1
|
Beleh OM, Alomari S, Weix DJ. Synthesis of Stereodefined Enones from the Cross-Electrophile Coupling of Activated Acrylic Acids with Alkyl Bromides. Org Lett 2024; 26:7217-7221. [PMID: 39162620 PMCID: PMC11516134 DOI: 10.1021/acs.orglett.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We report a one-pot synthesis of (E)-trisubstituted enones from acrylic acids through the in situ generation of a 2-pyridyl ester and subsequent cross-electrophile coupling with a nickel catalyst under reducing conditions. The scope of trisubstituted enones is broad and compatible with functionality that can be challenging in established olefination techniques. We highlight conditions necessary to suppress undesired side reactions from the α,β-unsaturated carbonyl and improve cross-electrophile coupling approaches to prepare enones.
Collapse
Affiliation(s)
- Omar M. Beleh
- University of Wisconsin–Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
2
|
Wang CH, Guo JD, Yu JX, Qiao J, Chen B, Tung CH, Wu LZ. Photocatalytic Cross-Coupling of Aldehydes and Alkenes for Aryl Vinyl Ketones by a Single Catalyst. Org Lett 2024; 26:6927-6932. [PMID: 39106055 DOI: 10.1021/acs.orglett.4c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Herein is the first example of photocatalytic cross-coupling of alkenes with aldehydes by a single catalyst without an external photosensitizer and any additives. Irradiation of the aromatic aldehyde and cobaloxime catalyst results in the formation of an acyl radical, which undergoes radical addition with alkene or indole and subsequently β-H elimination to afford alkenyl ketone. The reaction features cheap and readily available raw materials, a broad substrate scope, and mild conditions, even for late-stage derivatization of bioactive compounds.
Collapse
Affiliation(s)
- Chen-Hong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jia-Dong Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ji-Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jia Qiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Mukherjee U, Shah JA, Musaev DG, Ngai MY. Harnessing Bromo/Acyloxy Transposition (BrAcT) and Excited-State Copper Catalysis for Styrene Difunctionalization. J Am Chem Soc 2024; 146:21271-21279. [PMID: 39042434 PMCID: PMC11542872 DOI: 10.1021/jacs.4c08984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
1,2-Difunctionalization of styrenes, adding two distinct functional groups across the C═C double bond, has emerged as a powerful tool for enhancing molecular complexity. Herein, we report the development of a regioconvergent β-acyloxylation-α-ketonylation of styrenes through bromo/acyloxy transposition (BrAcT) and excited-state copper catalysis. This approach is amenable to gram-scale synthesis and tolerates a wide range of functional groups and complex molecular frameworks, including derivatives of natural products and marketed drugs. Our experimental and computational studies suggest a unique mechanism featuring a dynamic, ionic BrAcT process and excited-state copper-catalyzed redox reactions. We anticipate that this BrAcT process could serve as a broadly applicable and versatile strategy for β-acyloxylation-α-functionalization of styrenes, creating valuable intermediates for preparing new pharmaceuticals, agrochemicals, and functional materials.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jagrut A Shah
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
4
|
Koo Y, Hong S. Nickel/photoredox-catalyzed three-component silylacylation of acrylates via chlorine photoelimination. Chem Sci 2024; 15:7707-7713. [PMID: 38784747 PMCID: PMC11110154 DOI: 10.1039/d4sc02164a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The extensive utility of organosilicon compounds across a wide range of disciplines has sparked significant interest in their efficient synthesis. Although catalytic 1,2-silyldifunctionalization of alkenes provides a promising method for the assembly of intricate organosilicon frameworks with atom and step economy, its advancement is hindered by the requirement of an external hydrogen atom transfer (HAT) agent in photoredox catalysis. Herein, we disclose an efficient three-component silylacylation of α,β-unsaturated carbonyl compounds, leveraging a synergistic nickel/photoredox catalysis with various hydrosilanes and aroyl chlorides. This method enables the direct conversion of acrylates into valuable building blocks that contain both carbonyl and silicon functionalities through a single, redox-neutral process. Key to this reaction is the precise activation of the Si-H bond, achieved through chlorine radical-induced HAT, enabled by the photoelimination of a Ni-Cl bond. Acyl chlorides serve a dual role, functioning as both acylating agents and chloride donors. Our methodology is distinguished by its mild conditions and extensive substrate adaptability, significantly enhancing the late-stage functionalization of pharmaceuticals.
