1
|
Dong L, Xu B, Xiao D, Liu F, Zhang X, Pan X, Gong P, Lin Z. LaAgSiS 4: Increasing Optical Birefringence in Rare Earth Chalcogenide by Addition of Planar [AgS 3] Groups. Inorg Chem 2024; 63:21590-21596. [PMID: 39454075 DOI: 10.1021/acs.inorgchem.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Optoelectronic materials with excellent birefringent properties are of significant importance in the fields of optical communications and laser technology. Recently, rare earth (RE) chalcogenides with anisotropic [RESn] groups have been proven to be high-performance infrared birefringent materials. Herein, we demonstrate that the addition of planar groups can further increase the birefringence in RE chalcogenides, as realized by incorporating planar [AgS3] groups into the RE-I-IV-S4 family for the first time. The newly obtained LaAgSiS4 compound shows higher polarity anisotropy than its homologue LaLiSiS4 and LaKSiS4, which resulted in a larger birefringence (0.12@600 nm) at least twice as large as that of the latter two compounds (0.05/0.06@600 nm). The structure-property relationship of LaAgSiS4 was investigated through structural analysis and first-principles calculations. The results indicate that the increased optical birefringence in LaAgSiS4 originates from the synergic effects of the distorted [LaSn] polyhedra and planar [AgS3] triangles. This work provides an effective strategy for enhancing optical birefringence in IR chalcogenides.
Collapse
Affiliation(s)
- Linfeng Dong
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohui Xu
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deshuai Xiao
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Fan Liu
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Xuanlin Pan
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pifu Gong
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zheshuai Lin
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Liu L, Tian H, Xia M, Wang X. Rational Design of Novel Polar Nonlinear Optical Materials in Alkali Metal Rare Earth Iodates. Inorg Chem 2024; 63:21222-21229. [PMID: 39441743 DOI: 10.1021/acs.inorgchem.4c03630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Four new potassium rare earth iodates, namely, acentric K2Lu(IO3)5 and KM(IO3)4(HIO3)0.33 (M = Ce/Pr) and centric KLa(IO3)4, were successfully grown by mild hydrothermal reactions. Three of them exhibit polar structures; K2Lu(IO3)5, KCe(IO3)4(HIO3)0.33, and KPr(IO3)4(HIO3)0.33 show second-harmonic generation (SHG) responses of 3.0, 1.0, and 0.8 × KDP, respectively. These three iodates are phase-matchable for second-harmonic generation. The influence of changes in the radius and coordination mode of rare earth ions on the crystal structure and SHG response has been discussed in detail. Our findings suggest that in the alkali metal rare earth iodate, modulating the arrangement of iodate groups by changing the coordination geometry of rare earth ions is an effective strategy for designing polar NLO materials.
Collapse
Affiliation(s)
- Lijuan Liu
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Haotian Tian
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Mingjun Xia
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyang Wang
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Ji MY, Li YL, Hu CL, Chen J, Li BX, Mao JG. SbO(OH) 2(IO 3): The First Polar Sb 5+-Iodate with a Strong Second-Harmonic Generation Response and a Wide Bandgap. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407130. [PMID: 39463059 DOI: 10.1002/smll.202407130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Widening the bandgaps while maintaining a strong second harmonic generation response has always been a research hotspot in the field of nonlinear optical iodate materials. A strategy involving covalent bonding is proposed that leverages the high valent later main group cation to construct iodates with predominantly covalent interactions. By using BiO(IO3) as a template, the first Sb5+-containing polar iodate, SbO(OH)2(IO3) is successfully isolated. The introduction of the two hydroxide anions led to the reduction of layered BiO(IO3) into 1D SbO(OH)2(IO3) in which two corner-sharing SbO4(OH)2 octahedra are further bridged by an iodate group. The covalently bonded [SbO(OH)2]+ chains and the optimal packing fashion of the asymmetric IO3 - groups generate a very strong second harmonic generation signal of 14 times that of KH2PO4. Furthermore, SbO(OH)2(IO3) exhibits a wide bandgap of 4.14 eV and a high laser induced damage threshold [27.9 × AgGaS2, 0.2 × KH2PO4 (10 ns, 10 Hz)].
Collapse
Affiliation(s)
- Meng-Ya Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Yi-Lin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Bing-Xuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
4
|
Xu MB, Li JJ, Wu HY, Ma N, Yu N, Zhuo MF, Chen J, Du KZ. Ba 2Ga 2F 6(IO 3)(PO 4): the first fluoride-containing iodate-phosphate with a 1D [Ga 2F 6(IO 3)(PO 4)] 4- helix chain. Dalton Trans 2024; 53:10536-10543. [PMID: 38842192 DOI: 10.1039/d3dt04343f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Herein, the first F-containing iodate-phosphate, namely Ba2Ga2F6(IO3)(PO4), was prepared via a hydrothermal reaction, in which HPF6 (70 wt% solution in water) was used as the source of both fluoride and phosphate anions for the first time. Ba2Ga2F6(IO3)(PO4) features an unprecedented 1D [Ga2F6(IO3)(PO4)]4- helix chain, composed of a 1D Ga(1)(IO3)O4F chain via the bridging of 0D Ga(2)(PO4)F5. The UV-Vis spectrum shows that Ba2Ga2F6(IO3)(PO4) has a wide bandgap with a short-UV absorption edge (4.35 eV; 253 nm). Birefringence measurement under a polarizing microscope shows that Ba2Ga2F6(IO3)(PO4) displays a moderate birefringence of 0.072@550 nm, which is consistent with the value (0.070@550 nm) obtained by DFT calculations, indicating that Ba2Ga2F6(IO3)(PO4) has potential applications as a short-UV birefringent material. This study highlights the crucial role played by the incorporation of specific functional groups into compounds, shedding light on their contribution to promising inorganic functional materials.
Collapse
Affiliation(s)
- Miao-Bin Xu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350002, China.
| | - Jia-Jia Li
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350002, China.
| | - Huai-Yu Wu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350002, China.
| | - Nan Ma
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350002, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Ning Yu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350002, China.
| | - Mo-Fan Zhuo
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350002, China.
| | - Jin Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350002, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Wu JH, Hu CL, Li YF, Mao JG, Kong F. [(C 5H 6N 2) 2H](Sb 4F 13): a polyfluoroantimonite with a strong second harmonic generation effect. Chem Sci 2024; 15:8071-8079. [PMID: 38817564 PMCID: PMC11134327 DOI: 10.1039/d4sc01716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024] Open
Abstract
It is of great difficulty to create a new antimonite with second-harmonic-generation (SHG) intensity larger than 6 times that of KDP. In this study, a polyfluoroantimonite strategy has been proposed to explore fluoroantimonites with large nonlinear optical (NLO) coefficients. Under the cooperation of chemical (highly asymmetric π-conjugated organic amine) and physical (viscous reaction medium ethylene glycol) methods, two novel polyfluoroantimonites, namely, (3PC)2(Sb4F14) and (3AP)2(Sb4F13), have been achieved. Interestingly, these two structures contain two new polyfluoroantimonite groups respectively, an isolated (Sb4F14)2- four-member polyhedral ring and an infinite [Sb4F13]∞- helical chain. More importantly, the polar (3AP)2(Sb4F13) displays a strong SHG intensity of 8.1 × KDP, a large birefringence of 0.258@546 nm and a high laser-induced damage threshold (LIDT) value of 149.7 MW cm-2. Theoretical calculations indicated that its strong SHG effect stems from the synergistic effect of the helical [Sb4F13]∞- polyfluoroantimonite chain and π-conjugated 3AP+ cation, with a contribution ratio of 48.93% and 50.77% respectively. This work provides a new approach for the design and synthesis of high-performance fluoroantimonites.
