1
|
Li S, Qiu ZY, Dang JS, Sakurai H. Confinement effects on the structure and reactivity of encapsulated buckybowls in cycloparaphenylene. Chem Commun (Camb) 2024; 60:6451-6454. [PMID: 38832811 DOI: 10.1039/d4cc01662a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
We theoretically investigated the host-guest chemistry between belt-like cycloparaphenylenes (CPPs) and entrapped bowl-shaped sumanene and corannulene. Density functional theory calculations show that the buckybowls can be stabilized in a CPP host with an appropriately sized cavity (e.g., [10]CPP) through multi-site CH-π interactions. Arising from the confined intermolecular interactions within the cavity, the restrictive buckybowls display novel reactivity distinct from that in their free state.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zi-Yang Qiu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jing-Shuang Dang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Hidehiro Sakurai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Carter Martos D, de Abreu M, Hauk P, Fackler P, Wencel-Delord J. Easy access to polyhalogenated biaryls: regioselective (di)halogenation of hypervalent bromines and chlorines. Chem Sci 2024; 15:6770-6776. [PMID: 38725515 PMCID: PMC11077539 DOI: 10.1039/d4sc01234h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Polyhalogenated biaryls are unique motifs offering untapped potential as versatile building blocks for the expedient synthesis of complex biaryl compounds. Overcoming the limitations of conventional syntheses, we introduce a novel, metal-free, operationally simple and one-pot approach to regioselectively (di)halogenate biaryl compounds under mild conditions using cyclic biaryl hypervalent bromine and chlorine substrates as masked arynes. Through chemoselective post-functionalizations, these valuable products can expand the toolbox for synthesizing biaryl-containing scaffolds, addressing a critical gap in the field.
Collapse
Affiliation(s)
- Daniel Carter Martos
- Laboratoire d'Innovation Moléculaire et Applications (LIMA, UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 67087 Strasbourg France
| | - Maxime de Abreu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA, UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 67087 Strasbourg France
| | - Pascal Hauk
- Laboratoire d'Innovation Moléculaire et Applications (LIMA, UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 67087 Strasbourg France
| | | | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (LIMA, UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 67087 Strasbourg France
| |
Collapse
|
3
|
Wu L, Li Y, Hua X, Ye L, Yuan C, Liu Z, Zhang HL, Shao X. Radical Cation Salts of Hetera-Buckybowls: Polar Crystals, Negative Thermal Expansion and Phase Transition. Angew Chem Int Ed Engl 2024; 63:e202319587. [PMID: 38226832 DOI: 10.1002/anie.202319587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Radical cation salts of π-conjugated polycycles are rich in physical properties. Herein, two kinds of hetera-buckybowls, ethoxy-substituted trithiasumanene (3SEt) and triselenasumanene (3SeEt), are synthesized as electron donors. Galvanostatic oxidation of them affords radical cation salts (3SEt)5 (TTFMPB)3 , (3SeEt)5 (TTFMPB)3 , (3SEt)4 PMA, and (3SeEt)4 PMA, where PMA is Keggin-type phosphomolybdate and TTFMPB is tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate. In these salts, 3SEt/3SeEt are partially charged and show distinct conformation change with the site charge and counter anions. In TTFMPB salts, (TTFMPB)- forms hexagonal channels that accommodate the packing columns of 3SEt/3SeEt. In particular, (3SEt)5 (TTFMPB)3 adopts the R3c space group and is a polar crystal with the columns of 3SEt all in the up-bowl direction. The PMA salts of 3SEt/3SeEt are polar crystals (C2 space group) with 3SEt/3SeEt being planar and forming columnar stacks. (3SeEt)4 PMA shows a structural modulation below 200 K, namely, negative thermal expansion (NTE) of the unit cell volume and enlargement of the intermolecular distances between neighboring 3SeEt molecules. The four salts are semiconductors with an activation energy of 0.18-0.38 eV. The conductivity of (3SeEt)4 PMA shows a reversible transition upon cooling and heating, in accordance to the NTE structural modulation. This work paves the way toward conducting materials based on hetera-buckybowls.