Collapse
Affiliation(s)
- Yejin Koo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
5
|
Zhou Y, Jiang Q, Cheng Y, Hu M, Duan XH, Liu L. Photoredox-Catalyzed Acylchlorination of α-CF 3 Alkenes with Acyl Chloride and Application as Masked Access to β-CF 3-enones. Org Lett 2024; 26:2656-2661. [PMID: 38526445 DOI: 10.1021/acs.orglett.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
We disclose a photocatalytic strategy that simultaneously addresses the construction of trifluoromethylated quaternary carbon centers and the preparation of β-CF3-enones through radical difunctionalization of α-CF3 alkenes with acyl chlorides. This method is characterized by its broad functional group compatibility, high efficiency, and atom economy. The versatility of this transformation is poised to broaden the applications of α-CF3 alkenes, providing new pathways for the rapid assembly of structurally diverse fluorinated compounds.
Collapse
Affiliation(s)
- Youkang Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qi Jiang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yangyang Cheng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, China
| | - Mingyou Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Shah JA, Banerjee A, Mukherjee U, Ngai MY. Merging Excited-State Copper Catalysis and Triplet Nitro(hetero)arenes for Direct Synthesis of 2-Aminophenol Derivatives. Chem 2024; 10:686-697. [PMID: 38405332 PMCID: PMC10882994 DOI: 10.1016/j.chempr.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Nitro(hetero)arene derivatives are essential commodity chemicals used in various products, such as drugs, polymers, and agrochemicals. In this study, we leverage the excited-state reactivities of copper catalysts and nitro(hetero)arenes, and the Umpolung reactivity of acyl radicals to convert readily available nitro(hetero)arenes directly to valuable 2-aminophenol derivatives, which are important scaffolds in many top-selling pharmaceuticals. This reaction is applicable to a variety of nitro(hetero)arenes, acyl chlorides, and late-stage modifications of complex molecules, making it a useful tool for the discovery of new functional molecules. Mechanistic studies, including radical trapping experiments, Stern Volmer quenching studies, light ON/OFF experiments, and 18O-labeling studies, suggest a reaction mechanism involving photoexcitation of a copper complex, diradical couplings, and an in-cage contact ion pair (CIP) migration. Our findings offer a streamlined protocol for synthesizing essential pharmacophores from nitro(hetero)arenes while simultaneously advancing knowledge in excited-state and radical chemistry and stimulating new reaction design and development.
Collapse
Affiliation(s)
- Jagrut A. Shah
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
| | - Arghya Banerjee
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
| | - Upasana Mukherjee
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Ming-Yu Ngai
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
- Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, United States
- Lead Contact
| |
Collapse
|
7
|
Cen FT, Sun Y, Qu JP, Kang YB. Photocatalytic Redox-Neutral Alkoxyacylation of Alkenes. Org Lett 2023; 25:8997-9001. [PMID: 38060991 DOI: 10.1021/acs.orglett.3c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
β-Alkoxyketones are important building blocks in organic synthesis. By utilizing CBZ6, with an oxidative potential of -2.16 V (vs the saturated calomel electrode), as a redox-neutral photocatalyst, alkoxyacylation of olefins was accomplished under the irradiation of visible light via a cationic intermediate. It involves the addition of an acyl radical to olefin to form a radical intermediate and the following oxidation of the radical intermediate to the benzyl cationic intermediate that is captured by alkoxy anions. This process provides concise and practical access to the β-functionalized ketones.
Collapse
Affiliation(s)
- Fu-Tong Cen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Kim J, Müller S, Ritter T. Synthesis of α-Branched Enones via Chloroacylation of Terminal Alkenes. Angew Chem Int Ed Engl 2023; 62:e202309498. [PMID: 37786992 DOI: 10.1002/anie.202309498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Here, we show the conversion of unactivated alkenes into α-branched enones via regioselective chloroacylation with acyl chlorides. The method relies upon the initial in situ generation of chlorine radicals directly from the acyl chloride precursor under cooperative nickel/photoredox catalysis. Subsequent HCl elimination provides enones and α,β-unsaturated esters that are not accessible via the conventional acylation approaches that provide the other, linear constitutional isomer.
