conformation of the transporter, the I-shaped one is thermodynamically more favorable. Furthermore, the free-energy profiles describing the ion translocation reveal that the transporter capturing the ion in U-shape on one side of the membrane and releasing it in I-shape on the other side constitutes a key way for the highly efficient transport of K+ ions. We present herewith a rigorous and rational framework to decipher the detailed ion-fishing mechanism of transmembrane ion transport with exceptionally high activity.
Collapse
Affiliation(s)
- Mengyao Miao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Yang J, Yu G, Sessler JL, Shin I, Gale PA, Huang F. Artificial transmembrane ion transporters as potential therapeutics. Chem 2021. [DOI: 10.1016/j.chempr.2021.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Shen J, Han JJY, Ye R, Zeng H. Molecular rotors as a class of generally highly active ion transporters. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1082-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
25
|
Roy A, Shen J, Joshi H, Song W, Tu YM, Chowdhury R, Ye R, Li N, Ren C, Kumar M, Aksimentiev A, Zeng H. Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons. NATURE NANOTECHNOLOGY 2021; 16:911-917. [PMID: 34017100 DOI: 10.1038/s41565-021-00915-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The outstanding capacity of aquaporins (AQPs) for mediating highly selective superfast water transport1-7 has inspired recent development of supramolecular monovalent ion-excluding artificial water channels (AWCs). AWC-based bioinspired membranes are proposed for desalination, water purification and other separation applications8-18. While some recent progress has been made in synthesizing AWCs that approach the water permeability and ion selectivity of AQPs, a hallmark feature of AQPs-high water transport while excluding protons-has not been reproduced. We report a class of biomimetic, helically folded pore-forming polymeric foldamers that can serve as long-sought-after highly selective ultrafast water-conducting channels with performance exceeding those of AQPs (1.1 × 1010 water molecules per second for AQP1), with high water-over-monovalent-ion transport selectivity (~108 water molecules over Cl- ion) conferred by the modularly tunable hydrophobicity of the interior pore surface. The best-performing AWC reported here delivers water transport at an exceptionally high rate, namely, 2.5 times that of AQP1, while concurrently rejecting salts (NaCl and KCl) and even protons.
Collapse
Affiliation(s)
- Arundhati Roy
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | - Jie Shen
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Woochul Song
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yu-Ming Tu
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Ruijuan Ye
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Ning Li
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | | | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huaqiang Zeng
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China.
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
26
|
Shen J, Ye R, Zeng H. Crystal Packing‐Guided Construction of Hetero‐Oligomeric Peptidic Ensembles as Synthetic 3‐in‐1 Transporters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Shen
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| | - Ruijuan Ye
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| | - Huaqiang Zeng
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| |
Collapse
|
27
|
|
28
|
Shen J, Ye R, Zeng H. Crystal Packing-Guided Construction of Hetero-Oligomeric Peptidic Ensembles as Synthetic 3-in-1 Transporters. Angew Chem Int Ed Engl 2021; 60:12924-12930. [PMID: 33755290 DOI: 10.1002/anie.202101489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Strategies to generate heteromeric peptidic ensembles via a social self-sorting process are limited. Herein, we report a crystal packing-inspired social self-sorting strategy broadly applicable to diverse types of H-bonded peptidic frameworks. Specifically, a crystal structure of H-bonded alkyl chain-appended monopeptides reveals an inter-chain separation distance of 4.8 Å dictated by the H-bonded amide groups, which is larger than 4.1 Å separation distance desired by the tightly packed straight alkyl chains. This incompatibility results in loosely packed alkyl chains, prompting us to investigate and validate the feasibility of applying bulky tert-butyl groups, modified with an anion-binding group, to alternatively interpenetrate the straight alkyl chains, modified with a crown ether group. Structurally, this social self-sorting approach generates highly stable hetero-oligomeric ensembles, having alternated anion- and cation-binding units vertically aligned to the same side. Functionally, these hetero-oligomeric ensembles promote transmembrane transport of cations, anions and more interestingly zwitterionic species such as amino acids.