Collapse
Affiliation(s)
- Lingxi Wu
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Yecheng Li
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Xinqiang Hua
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Lei Ye
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Chengshan Yuan
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Zitong Liu
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Hao-Li Zhang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Xiangfeng Shao
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
4
|
Gan F, Shen C, Cui W, Qiu H. [1,4]Diazocine-Embedded Electron-Rich Nanographenes with Cooperatively Dynamic Skeletons. J Am Chem Soc 2023; 145:5952-5959. [PMID: 36795894 DOI: 10.1021/jacs.2c13823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Curved nanographenes (NGs) are emerging as promising candidates for organic optoelectronics, supramolecular materials, and biological applications. Here we report a distinctive type of curved NGs bearing a [1,4]diazocine core that is fused with four pentagonal rings. This is formed by Scholl-type cyclization of two adjacent carbazole moieties through an unusual diradical cation mechanism followed by C-H arylation. Owing to the strain in the unique 5-5-8-5-5-membered ring skeleton, the resulting NG adopts an interesting concave-convex cooperatively dynamic structure. By peripheral π-extension, a helicene moiety with fixed helical chirality can be further mounted to modulate the vibration of the concave-convex structure, through which the distant bay region of the curved NG inherits the chirality of the helicene moiety in a reversed fashion. The [1,4]diazocine-embedded NGs show typical electron-rich characteristics and form charge transfer complexes with tunable emissions with a series of electron acceptors. The relatively protruding armchair edge also allows the fusion of three NGs into a C2 symmetric triple diaza[7]helicene which reveals a subtle balance of fixed and dynamic chirality.
Collapse
Affiliation(s)
- Fuwei Gan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute of Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengshuo Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Wenying Cui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute of Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Qiu ZL, Cheng Y, Zeng Q, Wu Q, Zhao XJ, Xie RJ, Feng L, Liu K, Tan YZ. Synthesis and Interlayer Assembly of a Graphenic Bowl with Peripheral Selenium Annulation. J Am Chem Soc 2023; 145:3289-3293. [PMID: 36745399 DOI: 10.1021/jacs.2c12401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pentagonal cyclization at the bay positions of armchair-edged graphenic cores can build molecular bowls without the destruction of hexagonal lattices. However, this synthesis remains challenging due to unfavorable strain and the multiple reactions required. Here, we show that a new type of graphenic molecular bowl with a depth of 1.7 Å and a diameter of 1.2 nm is constructed by sextuple Se annulation at the bay positions of armchair-edged hexa-peri-hexabenzocoronene. This graphenic bowl is functionalized with phenylseleno groups that stack into a discrete bilayer dimer in solution. Such a dimer exhibits high stability and survives in the gas phase after laser ablation. Strikingly, the asymmetric one-dimensional supramolecular columns of graphenic bowl with coherent stacking configuration are observed in the solid state, which results in a strong second harmonic generation with prominent polarization dependence. Our findings present a concise synthesis of a giant molecular bowl with a graphenic core and demonstrate the unique supramolecular assembly of extended graphenic bowls.