Collapse
Affiliation(s)
- Jungwon Kim
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Sven Müller
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Wang T, Zong YY, Feng WZ, Wu LZ, Liu Q. Visible-Light-Mediated Generation of Acyl Radicals from Triazine Esters. J Org Chem 2023; 88:12698-12708. [PMID: 37589746 DOI: 10.1021/acs.joc.3c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Acyl radicals are significant synthetic active species in organic synthesis. However, their generation via green and compatible methods remains challenging. Herein, we report an unprecedented visible-light-mediated approach for generating aryl acyl radicals from readily available triazine esters. This protocol with mild and redox-neutral conditions affords a diverse array of oxindoles attached to alcohol groups in a single operation. The recycling of leaving groups and a range of visible-light-mediated reactions using triazine ester as an acyl radical precursor demonstrate the synthetic potential of this methodology.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yuan-Yuan Zong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wan-Zhong Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Saga Y, Nakayama Y, Watanabe T, Kondo M, Masaoka S. Visible-Light-Driven Hydroacylation of Unactivated Alkenes Using Readily Available Acyl Donors. Org Lett 2023; 25:1136-1141. [PMID: 36792085 DOI: 10.1021/acs.orglett.2c04337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Herein, we report visible-light-driven hydroacylation of unactivated alkenes. We employed benzimidazolines as new acyl donors and achieved perfect regioselectivity, high functional-group tolerance, and excellent substrate generality. We also performed mechanistic experiments to elucidate the detailed reaction mechanism. This is the first example of (1) hydroacylation of unactivated alkenes using (2) easily prepared acyl donors under (3) visible-light irradiation. Our findings offer a new strategy to synthesize a wide variety of ketones under mild conditions.
Collapse
Affiliation(s)
- Yutaka Saga
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusuke Nakayama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taito Watanabe
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Bao L, Wang ZX, Chen XY. Photoinduced N-Heterocyclic Nitrenium-Catalyzed Single Electron Reduction of Acyl Fluorides for Phenanthridine Synthesis. Org Lett 2023; 25:565-568. [PMID: 36637257 DOI: 10.1021/acs.orglett.3c00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Acyl fluorides are versatile reagents in organic synthesis. However, there is no precedent to employ acyl fluorides as acyl radical precursors. We herein report an N-heterocyclic nitrenium iodide salt-catalyzed photoreduction of acyl fluorides to produce acyl radicals, which could react with 2-isocyanobiaryls to afford various carbonyl phenanthridines.
Collapse
Affiliation(s)
- Lei Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
12
|
Sarkar S, Banerjee A, Ngai MY. Synthesis of Ketonylated Carbocycles via Excited-State Copper-Catalyzed Radical Carbo-Aroylation of Unactivated Alkenes. ChemCatChem 2023; 15:e202201128. [PMID: 38105796 PMCID: PMC10723085 DOI: 10.1002/cctc.202201128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 12/19/2023]
Abstract
Carbocycles are core skeletons in natural and synthetic organic compounds possessing a wide diversity of important biological activities. Herein, we report the development of an excited-state copper-catalyzed radical carbo-aroylation of unactivated alkenes to synthesize ketonylated tetralins, di- and tetrahydrophenanthrenes, and cyclopentane derivatives. The reaction is operationally simple and features mild reaction conditions that tolerate a broad range of functional groups. Preliminary mechanistic studies suggest a reaction pathway beginning with photoexcitation of [CuI-BINAP]2 and followed by a single electron transfer (SET), radical aroylation of unactivated alkenes, radical cyclization, and re-aromatization, affording the desired ketonylated carbocycles.
Collapse
Affiliation(s)
- Satavisha Sarkar
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794-3400, USA
| | - Arghya Banerjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794-3400, USA
| | - Ming-Yu Ngai
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794-3400, USA
| |
Collapse
|
13
|
Davies AM, D Hernandez R, Tunge JA. Direct Aroylation of Olefins through a Cobalt/Photoredox-Catalyzed Decarboxylative and Dehydrogenative Coupling with α-Oxo Acids. Chemistry 2022; 28:e202202781. [PMID: 36322775 DOI: 10.1002/chem.202202781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/05/2022]
Abstract
A photoredox/cobalt dual catalytic procedure has been developed that allows benzoylation of olefins. Here the photoredox catalyst effects the decarboxylation of α-ketoacids to form benzoyl radicals. After addition of this radical to styrenes, the cobalt catalyst abstracts a H-atom. Hydrogen evolution from the putative cobalt hydride intermediate allows a Heck-like aroylation without the need for a stoichiometric oxidant. Mechanistic studies reveal that electronically different styrenes lead to a curved Hammett plot, thus suggesting a change in product-determining step in the catalytic mechanism.