Collapse
Affiliation(s)
- Jia-Hang Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- College of Chemistry, Fuzhou University Fuzhou 350108 P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Ya-Feng Li
- College of Chemistry, Fuzhou University Fuzhou 350108 P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Fang Kong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| |
Collapse
|
6
|
Guo Y, Yu Z, Wang K, Dong M, Li X, Yang X, Zhang Y. Broadband Green Luminescence and Phase Transition in Low-Dimensional Organic-Inorganic Hybrid Iodate. Inorg Chem 2024; 63:7799-7805. [PMID: 38627892 DOI: 10.1021/acs.inorgchem.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Organic-inorganic hybrid iodide systems, which can form highly ordered chromophores and uniformly oriented transition dipole moments, serve as optimal host-guest systems for the fabrication of micrometer-scale optical devices. In particular, those with low-dimensional structures can exhibit strong quantum-limited and highly localized charges, enabling the generation of high exciton energies and stable excitation emission. In this study, we report a novel instance of an organic-inorganic hybrid iodate, (C13H11N2)(IO3), which was synthesized by incorporating the optically active organic compound, 9-aminoacridine. Upon crystallization in the monoclinic space group P21/c, this compound exhibits a direct optical band gap of 2.66 eV. The incorporation of discrete organic units within the low-dimensional structures induces pronounced local charges, culminating in broadband green luminescence with a peak at 540 nm under UV excitation. This corresponds to the CIE coordinates (0.37, 0.56). A potential phase transition was inferred through a comprehensive analysis of the variable temperature structure and emission spectra. Furthermore, first-principles calculations revealed the pivotal role of organic cations in facilitating broadband luminescence.
Collapse
Affiliation(s)
- Yangwu Guo
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| | - Ziwei Yu
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| | - Kui Wang
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| | - Meiqiu Dong
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| | - Xinyi Li
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| | - Xinglong Yang
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| | - Yu Zhang
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| |
Collapse
|
7
|
Ma N, Chen J, Li BX, Hu CL, Mao JG. (NH 4 ) 2 (I 5 O 12 )(IO 3 ) and K 1.03 (NH 4 ) 0.97 (I 5 O 12 )(IO 3 ): Mixed-Valent Polyiodates with Unprecedented I 5 O 12 - Unit Exhibiting Strong Second-Harmonic Generation Responses and Giant Birefringence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304388. [PMID: 37490526 DOI: 10.1002/smll.202304388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Second-harmonic generation (SHG) response and birefringence are crucial properties for linear and nonlinear optical (NLO) materials, while it is difficult to further optimize these two key properties by using a single traditional functional building block (FBB) in one compound. Herein, a novel IO4 5- unit is identified, which possesses a square-planar configuration and two stereochemically active lone-pairs (SCALPs). By combining IO4 5- and IO3 - units, the first examples of mixed-valent polyiodates featuring an unprecedented bowl-shaped I5 O12 - polymerized unit, namely (NH4 )2 (I5 O12 )(IO3 ) and K1.03 (NH4 )0.97 (I5 O12 )(IO3 ), are successfully synthesized. Excitingly, both crystals exhibit strong SHG responses (16 × KDP and 19.5 × KDP @1064 nm) as well as giant birefringence (∆nexp = 0.431 and 0.405 @546 nm). Detailed structure-property analyses reveal that the parallel aligned planar IO4 5- units induce the properly aligned high-density SCALPs, leading to strong SHG response and giant birefringence for both materials. This work not only provides two new potential NLO and birefringent crystals, but also discovers a novel promising FBB (IO4 5- ) for developing high-performance linear and nonlinear optical materials.
Collapse
Affiliation(s)
- Nan Ma
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341119, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Jin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Bing-Xuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Jiang-Gao Mao
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341119, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
8
|
Ma N, Huang Y, Hu CL, Zhang MZ, Li BX, Mao JG. Ce(IO 3) 3F and Ce(IO 3) 2(NO 3): Two Mixed-Anion Cerium Iodates with Good Nonlinear Optical and Birefringent Properties. Inorg Chem 2023; 62:15329-15333. [PMID: 37677152 DOI: 10.1021/acs.inorgchem.3c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Two new mixed-anion cerium iodates, namely, Ce(IO3)3F and Ce(IO3)2(NO3), have been rationally designed through the integration of hybrid anionic functional building blocks (FBBs). The structure of Ce(IO3)3F features a novel [Ce(IO3)3F] bilayer, and the material exhibits large birefringence (0.225 @546 nm). The structure of Ce(IO3)2(NO3) features [Ce3(IO3)6]3+ triple layers that are further linked by planar NO3- units. Ce(IO3)2(NO3) shows a moderate SHG response (1 × KDP) and a high laser-induced damage threshold value (22 × AgGaS2). This work demonstrates that the rich coordination geometries of cerium cations facilitate tuning of the structures of related compounds through modulating anionic FBBs.
Collapse
Affiliation(s)
- Nan Ma
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Yu Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Ming-Zhi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Bing-Xuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jiang-Gao Mao
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| |
Collapse
|
9
|
Wu HY, Hu CL, Xu MB, Chen QQ, Ma N, Huang XY, Du KZ, Chen J. From H 12C 4N 2CdI 4 to H 11C 4N 2CdI 3: a highly polarizable CdNI 3 tetrahedron induced a sharp enhancement of second harmonic generation response and birefringence. Chem Sci 2023; 14:9533-9542. [PMID: 37712033 PMCID: PMC10498671 DOI: 10.1039/d3sc03052k] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
In this study, we identify a novel class of second-order nonlinear optical (NLO) crystals, non-π-conjugated piperazine (H10C4N2, PIP) metal halides, represented by two centimeter-sized, noncentrosymmetric organic-inorganic metal halides (OIMHs), namely H12C4N2CdI4 (P212121) and H11C4N2CdI3 (Cc). H12C4N2CdI4 is the first to be prepared, and its structure contains a CdI4 tetrahedron, which led to a poor NLO performance, including a weak and non-phase-matchable second harmonic generation (SHG) response of 0.5 × KH2PO4 (KDP), a small birefringence of 0.047 @1064 nm and a narrow bandgap of 3.86 eV. Moreover, H12C4N2CdI4 is regarded as the model compound, and we further obtain H11C4N2CdI3via the replacement of CdI4 with a highly polarizable CdNI3 tetrahedron, which results in a sharp enhancement of SHG response and birefringence. H11C4N2CdI3 exhibits a promising NLO performance including 6 × KDP, 4.10 eV, Δn = 0.074 @1064 nm and phase matchability, indicating that it is the first OIMH to simultaneously exhibit strong SHG response (>5 × KDP) and a wide bandgap (>4.0 eV). Our work presents a novel direction for designing high-performance NLO crystals based on organic-inorganic halides and provides important insights into the role of the hybridized tetrahedron in enhancing the SHG response and birefringence.
Collapse
Affiliation(s)
- Huai-Yu Wu
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Miao-Bin Xu
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
| | - Qian-Qian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Nan Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
| | - Jin Chen
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| |
Collapse
|
10
|
Zhang L, Zhang X, Liang F, Hu Z, Wu Y. Rational Design of Noncentrosymmetric Organic-Inorganic Hybrids with a π-Conjugated Pyridium-Type Cation for High Nonlinear-Optical Performance. Inorg Chem 2023; 62:14518-14522. [PMID: 37625248 DOI: 10.1021/acs.inorgchem.3c02659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Organic-inorganic hybrid materials have attracted increasing attention due to their unique superiority by combining the features of organic parts with inorganic parts. Herein, two organic-inorganic hybrid nonlinear-optical crystals, [C5H6O2N3]2[IO3]2 (I) and [C5H6O2N3][HSO4]·H2O (II), were successfully synthesized in aqueous solution by selecting 2-amino-3-nitropyridine as the cation and different anions of [IO3]- and [HSO4]-. The two compounds crystallized in the noncentrosymmetric space groups of P21 and P212121, respectively. I displays second-harmonic-generation (SHG) effects of 2.4 × KDP (KH2PO4) and a large birefringence (Δncal ∼ 0.22). Moreover, II exhibits a stronger SHG response of 5.2 × KDP, an enhanced band gap (2.81 eV), as well as a large birefringence (Δncal ∼ 0.25). This work points out a new feasible path for the rational design of high-performance organic-inorganic hybrid materials.