Collapse
Affiliation(s)
- Zhen-Lin Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yang Cheng
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Qi Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qiong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin-Jing Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Rong-Jie Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - LiuBin Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Yuan-Zhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Shang J, Wang R, Yuan C, Liu Z, Zhang H, Shao X. Monoazadichalcogenasumanenes: Synthesis, Structures, and Ring Reconstruction via Atom Transfer under Acidic Conditions. Angew Chem Int Ed Engl 2022; 61:e202117504. [DOI: 10.1002/anie.202117504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Jihai Shang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Renjie Wang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| |
Collapse
|
7
|
Liu Z, Song W, Yang S, Yuan C, Liu Z, Zhang H, Shao X. Marriage of Heterobuckybowls with Triptycene: Molecular Waterwheels for Separating C
60
and C
70. Chemistry 2022; 28:e202200306. [DOI: 10.1002/chem.202200306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Zhe Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Wenru Song
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Shaojie Yang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| |
Collapse
|
8
|
Shang J, Wang R, Yuan C, Liu Z, Zhang HL, Shao X. Monoazadichalcogenasumanenes: Synthesis, Structures, and Ring Reconstruction via Atom Transfer under Acidic Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jihai Shang
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Renjie Wang
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Chengshan Yuan
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Zitong Liu
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Hao-Li Zhang
- Lanzhou University State key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Xiangfeng Shao
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 222 Tianshui Southern Road 730000 Lanzhou CHINA
| |
Collapse
|
9
|
Abstract
Buckybowls have concave and convex surfaces with distinct π-electron cloud distribution, and consequently they show unique structural and electronic features as compared to planar aromatic polycycles. Doping the π-framework of buckybowls with heteroatoms is an efficient scheme to tailor inherent properties, because the nature of heteroatoms plays a pivotal role in the structural and electronic characteristics of the resulting hetera-buckybowls. The design, synthesis, and derivatization of hetera-buckybowls open an avenue for obtaining fascinating organic entities not only of fundamental importance but also of promising applications in optoelectronics. In this review, we summarize the advances in hetera-buckybowl chemistry, particularly the synthetic strategies toward these scaffolds.
Collapse
Affiliation(s)
- Wenbo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Gansu Province, China.
| | | |
Collapse
|
10
|
Hou H, Zhao XJ, Tang C, Ju YY, Deng ZY, Wang XR, Feng LB, Lin DH, Hou X, Narita A, Müllen K, Tan YZ. Synthesis and assembly of extended quintulene. Nat Commun 2020; 11:3976. [PMID: 32769970 PMCID: PMC7414228 DOI: 10.1038/s41467-020-17691-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
Quintulene, a non-graphitic cycloarene with fivefold symmetry, has remained synthetically elusive due to its high molecular strain originating from its curved structure. Here we report the construction of extended quintulene, which was unambiguously characterized by mass and NMR spectroscopy. The extended quintulene represents a naturally curved nanocarbon based on its conical molecular geometry. It undergoes dimerization in solution via π-π stacking to form a metastable, but isolable bilayer complex. Thermodynamic and kinetic characterization reveals the dimerization process as entropy-driven and following second-order kinetics with a high activation energy. These findings provide a deeper understanding of the assembly of conical nanocarbons. Comparison of optical properties of monomer and dimer points toward a H-type interlayer coupling in the dimer.
Collapse
Affiliation(s)
- Hao Hou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin-Jing Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chun Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yang-Yang Ju
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ze-Ying Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin-Rong Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liu-Bin Feng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dong-Hai Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Institute of Physical Chemistry, Johannes Gutenberg-Universitat Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
11
|
Liu L, Yan C, Li Y, Liu Z, Yuan C, Zhang H, Shao X. Tetrathiafulvalene‐Fused Heterabuckybowl: Protonation‐Induced Electron Transfer and Self‐Sensitized Photooxidation. Chemistry 2020; 26:7083-7091. [PMID: 32073723 DOI: 10.1002/chem.201905732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| | - Yecheng Li
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| | - Zhe Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| |
Collapse
|
12
|
Jiang M, Guo J, Liu B, Tan Q, Xu B. Synthesis of Tellurium-Containing π-Extended Aromatics with Room-Temperature Phosphorescence. Org Lett 2019; 21:8328-8333. [PMID: 31560555 DOI: 10.1021/acs.orglett.9b03106] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A synthesis of tellurium-embedded π-extended aromatics from tellurium powder and readily available cyclic diaryliodonium salts has been developed. The versatility of this method has been demonstrated by the synthesis of various functionalized dibenzotellurophenes (DBTe's), a ladder-type π-system, and a heterosumanene. These compounds demonstrated good air/moisture stability and high thermal stability. Remarkably, many DBTe's exhibited interesting tunable room-temperature phosphorescence (RTP) in the solid state.
Collapse
Affiliation(s)
- Mengjing Jiang
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Jimin Guo
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China.,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|