Collapse
Affiliation(s)
- Alex M Davies
- Department of Chemistry, University of Kansas, 1567 Irving Hill Rd., Lawrence, KS 66045, USA
| | - Rafael D Hernandez
- Department of Chemistry, University of Kansas, 1567 Irving Hill Rd., Lawrence, KS 66045, USA
| | - Jon A Tunge
- Department of Chemistry, University of Kansas, 1567 Irving Hill Rd., Lawrence, KS 66045, USA
| |
Collapse
|
14
|
Sarkar S, Banerjee A, Shah JA, Mukherjee U, Frederiks NC, Johnson CJ, Ngai MY. Excited-State Copper-Catalyzed [4 + 1] Annulation Reaction Enables Modular Synthesis of α,β-Unsaturated-γ-Lactams. J Am Chem Soc 2022; 144:20884-20894. [PMID: 36326178 PMCID: PMC9754811 DOI: 10.1021/jacs.2c09006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Synthesis of α,β-unsaturated-γ-lactams continue to attract attention due to the importance of this structural motif in organic chemistry. Herein, we report the development of a visible-light-induced excited-state copper-catalyzed [4 + 1] annulation reaction for the preparation of a wide range of γ-H, -OH, and -OR-substituted α,β-unsaturated-γ-lactams using acrylamides as the 4-atom unit and aroyl chlorides as the 1-atom unit. This modular synthetic protocol features mild reaction conditions, broad substrate scope, and high functional group tolerance. The reaction is amenable to late-stage diversification of complex molecular architectures, including derivatives of marketed drugs. The products of the reaction can serve as versatile building blocks for further derivatization. Preliminary mechanistic studies suggest an inner-sphere catalytic cycle involving photoexcitation of the Cu(BINAP) catalyst, single-electron transfer, and capture of radical intermediates by copper species, followed by reductive elimination or protonation to give the desired γ-functionalized α,β-unsaturated-γ-lactams.
Collapse
Affiliation(s)
- Satavisha Sarkar
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Arghya Banerjee
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Jagrut A. Shah
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Upasana Mukherjee
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Nicoline C. Frederiks
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Christopher J. Johnson
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Ming-Yu Ngai
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
- Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York, 11794-3400 USA
| |
Collapse
|
15
|
Bao L, Wang ZX, Chen XY. Metal-Free Generation of Acyl Radical via Photoinduced Single-Electron Transfer from Lewis Base to Acyl Chloride. Org Lett 2022; 24:8223-8227. [DOI: 10.1021/acs.orglett.2c03339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lei Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Chinchole A, Henriquez MA, Cortes-Arriagada D, Cabrera AR, Reiser O. Iron(III)-Light-Induced Homolysis: A Dual Photocatalytic Approach for the Hydroacylation of Alkenes Using Acyl Radicals via Direct HAT from Aldehydes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anurag Chinchole
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, Bavaria 93053, Germany
| | - Marco A. Henriquez
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, Bavaria 93053, Germany
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile
| | - Diego Cortes-Arriagada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577 , Chile
| | - Alan R. Cabrera
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, Bavaria 93053, Germany
| |
Collapse
|
17
|
Zhuang SY, Tang YX, Liu JY, Chen XL, Ma JT, Wu YD, Zheng KL, Wu AX. I 2-DMSO-Mediated N-H/α-C(sp 3)-H Difunctionalization of Tetrahydroisoquinoline: Formal [2 + 2 + 1] Annulation for the Construction of Pyrrolo[2,1- a]isoquinoline Derivatives. Org Lett 2022; 24:2858-2862. [PMID: 35394795 DOI: 10.1021/acs.orglett.2c00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An I2-DMSO-mediated cascade reaction using methyl ketones and 1,2,3,4-tetrahydroisoquinolines (THIQs) as commercially available substrates has been developed for the construction of pyrrolo[2,1-a]isoquinoline derivatives. This metal-free process involves N-H/α-C(sp3)-H difunctionalization of THIQ. Two C-C bonds and one C-N bond are formed in one pot under mild conditions. Besides, a quaternary carbon center has been constructed in this transformation efficiently.
Collapse
Affiliation(s)
- Shi-Yi Zhuang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yong-Xing Tang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jin-Yi Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Kai-Lu Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, P.R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
18
|
Sahoo AK, Rakshit A, Dahiya A, Pan A, Patel BK. Visible-Light-Mediated Synthesis of Thio-Functionalized Pyrroles. Org Lett 2022; 24:1918-1923. [DOI: 10.1021/acs.orglett.2c00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Avishek Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
19
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
20
|
Banerjee A, Sarkar S, Shah JA, Frederiks NC, Bazan‐Bergamino EA, Johnson CJ, Ngai M. Excited‐State Copper Catalysis for the Synthesis of Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arghya Banerjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Satavisha Sarkar
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Jagrut A. Shah
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Nicoline C. Frederiks
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Emmanuel A. Bazan‐Bergamino
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Christopher J. Johnson
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Ming‐Yu Ngai
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| |
Collapse
|
21
|
Banerjee A, Sarkar S, Shah JA, Frederiks NC, Bazan-Bergamino EA, Johnson CJ, Ngai MY. Excited-State Copper Catalysis for the Synthesis of Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202113841. [PMID: 34783154 PMCID: PMC8761179 DOI: 10.1002/anie.202113841] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 01/23/2023]
Abstract
Heterocycles are one of the largest groups of organic moieties with significant medicinal, chemical, and industrial applications. Herein, we report the discovery and development of visible-light-induced, synergistic excited-state copper catalysis using a combination of Cu(IPr)I as a catalyst and rac-BINAP as a ligand, which produces more than 10 distinct classes of heterocycles. The reaction tolerates a broad array of functional groups and complex molecular scaffolds, including derivatives of peptides, natural products, and marketed drugs. Preliminary mechanistic investigation suggests in situ generations of [Cu(BINAP)2 ]+ and [Cu(IPr)2 ]+ catalysts that work cooperatively under visible-light irradiation to facilitate catalytic carbo-aroylation of unactivated alkenes, affording a wide range of useful heterocycles.