Collapse
Affiliation(s)
- Limei Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Xinyuan Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Fei Liang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
11
|
Calabrese M, Pizzi A, Beccaria R, Frontera A, Resnati G. Halogen Bonding Assembles Anion⋅⋅⋅Anion Architectures in Non-centrosymmetric Iodate and Bromate Crystals. Chemphyschem 2023; 24:e202300298. [PMID: 37306232 DOI: 10.1002/cphc.202300298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Single crystal X-ray diffraction of iodate and bromate salts shows that the I and Br atoms in IO3 - and BrO3 - anions form short and linear O-I/Br⋅⋅⋅O contacts with the O atoms of nearby anions. Non-centrosymmetric systems are formed wherein anions are orderly aligned into supramolecular 1D and 2D networks. Theoretical evidences, namely the outcome of QTAIM and NCIplot studies, prove the attractive nature of these contacts and the ability of iodate and bromate anions to act as robust halogen bond (HaB) donors. The HaB is proposed as a general and effective assisting tool to control the architecture of acentric iodate salts.
Collapse
Affiliation(s)
- Miriam Calabrese
- NFMLab, Dept. Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, 20131, Milano, Italy
| | - Andrea Pizzi
- NFMLab, Dept. Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, 20131, Milano, Italy
| | - Roberta Beccaria
- NFMLab, Dept. Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, 20131, Milano, Italy
| | - Antonio Frontera
- Dept. Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), Spain
| | - Giuseppe Resnati
- NFMLab, Dept. Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, 20131, Milano, Italy
| |
Collapse
|
12
|
Chen QQ, Hu CL, Zhang MZ, Li BX, Mao JG. α- and β-(C 4H 5N 2O)(IO 3)·HIO 3: Two SHG Materials Based on Organic-Inorganic Hybrid Iodates. Inorg Chem 2023; 62:12613-12619. [PMID: 37566101 DOI: 10.1021/acs.inorgchem.3c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Organic-inorganic hybrid nonlinear optical (NLO) materials are highly anticipated because of the integration of both merits of the organic and inorganic moieties. Herein, the 2-pyrimidinone cation (C4H5N2O)+ has been incorporated into the iodate system to form two polymorphic organic-inorganic hybrid iodates, namely, α- and β-(C4H5N2O)(IO3)·HIO3. They crystallize in different polar space groups (Ia and Pca21), and their structures feature one-dimensional (1D) chain structures composed of (C4H5N2O)+ cations, IO3- anions, and HIO3 molecules interconnected via hydrogen bonds. α- and β-(C4H5N2O) (IO3)·HIO3 exhibit strong and moderate second-harmonic-generation (SHG) responses of 6.4 and 0.9 × KH2PO4 (KDP), respectively, the same band gaps of 3.65 eV, and high powder laser-induced damage threshold (LIDT) values [51 and 57 × AgGaS2 (AGS)]. The results of theoretical calculations revealed that the large SHG effect of α-(C4H5N2O)(IO3)·HIO3 originated from the IO3 and HIO3 groups. This work indicates that (C4H5N2O)+ is a potential group for designing new NLO materials with brilliant optical performances.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Ming-Zhi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bing-Xuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
jing Xu J, Wu K. Comprehensive review on multiple mixed-anion ligands, physicochemical performances and application prospects in metal oxysulfides. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
14
|
Liang ML, Lacroix M, Tao C, Waters MJ, Rondinelli JM, Halasyamani PS. Noncentrosymmetric γ -Cs 2I 4O 11 Obtained from IO 4 Polyhedral Rearrangements in the Centrosymmetric β -Phase. Inorg Chem 2023; 62:2942-2950. [PMID: 36716235 DOI: 10.1021/acs.inorgchem.2c04450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the synthesis and optical properties of noncentrosymmetric (NCS) γ-Cs2I4O11 that was obtained through IO4 polyhedral rearrangements from centrosymmetric (CS) β-Cs2I4O11. Trifluoroacetic acid (TFA) acts as a structure-directing agent and plays a key role in the synthesis. It is suggested that the function of TFA is to promote rearrangement reactions found in the organic synthesis of stereoisomers. γ-Cs2I4O11 crystallizes in the NCS monoclinic space group P21 (No. 4) and exhibits a strong second-harmonic-generation (SHG) response of 5.0 × KDP (KH2PO4) under 1064 nm laser radiation. Additional SHG experiments indicate that the material is type I phase matchable. First-principles calculations show that SHG intensity mainly comes from its d34, d21, and d23 SHG tensor components. The synthetic strategy of discovering γ-Cs2I4O11 provides a new way for designing novel NCS SHG materials.
Collapse
Affiliation(s)
- Ming-Li Liang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Matthew Lacroix
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ce Tao
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Michael J Waters
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - P Shiv Halasyamani
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
15
|
Chen ZX, Zhao CY, Li XH, Yao WD, Liu W, Guo SP. KREP 2 Se 6 (RE = Sm, Gd, Tb): The First Rare-Earth Selenophosphates with Remarkable Nonlinear Optical Activities Realized by Synergistic Effect of RE- and P-Based Motifs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206910. [PMID: 36504482 DOI: 10.1002/smll.202206910] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Rare-earth (RE) chalcogenides have been extensively studied as infrared nonlinear optical (NLO) materials because of their nice integrated performances; however, very few RE chalcophosphates are involved for this topic. Here, three quaternary RE selenophosphates, KSmP2 Se6 (1), KGdP2 Se6 (2), and KTbP2 Se6 (3), are profoundly studied for their NLO potentials. Their noncentrosymmetric P21 structures feature RESe8-bicapped trigonal prisms and ethane-like [P2 Se6 ]4 - dimers built {[REP2 Se6 ]-}∞ layers. As the first studied NLO-active RE selenophosphates, 1-3 exhibit second harmonic generation (SHG)responses ≈0.34-1.08 × AgGaS2 at 2.10 µm and laser-induced damage thresholds (LIDTs) ≈1.43-4.33 × AgGaS2 , and they all show phase-matchable behaviors, indicating their wonderful balanced NLO properties. Theoretical calculations demonstrate that the synergistic effect between RESe8 and P2 Se6 units makes the major contribution to the SHG responses.
Collapse
Affiliation(s)
- Zi-Xia Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 250002, China
| | - Chen-Yi Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 250002, China
| | - Xiao-Hui Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 250002, China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 250002, China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 250002, China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 250002, China
| |
Collapse
|
16
|
Gao D, Wu H, Hu Z, Wang J, Wu Y, Yu H. Recent advances in F-containing Iodate Nonlinear Optical Materials. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Huang X, Yang SH, Li XH, Liu W, Guo SP. Eu 2 P 2 S 6 : The First Rare-Earth Chalcogenophosphate Exhibiting Large Second-Harmonic Generation Response and High Laser-Induced Damage Threshold. Angew Chem Int Ed Engl 2022; 61:e202206791. [PMID: 35675321 DOI: 10.1002/anie.202206791] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/09/2022]
Abstract
Metal chalcogenophosphates are receiving increasing interest, specifically as promising infrared nonlinear optical (NLO) candidates. Here, a rare-earth chalcogenophosphate Eu2 P2 S6 crystallizing in the monoclinic noncentrosymmetric space group Pn was synthesized using a high-temperature solid-state method. Its structure features isolated [P2 S6 ]4- dimer, and two types of EuS8 bicapped triangular prisms. Eu2 P2 S6 exhibits a phase-matchable second-harmonic generation (SHG) response ≈0.9×AgGaS2 @2.1 μm, and high laser-induced damage threshold of 3.4×AgGaS2 , representing the first rare-earth NLO chalcogenophosphate. The theoretical calculation result suggests that the SHG response is ascribed to the synergetic contribution of [P2 S6 ]4- dimers and EuS8 bicapped triangular prisms. This work provides not only a promising high-performance infrared NLO material, but also opens the avenue for exploring rare-earth chalcogenophosphates as potential IR NLO materials.
