1
|
Jiang Y, Li H, Tang H, Zhang Q, Yang H, Pan Y, Zou C, Zhang H, Walsh PJ, Yang X. Visible-light-driven net-1,2-hydrogen atom transfer of amidyl radicals to access β-amido ketone derivatives. Chem Sci 2025; 16:962-969. [PMID: 39664809 PMCID: PMC11629091 DOI: 10.1039/d4sc04997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Hydrogen atom transfer (HAT) processes provide an important strategy for selective C-H functionalization. Compared with the popularity of 1,5-HAT processes, however, net-1,2-HAT reactions have been reported less frequently. Herein, we report a unique visible-light-mediated net-1,2-HAT of amidyl radicals for the synthesis of β-amido ketone derivatives. Single-electron transfer (SET) to N-aryloxy amides generates nitrogen-centered radicals (N˙), which undergo a rare net-1,2-HAT to form carbon-centered radicals (C˙). The C-centered radicals are then captured by silyl enol ethers on the way to β-amido ketones. A series of β-amido ketone derivatives (33 examples, up to 97% yield) were prepared with good functional group tolerance demonstrating the synthetic utility of this method. Mechanistic studies, including EPR, radical trapping experiments, deuterium labeling and KIE measurements, suggest an intramolecular radical net-1,2-HAT pathway.
Collapse
Affiliation(s)
- Yonggang Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University Kunming 650500 P. R. China
| | - Hui Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Haoqin Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Qingyue Zhang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China Ningbo 315100 P. R. China
| | - Haitao Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Yu Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Chenggang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University Kunming 650500 P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| |
Collapse
|
2
|
Rakshit A, Moon K, Singh P, Park JS, Kim IS. Synthesis of Quinoline-Indole Hybrids through Cu(II)-Catalyzed Amination and Annulation between N-Oxides and o-Alkynylanilines. Org Lett 2024; 26:11218-11223. [PMID: 39680728 DOI: 10.1021/acs.orglett.4c04375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The synthesis of (iso)quinoline-indole hybrids by reacting (iso)quinoline N-oxides with o-alkynylanilines in the presence of a combination of copper(II) catalyst and a bidentate 2,2'-bipyridine ligand is described. The utility of this method was demonstrated through site-selective functionalization of the synthesized products. A plausible reaction pathway for site-selective amination followed by annulative indole formation was elucidated by a series of mechanistic investigations.
Collapse
Affiliation(s)
- Amitava Rakshit
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pargat Singh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jung Su Park
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Zeng YH, Dong L. Copper-promoted ortho-directed C-H amination of 2-arylpyridines with NH-heterocycles. Org Biomol Chem 2024; 22:7390-7394. [PMID: 39175249 DOI: 10.1039/d4ob01126k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Copper-mediated C-N coupling of azaheterocycles with aryl C-H bonds has been realized for the synthesis of N-(hetero)arylated heteroarenes. This method is characterized by high regioselectivity, atom economy and a wide substrate scope of 2-arylazines and azaheterocycles. The corresponding C-N coupling products were shown to undergo further transformation to synthesize more complex molecules.
Collapse
Affiliation(s)
- Yang-Hao Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Choi H, Ham WS, van Bonn P, Zhang J, Kim D, Chang S. Mechanistic Approach Toward the C4-Selective Amination of Pyridines via Nucleophilic Substitution of Hydrogen. Angew Chem Int Ed Engl 2024; 63:e202401388. [PMID: 38589725 DOI: 10.1002/anie.202401388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
The development of site-selective functionalization of N-heteroarenes is highly desirable in streamlined synthesis. In this context, direct amination of pyridines stands as an important synthetic methodology, with particular emphasis on accessing 4-aminopyridines, a versatile pharmacophore in medicinal chemistry. Herein, we report a reaction manifold for the C4-selective amination of pyridines by employing nucleophilic substitution of hydrogen (SNH). Through 4-pyridyl pyridinium salt intermediates, 4-aminopyridine products are obtained in reaction with aqueous ammonia without intermediate isolation. The notable regioselectivity was achieved by the electronic tuning of the external pyridine reagents along with the maximization of polarizability in the proton elimination stage. Further mechanistic investigations provided a guiding principle for the selective C-H pyridination of additional N-heteroarenes, presenting a strategic avenue for installation of diverse functional groups.