Collapse
Affiliation(s)
- Arghya Banerjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Satavisha Sarkar
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Jagrut A. Shah
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Nicoline C. Frederiks
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Emmanuel A. Bazan-Bergamino
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Christopher J. Johnson
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Ming-Yu Ngai
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
22
|
Spielvogel EH, Stevenson BG, Stringer MJ, Hu Y, Fredin LA, Swierk JR. Insights into the Mechanism of an Allylic Arylation Reaction via Photoredox-Coupled Hydrogen Atom Transfer. J Org Chem 2021; 87:223-230. [PMID: 34882427 DOI: 10.1021/acs.joc.1c02235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite widespread use as a synthetic method, the precise mechanism and kinetics of photoredox coupled hydrogen atom transfer (HAT) reactions remain poorly understood. This results from a lack of detailed kinetic information as well as the identification of side reactions and products. In this report, a mechanistic study of a prototypical tandem photoredox/HAT reaction coupling cyclohexene and 1,4-dicyanobenzene (DCB) using an Ir(ppy)3 photocatalyst and thiol HAT catalyst is reported. Through a combination of electrochemical, photochemical, and spectroscopic measurements, key unproductive pathways and side products are identified and rate constants for the main chemical steps are extracted. The reaction quantum yield was found to decline rapidly over the course of the reaction. An unreported cyanohydrin side product was identified and thought to play a key role as a proton acceptor in the reaction. Transient absorption spectroscopy (TAS) and quantum chemical calculations suggested a reaction mechanism that involves radical addition of the nucleophilic DCB radical anion to cyclohexene, with cooperative HAT occurring as the final step to regenerate the alkene. Kinetic modeling of the reaction, using rate constants derived from TAS, demonstrates that the efficiency of the reaction is limited by parasitic absorption and unproductive quenching between excited Ir(ppy)3 and the cyanohydrin photoproduct.
Collapse
Affiliation(s)
- Ethan H Spielvogel
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Bernard G Stevenson
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Michael J Stringer
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Yue Hu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - John R Swierk
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| |
Collapse
|
23
|
Chen JQ, Tu X, Tang Q, Li K, Xu L, Wang S, Ji M, Li Z, Wu J. Efficient access to aliphatic esters by photocatalyzed alkoxycarbonylation of alkenes with alkyloxalyl chlorides. Nat Commun 2021; 12:5328. [PMID: 34493725 PMCID: PMC8423752 DOI: 10.1038/s41467-021-25628-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
Aliphatic esters are essential constituents of biologically active compounds and versatile chemical intermediates for the synthesis of drugs. However, their preparation from readily available olefins remains challenging. Here, we report a strategy to access aliphatic esters from olefins through a photocatalyzed alkoxycarbonylation reaction. Alkyloxalyl chlorides, generated in situ from the corresponding alcohols and oxalyl chloride, are engaged as alkoxycarbonyl radical fragments under photoredox catalysis. This transformation tolerates a broad scope of electron-rich and electron-deficient olefins and provides the corresponding β-chloro esters in good yields. Additionally, a formal β-selective alkene alkoxycarbonylation is developed. Moreover, a variety of oxindole-3-acetates and furoindolines are prepared in good to excellent yields. A more concise formal synthesis of (±)-physovenine is accomplished as well. With these strategies, a wide range of natural-product-derived olefins and alkyloxalyl chlorides are also successfully employed. Aliphatic esters are essential constituents of biologically active compounds but their preparation from readily available olefins remains challenging. Here the authors show a strategy to access aliphatic esters from olefins through a unique photocatalyzed alkoxycarbonylation reaction.
Collapse
Affiliation(s)
- Jian-Qiang Chen
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China.
| | - Xiaodong Tu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China
| | - Qi Tang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China
| | - Ke Li
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China
| | - Liang Xu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China
| | - Siyu Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China
| | - Mingjuan Ji
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China
| | - Zhiming Li
- Department of Chemistry, Fudan University, Shanghai, China.