Collapse
Affiliation(s)
- Xiao Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Si-Han Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Xiao-Hui Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| |
Collapse
|
18
|
Yan D, Ma Y, Tang RL, Hu L, Mao FF, Zheng J, Zhang XD, Li SF. C(NH2)3Rb(I3O8)(IO3)(I2O6H2): An unprecedented organic–inorganic hybrid polyiodate with two different polyiodate groups. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Huang J, Guo F, Guo Z, Chen J, Dai B, Yu F. NH 4IO 2F 2 and (NH 4) 3(IO 2F 2) 3·H 2O: A Series of Ammonium-Containing Fluoroiodates with Wide Band Gaps. Inorg Chem 2022; 61:11803-11810. [PMID: 35860841 DOI: 10.1021/acs.inorgchem.2c01540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of ammonium-containing fluoroiodates, NH4IO2F2 and (NH4)3(IO2F2)3·H2O, with isolated [IO2F2] units have been fabricated by a fluorine-oxygen substitution strategy from NH4IO3. The two compounds crystallize in the orthorhombic system, but in different space groups, noncentrosymmetric Pca21 for NH4IO2F2 and centrosymmetric Pnma for (NH4)3(IO2F2)3·H2O, and show wide band gaps of 4.53 eV for (NH4IO2F2) and 4.55 eV for ((NH4)3(IO2F2)3·H2O). In addition, NH4IO2F2 exhibits a 1.2 × KDP second harmonic generation response, a short ultraviolet cutoff edge in iodates, and a good crystal growth habit. The crystal of NH4IO2F2 with a size of 11 × 5 × 2 mm3 was obtained by the aqueous solution method. The results enrich the structural diversity of iodate and supply a greater understanding of the design of new functional materials based on the fluoroiodates.
Collapse
Affiliation(s)
- Jianlong Huang
- Key Laboratory for Green Processing of Chemical Engineering of XinjiangBingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Fengjiao Guo
- School of Physical Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi 830046, China
| | - Zhiyong Guo
- Xuchang Quality and Technical Supervision, Inspection and Testing Center, West Section of LongXing Road, Dongcheng District, Xuchang 461000, China
| | - Jianbang Chen
- Department of Physics, Changji University, Changji, Xinjiang 831100, China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of XinjiangBingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of XinjiangBingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
20
|
Huang X, Yang S, Li X, Liu W, Guo S. Eu
2
P
2
S
6
: The First Rare‐Earth Chalcogenophosphate Exhibiting Large Second‐Harmonic Generation Response and High Laser‐Induced Damage Threshold. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao Huang
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Si‐Han Yang
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Xiao‐Hui Li
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Sheng‐Ping Guo
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| |
Collapse
|
21
|
Chen QQ, Hu CL, Yao LJ, Chen J, Cao MY, Li BX, Mao JG. Cd 2(IO 3)(PO 4) and Cd 1.62Mg 0.38(IO 3)(PO 4): metal iodate-phosphates with large SHG responses and wide band gaps. Chem Commun (Camb) 2022; 58:7694-7697. [PMID: 35730669 DOI: 10.1039/d2cc02353a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first NLO-active metal iodate-phosphates, namely, Cd2(IO3)(PO4) and Cd1.62Mg0.38(IO3)(PO4) (1 and 2), with three types of NLO groups, have been reported. 1 and 2 are isostructural and the structure of 1 features a 3D network formed by the Cd4(IO3)8/4(PO4)6/3 groups. 1 and 2 with strong SHG signals of 4 × and 3.5 × KH2PO4 are promising SHG materials in the visible region.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Li-Jia Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Jin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Ming-Yang Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Bing-Xuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
22
|
Guo R, Tang C, Xia M, Liu L, Wang X. Structure, optical and luminescence properties of anhydrous samarium iodate Sm 3(IO 3) 9(HIO 3) 4. Dalton Trans 2022; 51:8588-8592. [PMID: 35616547 DOI: 10.1039/d2dt00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new non-centrosymmetric iodate crystal Sm3(IO3)9(HIO3)4 has been successfully synthesized by a hydrothermal method. The crystal structure is a three-dimensional network with samarium polyhedra linked by iodate groups. It shows a moderate second harmonic generation response of 1.1 × KH2PO4 (KDP). The strongest emission in its luminescence spectrum is located at 600 nm under 403 nm excitation. Hence, Sm3(IO3)9(HIO3)4 is a potential orange laser material.
Collapse
Affiliation(s)
- Ruixin Guo
- Beijing Centre for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100190, China
| | - Changcheng Tang
- Beijing Centre for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,College of Mechanical and Electrical Engineerng, WuYi University, Nanping, Fujian 354300, China
| | - Mingjun Xia
- Beijing Centre for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Lijuan Liu
- Beijing Centre for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xiaoyang Wang
- Beijing Centre for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
23
|
Li Y, Ji M, Hu C, Chen J, Li B, Lin Y, Mao J. Explorations of New SHG Materials in Mercury Iodate Sulfate System**. Chemistry 2022; 28:e202200001. [DOI: 10.1002/chem.202200001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yi‐Lin Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Meng‐Ya Ji
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chun‐Li Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Jin Chen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Bing‐Xuan Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Yuan Lin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies) Fujian Normal University Fuzhou 350117, Fujian China
- Strait Laboratory of Flexible Electronics (SLoFE) Fuzhou 350117, Fujian China
| | - Jiang‐Gao Mao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
24
|
Polar lanthanide copper iodates LnCu(IO3)5 (Ln = La, Ce, Pr, and Nd): Synthesis, crystal structure and characterization. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Zeng W, Dong X, Tian Y, Huang L, Zeng H, Lin Z, Zou G. Unprecedented boat-shaped [Mo 2O 5(IO 3) 4] 2- polyanions induced a strong second harmonic generation response. Chem Commun (Camb) 2022; 58:3350-3353. [PMID: 35188165 DOI: 10.1039/d2cc00134a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first organic-inorganic hybrid guanidine molybdenyl iodate [C(NH2)3]2Mo2O5(IO3)4·2H2O was successfully synthesized via an improved moderate hydrothermal method. It features an unprecedented boat-shaped zero-dimensional [Mo2O5(IO3)4]2- polyanion cluster, which induces a wide band gap, moderate birefringence and strong second harmonic generation response, indicating that it is a potential nonlinear optical material.
Collapse
Affiliation(s)
- Wei Zeng
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China.
| | - Xuehua Dong
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China.
| | - Yao Tian
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China.
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China.
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China.
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
26
|
Wang F, Liang F, Liu W, Fu Y, Lu D, Zhang G, Wang J, Yu H, Zhang H, Wu Y. Anion-Centered Polyhedron Strategy for Strengthening Photon Emission Induced by Electron-Phonon Coupling. Inorg Chem 2022; 61:4071-4079. [PMID: 35188388 DOI: 10.1021/acs.inorgchem.1c03875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron-phonon coupling emerges as a growing frontier in the heart of condensed matter from physical symmetry to the electronic quantum state, but its quantitative strength dependence on the chemical structure has not been assessed. Here, we originally proposed the anion-centered polyhedron (ACP) strategy for elaborating the electron-phonon coupling interaction in rare-earth (RE) materials comprising three chemical factors, RE-O bond length, the effective charge of the coordinated atom, and structural dimensionality. Using Gd3+ cation with 4f7 configuration as a fluorescence probe, we found that the "free-O"-centered polyhedron is the most crucial motif in strengthening the phonon-assisted energy transfer and photon emission. The temperature-dependent Huang-Rhys S factors were calculated to identify the electron-phonon coupling intensity based on the fluorescence spectrum quantitatively. Finally, beyond conventional wisdom, a series of structural criteria were presented, serving as useful guidelines for discovering strongly coupled rare-earth optical materials. Our study breaks the long-time "blind"-searching diagram and provides reliable principles for many functional materials associated with electron-phonon coupling, such as superconductors, multiferroics, and phosphors.