Collapse
Affiliation(s)
- Hoonchul Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea
| | - Won Seok Ham
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea
| | - Pit van Bonn
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, 52074, Germany
| | - Jianbo Zhang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, South Korea
| |
Collapse
|
5
|
Shan Z, Xiao JZ, Wu M, Wang J, Su J, Yao MS, Lu M, Wang R, Zhang G. Topologically Tunable Conjugated Metal-Organic Frameworks for Modulating Conductivity and Chemiresistive Properties for NH 3 Sensing. Angew Chem Int Ed Engl 2024; 63:e202401679. [PMID: 38389160 DOI: 10.1002/anie.202401679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their π-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10-3 to 102 S m-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.
Collapse
Affiliation(s)
- Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian-Ze Xiao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Miaomiao Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinjian Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ming-Shui Yao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
6
|
Kuang X, Li JJ, Liu T, Ding CH, Wu K, Wang P, Yu JQ. Cu-mediated enantioselective C-H alkynylation of ferrocenes with chiral BINOL ligands. Nat Commun 2023; 14:7698. [PMID: 38001060 PMCID: PMC10673954 DOI: 10.1038/s41467-023-43278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
A wide range of Cu(II)-catalyzed C-H activation reactions have been realized since 2006, however, whether a C-H metalation mechanism similar to Pd(II)-catalyzed C-H activation reaction is operating remains an open question. To address this question and ultimately develop ligand accelerated Cu(II)-catalyzed C-H activation reactions, realizing the enantioselective version and investigating the mechanism is critically important. With a modified chiral BINOL ligand, we report the first example of Cu-mediated enantioselective C-H activation reaction for the construction of planar chiral ferrocenes with high yields and stereoinduction. The key to the success of this reaction is the discovery of a ligand acceleration effect with the BINOL-based diol ligand in the directed Cu-catalyzed C-H alkynylation of ferrocene derivatives bearing an oxazoline-aniline directing group. This transformation is compatible with terminal aryl and alkyl alkynes, which are incompatible with Pd-catalyzed C-H activation reactions. This finding provides an invaluable mechanistic information in determining whether Cu(II) cleaves C-H bonds via CMD pathway in analogous manner to Pd(II) catalysts.
Collapse
Affiliation(s)
- Xin Kuang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China
- School of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, P. R. China
| | - Jian-Jun Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Tao Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Chang-Hua Ding
- School of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, P. R. China
| | - Kevin Wu
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P.R. China.
| | - Jin-Quan Yu
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
7
|
Aravindan N, Jeganmohan M. One-Pot Synthesis of Benzo[ c]phenanthridine Alkaloids from 7-Azabenzonorbornadienes and Aryl Nitrones. Org Lett 2023. [PMID: 37200493 DOI: 10.1021/acs.orglett.3c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An efficient synthesis of benzo[c]phenanthridine alkaloids via a synergistic combination of C-C bond formation and a cycloaromatization reaction is described. Aryl nitrones react with 7-azabenzonorbornadienes in the presence of a Rh(III) catalyst, providing pharmaceutically useful benzo[c]phenanthridine derivatives in good to moderate yields. Using this methodology, highly useful alkaloids such as norfagaronine, norchelerythrine, decarine, norsanguinarine, and nornitidine were prepared in a single step.
Collapse
Affiliation(s)
- Narasingan Aravindan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
8
|
Kumar M, Rastogi A, Raziullah, Ahmad A, Gangwar MK, Koley D. Cu(II)-Catalyzed, Site Selective Sulfoximination to Indole and Indolines via Dual C-H/N-H Activation. Org Lett 2022; 24:8729-8734. [PMID: 36444657 DOI: 10.1021/acs.orglett.2c02817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper-catalyzed protocol furnishing N-arylated sulfoximines has been developed via dual N-H/C-H activation. Arylalkyl- and less reactive diarylsulfoximines were efficiently coupled with privileged scaffolds like indolines, indoles, and N-Ar-7-azaindoles. Sulfoximines based on medicinally relevant scaffolds (phenothiazine, dibenzothiophene, thioxanthenone) were also well tolerated. Detailed mechanistic studies indicate that the deprotometalation and protodemetalation step is the reversible step.