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China.
| |
Collapse
|
24
|
Rodríguez JF, Zhang A, Bajohr J, Whyte A, Mirabi B, Lautens M. Cycloisomerization of Carbamoyl Chlorides in Hexafluoroisopropanol: Stereoselective Synthesis of Chlorinated Methylene Oxindoles and Quinolinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- José F. Rodríguez
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Anji Zhang
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jonathan Bajohr
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Andrew Whyte
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Bijan Mirabi
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
25
|
Rodríguez JF, Zhang A, Bajohr J, Whyte A, Mirabi B, Lautens M. Cycloisomerization of Carbamoyl Chlorides in Hexafluoroisopropanol: Stereoselective Synthesis of Chlorinated Methylene Oxindoles and Quinolinones. Angew Chem Int Ed Engl 2021; 60:18478-18483. [PMID: 34157191 DOI: 10.1002/anie.202103323] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Hexafluoroisopropanol (HFIP) was employed as an additive for the generation of 3-(chloromethylene)oxindoles via the chloroacylation of alkyne-tethered carbamoyl chlorides. This reaction avoids the use of a metal catalyst and accesses products in high yields and stereoselectivities. Additionally, this reaction is scalable and proved amenable to a series of product derivatizations, including the synthesis of nintedanib. The reactivity of alkene-tethered carbamoyl chlorides with hexafluoroisopropanol (HFIP) was harnessed towards the synthesis of 2-quinolinones.
Collapse
Affiliation(s)
- José F Rodríguez
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Anji Zhang
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Jonathan Bajohr
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
26
|
Stevenson BG, Spielvogel EH, Loiaconi EA, Wambua VM, Nakhamiyayev RV, Swierk JR. Mechanistic Investigations of an α-Aminoarylation Photoredox Reaction. J Am Chem Soc 2021; 143:8878-8885. [PMID: 34077202 DOI: 10.1021/jacs.1c03693] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While photoredox catalysis continues to transform modern synthetic chemistry, detailed mechanistic studies involving direct observation of reaction intermediates and rate constants are rare. By use of a combination of steady state photochemical measurements, transient laser spectroscopy, and electrochemical methods, an α-aminoarylation mechanism that is the inspiration for a large number of photoredox reactions was rigorously characterized. Despite high product yields, the external quantum yield (QY) of the reaction remained low (15-30%). By use of transient absorption spectroscopy, productive and unproductive reaction pathways were identified and rate constants assigned to develop a comprehensive mechanistic picture of the reaction. The role of the cyanoarene, 1,4-dicyanobenzne, was found to be unexpectedly complex, functioning both as initial proton acceptor in the reaction and as a neutral stabilizer for the 1,4-dicyanobenzene radical anion. Finally, kinetic modeling was utilized to analyze the reaction at an unprecedented level of understanding. This modeling demonstrated that the reaction is limited not by the kinetics of the individual steps but instead by scattering losses and parasitic absorption by a photochemically inactive donor-acceptor complex.
Collapse
Affiliation(s)
- Bernard G Stevenson
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Ethan H Spielvogel
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Emily A Loiaconi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Victor Mulwa Wambua
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Roman V Nakhamiyayev
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - John R Swierk
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| |
Collapse
|
27
|
Wang L, Jiang M, Shi MQ. Copper-catalyzed synthesis of CN-containing chroman-4-ones via intramolecular radical cascade acyl-cyanation reaction. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Liu K, Studer A. Direct α-Acylation of Alkenes via N-Heterocyclic Carbene, Sulfinate, and Photoredox Cooperative Triple Catalysis. J Am Chem Soc 2021; 143:4903-4909. [PMID: 33760603 PMCID: PMC8033569 DOI: 10.1021/jacs.1c01022] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 12/25/2022]
Abstract
N-Heterocyclic carbene (NHC) catalysis has emerged as a versatile tool in modern synthetic chemistry. Further increasing the complexity, several processes have been introduced that proceed via dual catalysis, where the NHC organocatalyst operates in concert with a second catalytic moiety, significantly enlarging the reaction scope. In biological transformations, multiple catalysis is generally used to access complex natural products. Guided by that strategy, triple catalysis has been studied recently, where three different catalytic modes are merged in a single process. In this Communication, direct α-C-H acylation of various alkenes with aroyl fluorides using NHC, sulfinate, and photoredox cooperative triple catalysis is reported. The method allows the preparation of α-substituted vinyl ketones in moderate to high yields with excellent functional group tolerance. Mechanistic studies reveal that these cascades proceed through a sequential radical addition/coupling/elimination process. In contrast to known triple catalysis processes that operate via two sets of interwoven catalysis cycles, in the introduced process, all three cycles are interwoven.