Collapse
Affiliation(s)
- Fangyan Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Fei Liang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wang Liu
- Key Lab Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Fu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Dazhi Lu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Guochun Zhang
- Key Lab Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiyang Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Haohai Yu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Huaijin Zhang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yicheng Wu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
27
|
Chen J, Hu CL, Lin YL, Chen Y, Chen QQ, Mao JG. K 3V 2O 3F 4(IO 3) 3: a high-performance SHG crystal containing both five and six-coordinated V 5+ cations. Chem Sci 2022; 13:454-460. [PMID: 35126977 PMCID: PMC8729798 DOI: 10.1039/d1sc06026k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/05/2021] [Indexed: 11/21/2022] Open
Abstract
The combination of d0 transition metal oxofluorides with iodate anions helps to synthesize polar crystals. Herein, a novel polar crystal, K3V2O3F4(IO3)3, which is the first metal vanadium iodate with two types of V5+-centered polyhedra (VO4F2 octahedron and VO3F2 trigonal bipyramid), has been prepared hydrothermally. It crystallizes in the polar space group of Cmc21 and its structure displays an unprecedented 0D [V2O3F4(IO3)3]3- anion, which is composed of Λ-shaped cis-[VO2F2(IO3)2]3- and [VO2F2(IO3)]2- anions interconnected via the corner-sharing of one oxo anion. The synergy gained from the VO4F2, VO3F2 and IO3 groups resulted in K3V2O3F4(IO3)3 exhibiting both a strong second-harmonic generation (SHG) response (1.3 × KTiOPO4) under 2050 nm laser irradiation and a large birefringence (0.158 @ 2050 nm). This study provides a facile route for designing SHG materials by assembling various vanadium oxide-fluoride motifs and iodate anions into one compound.
Collapse
Affiliation(s)
- Jin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China .,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University Fuzhou 350007 P. R. China.,University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Yi-Lin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Yan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qian-Qian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| |
Collapse
|
28
|
Ma N, Hu CL, Chen J, Fang Z, Huang Y, Li BX, Mao JG. CaCe(IO 3) 3(IO 3F)F: a promising nonlinear optical material containing both IO 3− and IO 3F 2− anions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01720b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A promising nonlinear optical material, CaCe(IO3)3(IO3F)F, containing both IO3− and IO3F2− anions, has been reported.
Collapse
Affiliation(s)
- Nan Ma
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Zhi Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Yu Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Bing-Xuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jiang-Gao Mao
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| |
Collapse
|
29
|
Hu Y, Jiang X, Wu T, Xue Y, Wu C, Huang Z, Lin Z, Xu J, Humphrey MG, Zhang C. Wide Bandgaps and Strong SHG Responses of Hetero-Oxyfluorides by Dual-Fluorination-Directed Bandgap Engineering. Chem Sci 2022; 13:10260-10266. [PMID: 36277635 PMCID: PMC9473499 DOI: 10.1039/d2sc02137d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
A wide bandgap is an essential requirement for a nonlinear optical (NLO) material. However, it is very challenging to simultaneously engineer a wide bandgap and a strong second-harmonic generation (SHG) response, particularly in NLO materials containing second-order Jahn–Teller (SOJT) distorted units. Herein, we employ a bandgap engineering strategy that involves the dual fluorination of two different types of SOJT distorted units to realize remarkably wide bandgaps in the first examples of 5d0-transition metal (TM) fluoroiodates. Crystalline A2WO2F3(IO2F2) (A = Rb (RWOFI) and Cs (CWOFI)) exhibit the largest bandgaps yet observed in d0-TM iodates (4.42 (RWOFI) and 4.29 eV (CWOFI)), strong phase-matching SHG responses of 3.8 (RWOFI) and 3.5 (CWOFI) × KH2PO4, and wide optical transparency windows. Computational studies have shown that the excellent optical responses result from synergism involving the two fluorinated SOJT distorted units ([WO3F3]3− and [IO2F2]−). This work provides not only an efficient strategy for bandgap modulation of NLO materials, but also affords insight into the relationship between the electronic structure of the various fluorinated SOJT distorted units and the optical properties of crystalline materials. Wide bandgaps, strong SHG responses, and sufficient birefringence are observed in the first examples of 5d0-transition metal fluoroiodates, A2WO2F3(IO2F2) (A = Rb, and Cs), which were constructed by dual-fluorination-directed bandgap engineering.![]()
Collapse
Affiliation(s)
- Yilei Hu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Tianhui Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| | - Yanyan Xue
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| | - Chao Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| | - Zhipeng Huang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jun Xu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| |
Collapse
|
30
|
Wang D, Jiang X, Gong P, Zhang X, Lin Z, Hu Z, Wu Y. A new I 3O 93− group constructed from IO 3− and IO 55− anion units in Cs 3[Ga 2O(I 3O 9)(IO 3) 4(HIO 3)]. CrystEngComm 2022. [DOI: 10.1039/d1ce01234g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cs3[Ga2O(I3O9)(IO3)4(HIO3)] with a novel I3O93− fundamental building block (FBB) constituted by two IO3 and one IO5 polyhedra exhibited a wide band gap.
Collapse
Affiliation(s)
- Dandan Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoqing Jiang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Pifu Gong
- Key Laboratory of Functional Crystals and Laser Technology, Beijing Center for Crystal Research and Development, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyuan Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Zheshuai Lin
- Key Laboratory of Functional Crystals and Laser Technology, Beijing Center for Crystal Research and Development, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
31
|
Ma W, Huang J, Dai B, Yu F. BaI 3O 9H: a new alkaline-earth metal hydroxy iodate with two groups. NEW J CHEM 2022. [DOI: 10.1039/d2nj02226e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new alkali metal hydroxyl iodate BaI3O9H with a three-dimensional network structure and a moderate birefringence of 0.073 at 1064 nm.
Collapse
Affiliation(s)
- Wenjuan Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- Carbon Neutralization and Environmental Catalytic Technology Laboratory, Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, P. R. China
| | - Jianlong Huang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- Carbon Neutralization and Environmental Catalytic Technology Laboratory, Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, P. R. China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- Carbon Neutralization and Environmental Catalytic Technology Laboratory, Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, P. R. China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- Carbon Neutralization and Environmental Catalytic Technology Laboratory, Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
32
|
Sun J, Abudouwufu T, Jin C, Guo Z, Zhang M. K 6(IO 6H 4)(HI 2O 6)(HIO 3) 2(IO 3) 4·2H 2O: A Case of Iodate with Coexisting [I 5+O 3] and [I 7+O 6] Units. Inorg Chem 2021; 61:688-692. [PMID: 34919392 DOI: 10.1021/acs.inorgchem.1c03436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new alkali-metal iodate, K6(IO6H4)(HI2O6)(HIO3)2(IO3)4·2H2O (KIOH), was successfully grown at room temperature by a slow evaporation method. To our knowledge, the title compound is the first alkali-metal iodate containing isolated [I5+O3] and [I7+O6] units in one structure. Both the bond valence sum and X-ray photoelectron spectroscopy confirmed this phenomenon, which is consistent with the single-crystal data. Also, the theoretical calculation results showed that the title compound is a potential birefringent material. What is more, the low-cost growth of centimeter-sized crystals for the title compound greatly enriches the structural chemistry of the iodate system.