Collapse
Affiliation(s)
- Mohit Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anushka Rastogi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raziullah
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manoj Kumar Gangwar
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Dipankar Koley
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Banerjee S, Mishra M, Punniyamurthy T. Copper-Catalyzed C7-Selective C–H/N–H Cross-Dehydrogenative Coupling of Indolines with Sulfoximines. Org Lett 2022; 24:7997-8001. [DOI: 10.1021/acs.orglett.2c03190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sonbidya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
10
|
Zhang Y, Xia S, Shi WX, Lin B, Su XC, Lu W, Wu X, Wang X, Lu X, Yan M, Zhang XJ. Radical C–H Sulfonation of Arenes: Its Applications on Bioactive and DNA-Encoded Molecules. Org Lett 2022; 24:7961-7966. [DOI: 10.1021/acs.orglett.2c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Shengdi Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen-xia Shi
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Bizhen Lin
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Xiao-can Su
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Xue-jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| |
Collapse
|
11
|
Pan Z, Chen B, Fang J, Liu T, Fang J, Ma Y. Photocatalytic C-H Activation and Amination of Arenes with Nonactivated N-Hydroxyphthalimides Involving Phosphine-Mediated N-O Bond Scission. J Org Chem 2022; 87:14588-14595. [PMID: 36255235 DOI: 10.1021/acs.joc.2c01975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we reported a metal-free photoredox/phosphine-catalyzed C-H amination of arenes. This allows for concise synthesis of highly functionalized N-arylphthalimides from readily available N-hydroxyphthalimides directly, without the preparation of activated N-hydroxyphthalimide intermediates. Mechanistic studies reveal that the radical is produced via phosphine-mediated N-O bond scission.
Collapse
Affiliation(s)
- Zhentao Pan
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Bo Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Jingxi Fang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Tong Liu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Jiayao Fang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| |
Collapse
|
12
|
Sarkar T, Shah TA, Maharana PK, Debnath B, Punniyamurthy T. Dual Metallaphotoredox Catalyzed Directed C(sp2)‐H Functionalization: Access to C‐C/C‐Heteroatom Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tanumay Sarkar
- IIT Guwahati: Indian Institute of Technology Guwahati Chemistry INDIA
| | | | | | - Bijoy Debnath
- Indian Institute of Technology Guwahati Chemistry INDIA
| | | |
Collapse
|
13
|
Hisana KN, Afsina CMA, Anilkumar G. Copper-catalyzed N-arylation of indoles. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220527140651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Over the past decades, the N-arylation of indoles has gained an inevitable role in the fields of material science, pharmaceuticals, and agrochemical industries. They are the basic core skeleton of many natural products. Their synthesis by Ullmann-type C–N coupling reaction of indole derivatives with aryl halides through various catalytic protocols is well explored. Transition metal catalysis was the best method for synthesizing 1-aryl indoles, and copper catalysis is the leading among them. This review comprehends the recent developments in the copper-catalyzed C–N cross-coupling of indoles with aryl halides from 2010 to 2022.
Collapse
Affiliation(s)
| | - C M A Afsina
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, INDIA
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, INDIA
| |
Collapse
|
14
|
Ni SF, Huang G, Chen Y, Wright JS, Li M, Dang L. Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Wang HH, Wang XD, Yin GF, Zeng YF, Chen J, Wang Z. Recent Advances in Transition-Metal-Catalyzed C–H Alkylation with Three-Membered Rings. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hui-Hong Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Xiao-Dong Wang
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, People’s Republic of China
| | - Gao-Feng Yin
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, People’s Republic of China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, People’s Republic of China
| | - Jinjin Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, People’s Republic of China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, People’s Republic of China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
16
|
Sarkar T, Maharana PK, Roy S, Punniyamurthy T. Expedient Ni-catalyzed C-H/C-H cross-dehydrogenative coupling of aryl amides with azoles. Chem Commun (Camb) 2022; 58:5980-5983. [DOI: 10.1039/d2cc01097f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed C-H heteroarylation of arenes has been described using a removable oxazoline-aniline derived directing group. Utilization of inexpensive nickel(II)-catalyst, substrate scope, functional group diversity and late-stage functionalization of xanthine-derived...
Collapse
|
17
|
Cheng TJ, Chen JJ, Wu P, Xu H, Dai HX. Copper-Mediated ortho-C-H Amination Using DMF as the Amine Source. Org Lett 2021; 23:8505-8509. [PMID: 34704762 DOI: 10.1021/acs.orglett.1c03223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report herein a copper-mediated ortho-C-H amination of anilines using oxalamide as the directing group and DMF as the amination reagent. This protocol tolerates various functional groups and shows good heterocyclic compatibility. Late-stage dimethylamination of drugs demonstrated the synthetic practicality of the protocol. Mechanistic experiments indicate that a radical pathway may be involved in the reaction.