Collapse
Affiliation(s)
- Jie Shen
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| | - Ruijuan Ye
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| | - Huaqiang Zeng
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
29
|
Chen H, Liu Y, Cheng X, Fang S, Sun Y, Yang Z, Zheng W, Ji X, Wu Z. Self‐Assembly of Size‐Controlled
m
‐Pyridine–Urea Oligomers and Their Biomimetic Chloride Ion Channels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Yajing Liu
- School of Pharmaceutical Science Capital Medical University Beijing 100069 China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Senbiao Fang
- School of Computer Science and Engineering Central South University Changsha 410012 China
| | - Yuli Sun
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Zequn Yang
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Wei Zheng
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Xunming Ji
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
- Institute of Hypoxia Medicine Xuanwu Hospital Capital Medical University Beijing 100053 China
| | - Zehui Wu
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| |
Collapse
|
30
|
Zhang H, Guo Y, Chipot C, Cai W, Shao X. Nanomachine-Assisted Ion Transport Across Membranes: From Mechanism to Rational Design and Applications. J Phys Chem Lett 2021; 12:3281-3287. [PMID: 33764777 DOI: 10.1021/acs.jpclett.1c00525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Assisting ion transport across membranes by means of sophisticated molecular machines has promising applications in the treatment of diseases induced by dysregulated ion transport. To develop such nanoscale devices imbued with specific functions, rational de novo design, upstream from costly syntheses, is eminently desirable but would require the atomic detail of the translocation mechanism, which is still largely missing. We have explored the full ion capture-transport-release process over an aggregate simulation time of 60 μs, employing leading-edge enhanced-sampling algorithms to disentangle with unprecedented detail the mechanism that underlies ion transport mediated by a membrane-spanning [2]rotaxane composed of an ion carrier linked to a wheel threaded onto an axle. Beyond validating the reliability of our methodology through careful examination of the clockwork of a documented nanomachine, we put forth an original pH-controlled nano-object that can assist transient unidirectional ion transport across membranes.
Collapse
Affiliation(s)
- Hong Zhang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yichang Guo
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, UMR no. 7019, Université de Lorraine, BP 70239, Vandoeuvre-lès-Nancy F-54506, France
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Chen H, Liu Y, Cheng X, Fang S, Sun Y, Yang Z, Zheng W, Ji X, Wu Z. Self-Assembly of Size-Controlled m-Pyridine-Urea Oligomers and Their Biomimetic Chloride Ion Channels. Angew Chem Int Ed Engl 2021; 60:10833-10841. [PMID: 33624345 DOI: 10.1002/anie.202102174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/06/2023]
Abstract
The m-pyridine urea (mPU) oligomer was constructed by using the intramolecular hydrogen bond formed by the pyridine nitrogen atom and the NH of urea and the intermolecular hydrogen bond of the terminal carbonyl group and the NH of urea. Due to the synergistic effect of hydrogen bonds, mPU oligomer folds and exhibits strong self-assembly behaviour. Affected by folding, mPU oligomer generates a twisted plane, and one of its important features is that the carbonyl group of the urea group orientates outwards from the twisted plane, while the NHs tend to direct inward. This feature is beneficial to NH attraction for electron-rich species. Among them, the trimer self-assembles into helical nanotubes, and can efficiently transport chloride ions. This study provides a novel and efficient strategy for constructing self-assembled biomimetic materials for electron-rich species transmission.