Collapse
Affiliation(s)
- Jun Sun
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, and Xinjiang Key Laboratory of Electronic Information Materials and Devices,Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tushagu Abudouwufu
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, and Xinjiang Key Laboratory of Electronic Information Materials and Devices,Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China
| | - Congcong Jin
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, and Xinjiang Key Laboratory of Electronic Information Materials and Devices,Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Guo
- Xuchang Quality and Technical Supervision, Inspection and Testing Center, National Quality Supervision and Inspection Center for Ceramic Products of China, West Section of Longxing Road, Dongcheng District, Xuchang 461000, China
| | - Min Zhang
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, and Xinjiang Key Laboratory of Electronic Information Materials and Devices,Chinese Academy of Sciences (CAS), 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Hou Y, Wu H, Yu H, Hu Z, Wang J, Wu Y. An Effective Strategy for Designing Nonlinear Optical Crystals by Combining the Structure-Directing Property of Oxyfluorides with Chemical Substitution. Angew Chem Int Ed Engl 2021; 60:25302-25306. [PMID: 34580973 DOI: 10.1002/anie.202111780] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 11/10/2022]
Abstract
Rationally designing a high-performance nonlinear optical (NLO) crystal remains a great ongoing challenge. It involves not only the design of noncentrosymmetric structures but also property optimization. In this communication, a new strategy for effectively designing the NLO crystal has been put forward, that is, using the structure-directing property of oxyfluoride anions to obtain a noncentrosymmetric and polar structure, and then by substitution of IO3 - for isovalent F- anions to further enhance the SHG response. With this strategy, a new iodate fluoride, Ba2 [MoO3 F(IO3 )](MoO3 F2 ) has been successfully designed from the Ba2 (MoO3 F2 )F2 with the cis-directing [MoO4 F2 ]4- groups. It exhibits a large SHG response (≈8×KDP), a wide transparent region (0.30-10.92 μm), a high laser-induced damage threshold (LDT) (88.53 MW cm-2 ), and a large birefringence (≈0.264@532 nm). These indicate Ba2 [MoO3 F(IO3 )](MoO3 F2 ) would be a promising NLO crystal.
Collapse
Affiliation(s)
- Ying Hou
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
34
|
Li Y, Hu C, Chen J, Mao J. Two bismuth iodate sulfates with enhanced optical anisotropy. Dalton Trans 2021; 50:16139-16146. [PMID: 34677566 DOI: 10.1039/d1dt02514g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two bismuth iodate sulfates crystallizing in the monoclinic space group P21/c, namely, Bi(IO3)(SO4) and CdBi(IO3)(SO4)2, were synthesized via solvothermal reactions. Bi(IO3)(SO4) features 2D [Bi(SO4)]+ layers, which are further linked by the IO3- groups to form a 3D network. CdBi(IO3)(SO4)2 exhibits 1D [IO3]- chains built from IO43- groups via corner-sharing and is the first example of a polyiodate sulfate as far as we know. These [IO3]- chains are interconnected by Bi3+ cations into [Bi(IO3)]2+ layers parallel to the bc plane, whereas the neighbouring Cd2+ cations are interconnected by bridging SO42- anions into [Cd(SO4)2]2- layers, also parallel to the bc plane. These cationic and anionic 2D layers are held together through Bi-O-S bridges into a complicated 3D framework. Bi(IO3)(SO4) and CdBi(IO3)(SO4)2 show wide band gaps of 3.91 and 4.03 eV and large birefringence values of 0.087 and 0.100 at 1064 nm, respectively. Our work indicates that the introduction of iodate group and lone pair cations, such as Bi3+, into metal sulfates can greatly enhance their birefringent properties.
Collapse
Affiliation(s)
- Yilin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianggao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
35
|
Huang QM, Hu CL, Yang BP, Fang Z, Huang Y, Mao JG. Ba 2[FeF 4(IO 3) 2]IO 3: a promising nonlinear optical material achieved by chemical-tailoring-induced structure evolution. Chem Commun (Camb) 2021; 57:11525-11528. [PMID: 34661229 DOI: 10.1039/d1cc04462a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new noncentrosymmetric iron-iodate-fluoride Ba2[FeF4(IO3)2]IO3 was ingeniously obtained based on the centrosymmetric Ba[FeF4(IO3)] through chemical tailoring. Ba2[FeF4(IO3)2]IO3 exhibits a strong phase-matchable second-harmonic generation effect, a large band gap, and a wide mid-infrared transparent window. The chemical tailoring design based on oxide-fluoride anions affords a feasible approach to design nonlinear optical materials.
Collapse
Affiliation(s)
- Qian-Ming Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Bing-Ping Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhi Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Yu Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
36
|
Hou Y, Wu H, Yu H, Hu Z, Wang J, Wu Y. An Effective Strategy for Designing Nonlinear Optical Crystals by Combining the Structure‐Directing Property of Oxyfluorides with Chemical Substitution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying Hou
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal Tianjin University of Technology Tianjin 300384 China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal Tianjin University of Technology Tianjin 300384 China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal Tianjin University of Technology Tianjin 300384 China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal Tianjin University of Technology Tianjin 300384 China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal Tianjin University of Technology Tianjin 300384 China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
37
|
Wu C, Jiang X, Lin L, Hu Y, Wu T, Lin Z, Huang Z, Humphrey MG, Zhang C. A Congruent‐Melting Mid‐Infrared Nonlinear Optical Vanadate Exhibiting Strong Second‐Harmonic Generation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chao Wu
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Lin Lin
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Yilei Hu
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Tianhui Wu
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhipeng Huang
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Mark G. Humphrey
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| |
Collapse
|
38
|
The Role of Acidity in the Synthesis of Novel Uranyl Selenate and Selenite Compounds and Their Structures. CRYSTALS 2021. [DOI: 10.3390/cryst11080965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Herein, the novel uranyl selenate and selenite compounds Rb2[(UO2)2(SeO4)3], Rb2[(UO2)3(SeO3)2O2], Rb2[UO2(SeO4)2(H2O)]·2H2O, and (UO2)2(HSeO3)2(H2SeO3)2Se2O5 have been synthesized using either slow evaporation or hydrothermal methods under acidic conditions and their structures were refined using single crystal X-ray diffraction. Rb2[(UO2)2(SeO4)3] synthesized hydrothermally adopts a layered 2D tetragonal structure in space group P42/ncm with a = 9.8312(4) Å, c = 15.4924(9) Å, and V = 1497.38(15) Å, where it consists of UO7 polyhedra coordinated via SeO4 units to create units UO2(SeO4)58− moieties which interlink to create layers in which Rb+ cations reside in the interspace. Rb2[(UO2)3(SeO3)2O2] synthesized hydrothermally adopts a layered 2D triclinic structure in space group P1¯ with a = 7.0116(6) Å, b = 7.0646(6) Å, c = 8.1793(7) Å, α = 103.318(7)°, β = 105.968(7)°, γ = 100.642(7)° and V = 365.48(6) Å3, where it consists of edge sharing UO7, UO8 and SeO3 polyhedra that form [(UO2)3(SeO3)2O2] layers in which Rb+ cations are found in the interlayer space. Rb2[UO2(SeO4)2(H2O)]·2H2O synthesized hydrothermally adopts a chain 1D orthorhombic structure in space group Pmn21 with a = 13.041(3) Å, b = 8.579(2) Å, c = 11.583(2) Å, and V = 1295.9(5) Å3, consisting of UO7 polyhedra that corner share with one H2O and four SeO42− ligands, creating infinite chains. (UO2)2(HSeO3)2(H2SeO3)2Se2O5 synthesized under slow evaporation conditions adopts a 0D orthorhombic structure in space group Cmc21 with a = 28.4752(12) Å, b = 6.3410(3) Å, c = 10.8575(6) Å, and V = 1960.45(16) Å3, consisting of discrete rings of [(UO2)2(HSeO3)2(H2SeO3)2Se2O5]2. (UO2)2(HSeO3)2(H2SeO3)2Se2O5 is apparently only the second example of a uranyl diselenite compound to be reported. A combination of single crystal X-ray diffraction and bond valance sums calculations are used to characterise all samples obtained in this investigation. The structures uncovered in this investigation are discussed together with the broader family of uranyl selenates and selenites, particularly in the context of the role acidity plays during synthesis in coercing specific structure, functional group, and topology formations.