Collapse
Affiliation(s)
- Kun Liu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
29
|
Xu GQ, Xiao TF, Feng GX, Liu C, Zhang B, Xu PF. Metal-Free α-C(sp3)–H Aroylation of Amines via a Photoredox Catalytic Radical–Radical Cross-Coupling Process. Org Lett 2021; 23:2846-2852. [DOI: 10.1021/acs.orglett.1c00226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo-Xuan Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chen Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
30
|
|
31
|
Ji M, Xu L, Luo X, Jiang M, Wang S, Chen JQ, Wu J. Alkoxycarbonyl radicals from alkyloxalyl chlorides: photoinduced synthesis of isoquinolinediones under visible light irradiation. Org Chem Front 2021. [DOI: 10.1039/d1qo01368h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alkyloxalyl chlorides, generated from alcohols and oxalyl chlorides, are used as alkoxycarbonyl radicals in the reaction of N-acryloyl benzamides under photocatalysis at room temperature.
Collapse
Affiliation(s)
- Mingjuan Ji
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Liang Xu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Xiangxiang Luo
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Minghui Jiang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Siyu Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jian-Qiang Chen
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
32
|
Carvalho RL, Almeida RG, Murali K, Machado LA, Pedrosa LF, Dolui P, Maiti D, da Silva Júnior EN. Removal and modification of directing groups used in metal-catalyzed C–H functionalization: the magical step of conversion into ‘conventional’ functional groups. Org Biomol Chem 2021; 19:525-547. [DOI: 10.1039/d0ob02232b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature review is focused on recent approaches for removing versatile directing groups.
Collapse
Affiliation(s)
- Renato L. Carvalho
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Renata G. Almeida
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Karunanidhi Murali
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Luana A. Machado
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | | | - Pravas Dolui
- Department of Chemistry
- IIT Bombay
- Mumbai 400076
- India
| | | | | |
Collapse
|
33
|
Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chem Soc Rev 2020; 50:766-897. [PMID: 33350402 DOI: 10.1039/d0cs00493f] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The late stage functionalization (LSF) of complex biorelevant compounds is a powerful tool to speed up the identification of structure-activity relationships (SARs) and to optimize ADME profiles. To this end, visible-light photocatalysis offers unique opportunities to achieve smooth and clean functionalization of drugs by unlocking site-specific reactivities under generally mild reaction conditions. This review offers a critical assessment of current literature, pointing out the recent developments in the field while emphasizing the expected future progress and potential applications. Along with paragraphs discussing the visible-light photocatalytic synthetic protocols so far available for LSF of drugs and drug candidates, useful and readily accessible synoptic tables of such transformations, divided by functional groups, will be provided, thus enabling a useful, fast, and easy reference to them.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Salaverri N, Mas-Ballesté R, Marzo L, Alemán J. Visible light mediated photocatalytic [2 + 2] cycloaddition/ring-opening rearomatization cascade of electron-deficient azaarenes and vinylarenes. Commun Chem 2020; 3:132. [PMID: 36703325 PMCID: PMC9814732 DOI: 10.1038/s42004-020-00378-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/04/2020] [Indexed: 01/29/2023] Open
Abstract
The broad presence of azaarene moieties in natural products has promoted the development of new functionalization reactions, giving access to larger libraries of bioactive compounds. The light promoted [2 + 2] photocycloaddition reaction to generate cyclobutanes has been extensively studied in photochemistry. In particular, De Mayo reported the [2 + 2] cycloaddition followed by retroaldol condensation between enols of 1,3-dicarbonyls and double bonds to synthesize 1,5-dicarbonyls. Herein, we describe the [2 + 2] photocycloaddition followed by a ring-opening rearomatization reaction between electron-deficient 2-methylene-azaarenes and double bonds, taking advantage of the ability of these heterocyclic derivatives to form the corresponding pseudo-enamine intermediate. The procedure shows a high functional group tolerance either on the double bond or the heteroarene side and allows the presence of different electron-withdrawing groups. In addition, the wide applicability of this reaction has been demonstrated through the late-stage derivatization of several natural products. Photochemical studies, together with theoretical calculations, support a mechanism involving the photosensitization of the pseudo-enamine intermediate.