Collapse
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Senbiao Fang
- School of Computer Science and Engineering, Central South University, Changsha, 410012, China
| | - Yuli Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Zequn Yang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China.,Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
32
|
Zhang H, Ye R, Mu Y, Li T, Zeng H. Small Molecule-Based Highly Active and Selective K + Transporters with Potent Anticancer Activities. NANO LETTERS 2021; 21:1384-1391. [PMID: 33464086 DOI: 10.1021/acs.nanolett.0c04134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report here a novel class of cation transporters with extreme simplicity, opening a whole new dimension of scientific research for finding small molecule-based cation transporters for therapeutic applications. Comprising three modular components (a headgroup, a flexible alkyl chain-derived body, and a crown ether-derived foot for ion binding), these transporters efficiently (EC50 = 0.18-0.41 mol % relative to lipid) and selectively (K+/Na+ selectivity = 7.0-9.5) move K+ ions across the membrane. Importantly, the most active (EC50 = 0.18-0.22 mol %) and highly selective series of transporters A12, B12, and C12 concurrently possess potent anticancer activities with IC50 values as low as 4.35 ± 0.91 and 6.00 ± 0.13 μM toward HeLa and PC3 cells, respectively. Notably, a mere replacement of the 18-crown-6 unit in the structure with 12-crown-4 or 15-crown-5 units completely annihilates the cation-transporting ability.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Ruijuan Ye
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Tianhu Li
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Huaqiang Zeng
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| |
Collapse
|
33
|
Li N, Chen F, Shen J, Zhang H, Wang T, Ye R, Li T, Loh TP, Yang YY, Zeng H. Buckyball-Based Spherical Display of Crown Ethers for De Novo Custom Design of Ion Transport Selectivity. J Am Chem Soc 2020; 142:21082-21090. [PMID: 33274928 DOI: 10.1021/jacs.0c09655] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Searching for membrane-active synthetic analogues that are structurally simple yet functionally comparable to natural channel proteins has been of central research interest in the past four decades, yet custom design of the ion transport selectivity still remains a grand challenge. Here we report on a suite of buckyball-based molecular balls (MBs), enabling transmembrane ion transport selectivity to be custom designable. The modularly tunable MBm-Cn (m = 4-7; n = 6-12) structures consist of a C60-fullerene core, flexible alkyl linkers Cn (i.e., C6 for n-C6H12 group), and peripherally aligned benzo-3m-crown-m ethers (i.e., m = 4 for benzo-12-crown-4) as ion-transporting units. Screening a matrix of 16 such MBs, combinatorially derived from four different crown units and four different Cn linkers, intriguingly revealed that their transport selectivity well resembles the intrinsic ion binding affinity of the respective benzo-crown units present, making custom design of the transport selectivity possible. Specifically, MB4s, containing benzo-12-crown-4 units, all are Li+-selective in transmembrane ion transport, with the most active MB4-C10 exhibiting an EC50(Li+) value of 0.13 μM (corresponding to 0.13 mol % of the lipid present) while excluding all other monovalent alkali-metal ions. Likewise, the most Na+ selective MB5-C8 and K+ selective MB6-C8 demonstrate high Na+/K+ and K+/Na+ selectivity values of 13.7 and 7.8, respectively. For selectivity to Rb+ and Cs+ ions, the most active MB7-C8 displays exceptionally high transport efficiencies, with an EC50(Rb+) value of 105 nM (0.11 mol %) and an EC50(Cs+) value of 77 nM (0.079 mol %).
Collapse
Affiliation(s)
- Ning Li
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Feng Chen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Jie Shen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Hao Zhang
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China
| | - Tianxiang Wang
- School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Ruijuan Ye
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China
| | - Tianhu Li
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China
| | - Teck Peng Loh
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China.,School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #07-01, The Nanos, Singapore 138669
| | - Huaqiang Zeng
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China
| |
Collapse
|
34
|
Engineering of stimuli-responsive lipid-bilayer membranes using supramolecular systems. Nat Rev Chem 2020; 5:46-61. [PMID: 37118103 DOI: 10.1038/s41570-020-00233-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
The membrane proteins found in nature control many important cellular functions, including signal transduction and transmembrane ion transport, and these, in turn, are regulated by external stimuli, such as small molecules, membrane potential and light. Membrane proteins also find technological applications in fields ranging from optogenetics to synthetic biology. Synthetic supramolecular analogues have emerged as a complementary method to engineer functional membranes. This Review describes stimuli-responsive supramolecular systems developed for the control of ion transport, signal transduction and catalysis in lipid-bilayer-membrane systems. Recent advances towards achieving spatio-temporal control over activity in artificial and living cells are highlighted. Current challenges, the scope, limitations and future potential to exploit supramolecular systems for engineering stimuli-responsive lipid-bilayer membranes are discussed.