Collapse
|
39
|
Wang D, Gong P, Zhang X, Lin Z, Hu Z, Wu Y. NaGaI 3O 9F: a new alkali metal gallium iodate combined with IO 3- and IO 3F 2- units. Dalton Trans 2021; 50:11562-11567. [PMID: 34351353 DOI: 10.1039/d1dt02122b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Birefringent crystals are very important optical materials, which are widely used in the fields of optics and communication. In this work, we reported a new iodate, NaGaI3O9F, synthesized by mild hydrothermal method. NaGaI3O9F crystallized in the monoclinic space group P21/c (No. 14) and it featured a novel ∞[Ga2(IO3F)2(IO3)4]2- layer stacked with Na+ cations located in the void maintaining charge balance. Notably, IO3- and IO3F2- anionic units appeared in the same time in the A-Ga-I-O/F (A = alkali metal) system. According to the experimental characterization and theoretical calculations, NaGaI3O9F showed a wide bandgap (4.27 eV) and large birefringence (Δnexp∼ 0.203, Δncal = 0.197 at 1064 nm), indicating its potential use as a birefringent material.
Collapse
Affiliation(s)
- Dandan Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China.
| | | | | | | | | | | |
Collapse
|
40
|
Wu C, Jiang X, Lin L, Hu Y, Wu T, Lin Z, Huang Z, Humphrey MG, Zhang C. A Congruent-Melting Mid-Infrared Nonlinear Optical Vanadate Exhibiting Strong Second-Harmonic Generation. Angew Chem Int Ed Engl 2021; 60:22447-22453. [PMID: 34346130 DOI: 10.1002/anie.202108886] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Indexed: 11/12/2022]
Abstract
Study of mid-infrared (mid-IR) nonlinear optical (NLO) materials is hindered by the competing requirements of optimized second-harmonic generation (SHG) coefficient dij and laser-induced damage threshold (LIDT) as well as the harsh synthetic conditions. Herein, we report facile hydrothermal synthesis of a polar NLO vanadate Cs4 V8 O22 (CVO) featuring a quasi-rigid honeycomb-layered structure with [VO4 ] and [VO5 ] polyhedra aligned parallel. CVO possesses a wide IR-transparent window, high LIDT, and congruent-melting behavior. It has very strong phase-matchable SHG intensities in metal vanadate family (12.0 × KDP @ 1064 nm and 2.2 × AGS @ 2100 nm). First-principles calculations suggest that the exceptional SHG responses of CVO largely originate from virtual electronic transitions within [V4 O11 ]∞ layer; the excellent optical transmittance of CVO arises from the special characteristics of vibrational phonons resulting from the layered structure.
Collapse
Affiliation(s)
- Chao Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Lin
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yilei Hu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tianhui Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhipeng Huang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
41
|
Huang QM, Hu CL, Yang BP, Fang Z, Lin Y, Chen J, Li BX, Mao JG. [GaF(H 2O)][IO 3F]: a promising NLO material obtained by anisotropic polycation substitution. Chem Sci 2021; 12:9333-9338. [PMID: 34349903 PMCID: PMC8278931 DOI: 10.1039/d1sc01401c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
A novel salt-inclusion fluoroiodate [GaF(H2O)][IO3F] derived from CsIO2F2 was ingeniously obtained through anisotropic polycation substitution. Because the catenulate [GaF(H2O)]2+ framework serves as a template for the favorable assembly of the polar [IO3F]2- groups and contributes to the nonlinear coefficient, [GaF(H2O)][IO3F] exhibits a greatly improved second-harmonic generation (SHG) effect of 10 times that of KH2PO4 (KDP) and a considerable band gap of 4.34 eV compared to the parent compound CsIO2F2 (3 × KDP, 4.5 eV). Particularly, to the best of our knowledge, [GaF(H2O)][IO3F] has the largest laser-induced damage threshold (LDT) of 140 × AgGgS2 of the reported iodates. All these results signify that [GaF(H2O)][IO3F] is a promising nonlinear optical (NLO) crystal. This work also proposes that anisotropic polycation substitution is an effective approach to optimize the SHG effect and develop excellent NLO materials.
Collapse
Affiliation(s)
- Qian-Ming Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Bing-Ping Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Zhi Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Yuan Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Jin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bing-Xuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
42
|
Peng G, Lin C, Fan H, Chen K, Li B, Zhang G, Ye N. Be 2 (BO 3 )(IO 3 ): The First Anion-mixed Van der Waals Member in the KBe 2 BO 3 F 2 Family with a Very Strong Second Harmonic Generation Response. Angew Chem Int Ed Engl 2021; 60:17415-17418. [PMID: 34038616 DOI: 10.1002/anie.202105777] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 11/07/2022]
Abstract
To obtain new nonlinear optical (NLO) materials with a large second harmonic generation (SHG) effect has always been a great challenge. We have synthesized the first metal borate-iodate NLO crystal, Be2 (BO3 )(IO3 ) (BBIO), by multicomponent modification of KBe2 BO3 F2 (KBBF), in which the structural features of KBBF were maintained and (IO3 )- groups were connected to honeycomb [Be2 BO3 O2 ]∞ layers. As the first KBBF family member with mixed anionic groups, BBIO benefited from the synergistic effect of (IO3 )- , (BO3 )3- and (BeO4 )6- groups, and exhibited a very strong SHG response of ≈7.2×KH2 PO4 (KDP, @1064 nm) and a large birefringence (Δn) of 0.172 at 1064 nm. BBIO may, unexpectedly, optimize growth habits via van der Waals forces. This study presents borate-iodate as a new NLO material and it demonstrates opportunities in KBBF structural engineering.