Collapse
Affiliation(s)
- Noelia Salaverri
- grid.5515.40000000119578126Organic Chemistry Department, Módulo 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rubén Mas-Ballesté
- grid.5515.40000000119578126Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain ,grid.5515.40000000119578126Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain
| | - Leyre Marzo
- grid.5515.40000000119578126Organic Chemistry Department, Módulo 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- grid.5515.40000000119578126Organic Chemistry Department, Módulo 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain ,grid.5515.40000000119578126Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
35
|
Zhu DL, Wu Q, Young DJ, Wang H, Ren ZG, Li HX. Acyl Radicals from α-Keto Acids Using a Carbonyl Photocatalyst: Photoredox-Catalyzed Synthesis of Ketones. Org Lett 2020; 22:6832-6837. [DOI: 10.1021/acs.orglett.0c02351] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Da-Liang Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - David James Young
- College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, Northern Territory 0909, Australia
| | - Hao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
36
|
Zheng L, Xia PJ, Zhao QL, Qian YE, Jiang WN, Xiang HY, Yang H. Photocatalytic Hydroacylation of Alkenes by Directly Using Acyl Oximes. J Org Chem 2020; 85:11989-11996. [DOI: 10.1021/acs.joc.0c01818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lan Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Peng-Ju Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qing-Lan Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yu-En Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | | | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
37
|
Patil DV, Kim HY, Oh K. Visible Light-Promoted Friedel–Crafts-Type Chloroacylation of Alkenes to β-Chloroketones. Org Lett 2020; 22:3018-3022. [DOI: 10.1021/acs.orglett.0c00788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Dilip V. Patil
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
38
|
Zhao QS, Xu GQ, Xu JT, Wang ZY, Xu PF. A lutidine-promoted photoredox catalytic atom-transfer radical cyclization reaction for the synthesis of 4-bromo-3,3-dialkyl-octahydro-indol-2-ones. Chem Commun (Camb) 2020; 56:2206-2209. [PMID: 31976501 DOI: 10.1039/c9cc09876c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein is a visible-light-catalyzed photoredox atom-transfer radical cyclization (ATRC) halo-alkylation of 1,6-dienes with α-halo-ketones as the ATRC reagent. This process exhibits high atom economy, high step economy, and high redox economy, which can directly construct a 4-bromo-3,3-dialkyl-octahydro-indol-2-one core under mild conditions in one pot, and lutidine is found to be the key promoter for this ATRC process.
Collapse
Affiliation(s)
- Quan-Sheng Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. and Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Ji-Tao Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhu-Yin Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
39
|
Goto M, Maejima S, Yamaguchi E, Itoh A. Regioselective Carboiodination of Styrenes:
N
‐Iodosuccinimide Affords Complete Reaction Regioselectivity. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mayuki Goto
- Laboratory of Pharmaceuticals Synthetic ChemistryGifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Saki Maejima
- Laboratory of Pharmaceuticals Synthetic ChemistryGifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceuticals Synthetic ChemistryGifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Akichika Itoh
- Laboratory of Pharmaceuticals Synthetic ChemistryGifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| |
Collapse
|
40
|
Sarkar S, Banerjee A, Yao W, Patterson EV, Ngai MY. Photocatalytic Radical Aroylation of Unactivated Alkenes: Pathway to β-Functionalized 1,4-, 1,6-, and 1,7-Diketones. ACS Catal 2019; 9:10358-10364. [PMID: 34040817 DOI: 10.1021/acscatal.9b03570] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the development of a photocatalytic strategy for the synthesis of β-functionalized unsymmetrical 1,4-, 1-6 and 1,7-diketones from aroyl chlorides and unactivated alkenes at room temperature. The mild reaction conditions not only tolerate a wide range of functional groups and structural moieties, but also enable migration of a variety of distal groups including (hetero)arenes, nitrile, aldehyde, oxime-derivative, and alkene. The efficiency of chirality transfer, factors that control the distal-group migration, and synthesis of carbo- and heterocycles from the diketones are also described. Mechanistic studies suggest a reaction pathway involving a photocatalytic radical aroylation of unactivated alkenes followed by a distal-group migration, oxidation, and deprotonation to afford the desired diketones.
Collapse
Affiliation(s)
- Satavisha Sarkar
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| | - Arghya Banerjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| | - Wang Yao
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| | - Eric V. Patterson
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| | - Ming-Yu Ngai
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
41
|
Zhao QS, Xu GQ, Liang H, Wang ZY, Xu PF. Aroylchlorination of 1,6-Dienes via a Photoredox Catalytic Atom-Transfer Radical Cyclization Process. Org Lett 2019; 21:8615-8619. [DOI: 10.1021/acs.orglett.9b03222] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Quan-Sheng Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhu-Yin Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
42
|
Li L, Guo S, Wang Q, Zhu J. Acyl Radicals from Benzothiazolines: Synthons for Alkylation, Alkenylation, and Alkynylation Reactions. Org Lett 2019; 21:5462-5466. [DOI: 10.1021/acs.orglett.9b01717] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lei Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shan Guo
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qi Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|