Collapse
|
35
|
Ariga K. The evolution of molecular machines through interfacial nanoarchitectonics: from toys to tools. Chem Sci 2020; 11:10594-10604. [PMID: 34094314 PMCID: PMC8162416 DOI: 10.1039/d0sc03164j] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Molecular machines are often regarded as molecular artworks and sometimes as fancy molecular toys. However, many researchers strive to operate molecular machines as useful tools for realistic practical applications. In this perspective article, shifting the working environment of molecular machines from solution to interfacial media is discussed from the viewpoint of their evolution from scientific toys to useful tools. Following a short description of traditional research into molecular machines in solution and their nanotechnological manipulation on clean solid surfaces, pioneering research into molecular machine operation at dynamic interfaces, such as liquid surfaces, is discussed, along with cutting-edge research into molecular machine functions in living cells and their models. Biomolecular machines within organisms are the products of evolution over billions of years. We may nanoarchitect such sophisticated functional systems with artificial molecular machines within much shorter periods.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| |
Collapse
|
36
|
Shen FF, Dai SY, Wong NK, Deng S, Wong AST, Yang D. Mediating K +/H + Transport on Organelle Membranes to Selectively Eradicate Cancer Stem Cells with a Small Molecule. J Am Chem Soc 2020; 142:10769-10779. [PMID: 32441923 DOI: 10.1021/jacs.0c02134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecules that are capable of disrupting cellular ion homeostasis offer unique opportunities to treat cancer. However, previously reported synthetic ion transporters showed limited value, as promiscuous ionic disruption caused toxicity to both healthy cells and cancer cells indiscriminately. Here we report a simple yet efficient synthetic K+ transporter that takes advantage of the endogenous subcellular pH gradient and membrane potential to site-selectively mediate K+/H+ transport on the mitochondrial and lysosomal membranes in living cells. Consequent mitochondrial and lysosomal damages enhanced cytotoxicity to chemo-resistant ovarian cancer stem cells (CSCs) via apoptosis induction and autophagy suppression with remarkable selectivity (up to 47-fold). The eradication of CSCs blunted tumor formation in mice. We believe this strategy can be exploited in the structural design and applications of next-generation synthetic cation transporters for the treatment of cancer and other diseases related to dysfunctional K+ channels.
Collapse
Affiliation(s)
- Fang-Fang Shen
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Sheng-Yao Dai
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Nai-Kei Wong
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Shan Deng
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Alice Sze-Tsai Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
37
|
Zeng LZ, Zhang H, Wang T, Li T. Enhancing K+ transport activity and selectivity of synthetic K+ channels via electron-donating effects. Chem Commun (Camb) 2020; 56:1211-1214. [DOI: 10.1039/c9cc08396k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electron-withdrawing groups enhance ion transport activity by 160% and selectivity by >50%, leading to high K+/Na+ selectivity of 14.0.
Collapse
Affiliation(s)
| | - Hao Zhang
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Tianxiang Wang
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Tianhu Li
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| |
Collapse
|
38
|
Ye R, Ren C, Shen J, Li N, Chen F, Roy A, Zeng H. Molecular Ion Fishers as Highly Active and Exceptionally Selective K + Transporters. J Am Chem Soc 2019; 141:9788-9792. [PMID: 31184884 DOI: 10.1021/jacs.9b04096] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report here a unique ion-fishing mechanism as an alternative to conventional carrier or channel mechanisms for mediating highly efficient and exceptionally selective transmembrane K+ flux. The molecular framework, underlying the fishing mechanism and comprising a fishing rod, a fishing line and a fishing bait/hook, is simple yet modularly modifiable. This feature enables rapid construction of a series of molecular ion fishers with distinctively different ion transport patterns. While more efficient ion transports are generally achieved by using 18-crown-6 as the fishing bait/hook, ion transport selectivity (K+/Na+) critically depends on the length of the fishing line, with the most selective MF6-C14 exhibiting exceptionally high selectivity (K+/Na+ = 18) and high activity ( EC50 = 1.1 mol % relative to lipid).
Collapse
Affiliation(s)
- Ruijuan Ye
- College of Chemistry and Bioengineering , Hunan University of Science and Engineering , Yongzhou , Hunan 425100 , China
| | - Changliang Ren
- The NanoBio Lab , 31 Biopolis Way , The Nanos 138669 , Singapore
| | - Jie Shen
- The NanoBio Lab , 31 Biopolis Way , The Nanos 138669 , Singapore
| | - Ning Li
- The NanoBio Lab , 31 Biopolis Way , The Nanos 138669 , Singapore
| | - Feng Chen
- The NanoBio Lab , 31 Biopolis Way , The Nanos 138669 , Singapore
| | - Arundhati Roy
- The NanoBio Lab , 31 Biopolis Way , The Nanos 138669 , Singapore
| | - Huaqiang Zeng
- The NanoBio Lab , 31 Biopolis Way , The Nanos 138669 , Singapore
| |
Collapse
|