Collapse
Affiliation(s)
- Guang Peng
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chensheng Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Huixin Fan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaichuang Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingxuan Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Ge Zhang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Ning Ye
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
43
|
Chen QQ, Hu CL, Chen J, Li YL, Li BX, Mao JG. [o-C 5 H 4 NHOH] 2 [I 7 O 18 (OH)]⋅3 H 2 O: An Organic-Inorganic Hybrid SHG Material Featuring an [I 7 O 18 (OH)] ∞ 2 - Branched Polyiodate Chain. Angew Chem Int Ed Engl 2021; 60:17426-17429. [PMID: 34060191 DOI: 10.1002/anie.202106335] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 11/12/2022]
Abstract
An organic-inorganic hybrid polyiodate, namely, [o-C5 H4 NHOH]2 [I7 O18 (OH)]⋅3 H2 O (I), featuring a novel branched polyiodate chain has been obtained by evaporation method. [o-C5 H4 NHOH]2 [I7 O18 (OH)]⋅3 H2 O (I) crystalizes in the polar space group Ia and features an [I7 O18 (OH)] ∞ 2 - branched polyiodate chain in which [I3 O9 ]3- trimers are grafted on the same side of the one-dimensional (1D) chain based on [I4 O11 (OH)]3- tetramers. The asymmetric organic amine groups are beneficial to the polymerization of iodate groups and inducing the formation of the non-centrosymmetric (NCS) structure. Compound I exhibits a rather large Second-Harmonic- Generation (SHG) signal of 8.5×KH2 PO4 (KDP) upon 1064 nm laser radiation, a moderate band gap of 3.90 eV and a high laser-induced-damage-threshold (LIDT) of 182.34 MW cm-2 , hence it is a promising new SHG material. The relationship between the structures of the organic amine groups and the overall structures has been also analyzed.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Jin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Yi-Lin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Bing-Xuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
44
|
Chen Q, Hu C, Chen J, Li Y, Li B, Mao J. [
o
‐C
5
H
4
NHOH]
2
[I
7
O
18
(OH)]⋅3 H
2
O: An Organic–Inorganic Hybrid SHG Material Featuring an [I
7
O
18
(OH)] Branched Polyiodate Chain. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qian‐Qian Chen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Chun‐Li Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Jin Chen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Yi‐Lin Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Bing‐Xuan Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Jiang‐Gao Mao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| |
Collapse
|
45
|
Peng G, Lin C, Fan H, Chen K, Li B, Zhang G, Ye N. Be
2
(BO
3
)(IO
3
): The First Anion‐mixed Van der Waals Member in the KBe
2
BO
3
F
2
Family with a Very Strong Second Harmonic Generation Response. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guang Peng
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chensheng Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Huixin Fan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kaichuang Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bingxuan Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Ge Zhang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Ning Ye
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
46
|
Chen J, Hu CL, Kong F, Mao JG. High-Performance Second-Harmonic-Generation (SHG) Materials: New Developments and New Strategies. Acc Chem Res 2021; 54:2775-2783. [PMID: 34043910 DOI: 10.1021/acs.accounts.1c00188] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ConspectusSecond-harmonic-generation (SHG) causes the frequency doubling of light, which is very useful for generating high-energy lasers with specific wavelengths. Noncentrosymmetry (NCS) is the first requirement for an SHG process because the SHG coefficient is zero (χ2 = 0) in all centrosymmetric structures. At this stage, developing novel NCS crystals is a crucial scientific topic. Assembling polar units in an addictive fashion can facilely form NCS crystals with outstanding SHG performance. In this way, our group has obtained many different NCS crystals with extremely large SHG intensities (>5 × KDP or 1 × KTP). In this Account, we first provide a brief review of the development of SHG materials and concisely highlight the features of the excellent SHG materials. Then, we present four facile and rational molecular design strategies: (1) Traditional BO33--based crystals feature short absorption edges but usually suffer from relatively weak SHG performance (<5 × KDP). The combination of two types of pure π-conjugated anions (BO33- and NO3-) in a parallel fashion in the same compound has afforded a metal borate nitrate with a strong SHG effect. (2) To overcome the problems of the weak SHG effect and small birefringence in the less anisotropic QO4-based compounds, highly polarizable cations such as Hg2+ and Bi3+ are introduced into these systems, which greatly enhances both SHG effects and birefringence. (3) Iodate anions can be condensed into polynuclear iodate anions with a higher density of I5+ per unit cell, hence polyiodate anions can serve as excellent SHG-active groups. We developed a novel synthesis method for hydrothermal reactions under a phosphoric acid medium and obtained a series of metal polyiodates with strong SHG effects. In addition, as the number of iodate groups increases, the structural configuration of the polyiodate anion changes from linear to bent. (4) We introduce the concept of aliovalent substitution which features site-to-site atomic displacement at the structural level. Such aliovalent substitution led to new materials that have the same chemical stoichiometries or structural features as their parent compounds. Thus, aliovalent substitution can provide more experimental opportunities and afford new high-performance SHG materials. The introduction of a fluoride anion and the replacement of metal cations in the MO6 octahedron can result in new metal iodates with balanced properties including a large SHG effect, a wide band gap, and a high laser-induced damage threshold (LIDT) value. Finally, we briefly discuss several problems associated with the studies of SHG materials and give some prospects for SHG materials in the future.
Collapse
Affiliation(s)
- Jin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Fang Kong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| |
Collapse
|
47
|
Fang YB, Fu RB, Tang HX, Shui QR, Ma ZJ, Wu XT. Titanium Iodates with a Second-Harmonic-Generation Response. Inorg Chem 2021; 60:5821-5828. [PMID: 33779158 DOI: 10.1021/acs.inorgchem.1c00158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonlinear-optical (NLO) crystal is an important photoelectric functional material. In this work, a new NLO titanium iodate, (H3O)2Ti(IO3)6, along with Ti(IO3)4 has been synthesized under facile conditions. The space group of (H3O)2Ti(IO3)6 is the chiral noncentrosymmetric group R3 (No. 146), with an interesting three-dimensional framework, while that of Ti(IO3)4 is the centrosymmetric space group P1̅ (No. 2) containing one-dimensional chains. Thermogravimetric analysis shows that (H3O)2Ti(IO3)6 and Ti(IO3)4 have no weight loss below 220 and 390 °C, respectively. In addition, (H3O)2Ti(IO3)6 not only is thermally stable up to 200 °C in an air atmosphere but also is stable in water. (H3O)2Ti(IO3)6 has a moderate-intensity second-harmonic-generation (SHG) response (1.4×KDP), a large laser-induced damage threshold (46×AgGaS2), and high transmittance in the wavelength ranges of 0.5-1.4 and 2.5-10 μm. Both local dipole moment and systematic theoretical calculations reveal that the SHG response of (H3O)2Ti(IO3)6 is mainly because of the combined effect of [TiO6] octahedra and IO3 and IO4 units. In a word, (H3O)2Ti(IO3)6 exhibits good NLO performances, as well as water resistance and facile growth of a single crystal with high quality, indicating its potential application as NLO materials in the visible and mid-IR regions, especially the visible region.
Collapse
Affiliation(s)
- Yuan-Bin Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rui-Biao Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
| | - Hong-Xin Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qi-Rui Shui
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Zu-Ju Ma
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| |
Collapse
|
48
|
Cao L, Zhang S, Zhao D, Li B, Yan T, Yang G, Lin Z, Luo M, Ye N. Cd 3(IO 3)(IO 4)F 2·0.1CdO: A Nonlinear-Optical Crystal with the Introduction of Fluoride into Iodate Containing Both [IO 3] - and [IO 4] 3- Groups. Inorg Chem 2021; 60:6040-6046. [PMID: 33822589 DOI: 10.1021/acs.inorgchem.1c00506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new d10 transition-metal iodate fluoride, namely, Cd3(IO3)(IO4)F2·0.1CdO, was successfully designed and synthesized via the mid-infrared hydrothermal method. It crystallizes in the polar space group R3m and features the coexistence of the [IO3]- and [IO4]3- groups. Cd3(IO3)(IO4)F2·0.1CdO has a strong second-harmonic-generation response of about 3.0 times that of KDP(KH2PO4), large birefringence (0.133 at 546.1 nm), and a wide energy band gap (4.00 eV). In addition, the power laser damage threshold (LDT) measurement indicated that it possesses a high LDT of 84.29 MW/cm2, which is about 30 times that of AgGaS2. These superior properties showed that Cd3(IO3)(IO4)F2·0.1CdO may be an excellent nonlinear-optical crystal for visible and mid-infrared application.
Collapse
Affiliation(s)
- Liling Cao
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shengzi Zhang
- University of the Chinese Academy of Sciences, Beijing 100049, China.,Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dan Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Bingxuan Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Tao Yan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Guangsai Yang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales 2500, Australia
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Luo
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ning Ye
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
49
|
Chen Z, Guo J, Han S, Zeng H, Yang Z, Pan S. AB11O16(OH)2 (A = K and Cs): interpenetrating 2D layers with large birefringence. CrystEngComm 2021. [DOI: 10.1039/d0ce01569e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By a cation substitution strategy, two new hydroxyborates AB11O16(OH)2 (A = K and Cs) were synthesized, and KB11O16(OH)2 exhibits a short DUV cutoff edge (195 nm) and a large birefringence.
Collapse
Affiliation(s)
- Zhen Chen
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS
- Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
| | - Jingyu Guo
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS
- Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
| | - Shujuan Han
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS
- Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
| | - Hao Zeng
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS
- Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS
- Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS
- Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
| |
Collapse
|
50
|
Wu C, Feng J, Yu F. Na 2La 2B 10O 19: a new lanthanum sodium borate with infinite 2D layer 2∞[B 10O 19] 8− and moderate birefringence. NEW J CHEM 2021. [DOI: 10.1039/d1nj02547c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new La-based borate Na2La2B10O19 with infinite 2D double layers composed of (B5O12)9− FBBs and a moderate birefringence of 0.06 at 1064 nm.
Collapse
Affiliation(s)
- Chengfa Wu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- China
| | - Junwei Feng
- Department of Physics
- Changji University
- Changji
- China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- China
| |
Collapse
|