Collapse
Affiliation(s)
- Tai-Jin Cheng
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Jie Chen
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Peng Wu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Hui Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui-Xiong Dai
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Qi Y, Gu X, Huang X, Shen G, Yang B, He Q, Xue Z, Du M, Shi L, Yu B. Microwave-assisted controllable synthesis of 2-acylbenzothiazoles and bibenzo[b][1,4]thiazines from aryl methyl ketones and disulfanediyldianilines. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
|
20
|
Xu P, Shi S, Du Z, Bai J, Zhou P, Wang L, Dong S, Sun X, Zhou Q. Ni(II)‐Mediated Ortho C(sp2)‐H Amidation of Arenes to Synthesis Secondary Sulfonamides via Sulfonyl Azides. ChemistrySelect 2021. [DOI: 10.1002/slct.202103043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peng Xu
- Research Center of Resources and Environment School of Chemical Engineering and Materials Changzhou Institute of Technology Changzhou 213022 P. R. China
| | - Si−Yi Shi
- School of Chemical Engineering and Materials Chang Zhou Institute of Technology 666 Liao he road Changzhou 213032 China
| | - Zhi‐jun Du
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Ji‐Rong Bai
- Research Center of Resources and Environment School of Chemical Engineering and Materials Changzhou Institute of Technology Changzhou 213022 P. R. China
| | - Pin Zhou
- Research Center of Resources and Environment School of Chemical Engineering and Materials Changzhou Institute of Technology Changzhou 213022 P. R. China
| | - Ling‐ling Wang
- Research Center of Resources and Environment School of Chemical Engineering and Materials Changzhou Institute of Technology Changzhou 213022 P. R. China
| | - Shuang Dong
- School of Chemical Engineering and Materials Chang Zhou Institute of Technology 666 Liao he road Changzhou 213032 China
| | - Xiao‐Nan Sun
- School of Chemical Engineering and Materials Chang Zhou Institute of Technology 666 Liao he road Changzhou 213032 China
| | - Quan‐Fa Zhou
- Research Center of Resources and Environment School of Chemical Engineering and Materials Changzhou Institute of Technology Changzhou 213022 P. R. China
| |
Collapse
|
21
|
Xu LP, Haines BE, Ajitha MJ, Yu JQ, Musaev DG. Unified Mechanistic Concept of the Copper-Catalyzed and Amide-Oxazoline-Directed C(sp 2)–H Bond Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Li-Ping Xu
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Brandon E. Haines
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Manjaly J. Ajitha
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
22
|
Murali K, Machado LA, Carvalho RL, Pedrosa LF, Mukherjee R, Da Silva Júnior EN, Maiti D. Decoding Directing Groups and Their Pivotal Role in C-H Activation. Chemistry 2021; 27:12453-12508. [PMID: 34038596 DOI: 10.1002/chem.202101004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Synthetic organic chemistry has witnessed a plethora of functionalization and defunctionalization strategies. In this regard, C-H functionalization has been at the forefront due to the multifarious applications in the development of simple to complex molecular architectures and holds a brilliant prospect in drug development and discovery. Despite been explored tremendously by chemists, this functionalization strategy still enjoys the employment of novel metal catalysts as well metal-free organic ligands. Moreover, the switch to photo- and electrochemistry has widened our understanding of the alternative pathways via which a reaction can proceed and these strategies have garnered prominence when applied to C-H activation. Synthetic chemists have been foraging for new directing groups and templates for the selective activation of C-H bonds from a myriad of carbon-hydrogen bonds in aromatic as well as aliphatic systems. As a matter of fact, by varying the templates and directing groups, scientists found the answer to the challenge of distal C-H bond activation which remained an obstacle for a very long time. These templates have been frequently harnessed for selectively activating C-H bonds of natural products, drugs, and macromolecules decorated with multiple C-H bonds. This itself was a challenge before the commencement of this field as functionalization of a site other than the targeted site could modify and hamper the biological activity of the pharmacophore. Total synthesis and pharmacophore development often faces the difficulty of superfluous reaction steps towards selective functionalization. This obstacle has been solved by late-stage functionalization simply by harnessing C-H bond activation. Moreover, green chemistry and metal-free reaction conditions have seen light in the past few decades due to the rising concern about environmental issues. Therefore, metal-free catalysts or the usage of non-toxic metals have been recently showcased in a number of elegant works. Also, research groups across the world are developing rational strategies for directing group free or non-directed protocols that are just guided by ligands. This review encapsulates the research works pertinent to C-H bond activation and discusses the science devoted to it at the fundamental level. This review gives the readers a broad understanding of how these strategies work, the execution of various metal catalysts, and directing groups. This not only helps a budding scientist towards the commencement of his/her research but also helps a matured mind searching out for selective functionalization. A detailed picture of this field and its progress with time has been portrayed in lucid scientific language with a motive to inculcate and educate scientific minds about this beautiful strategy with an overview of the most relevant and significant works of this era. The unique trait of this review is the detailed description and classification of various directing groups and their utility over a wide substrate scope. This allows an experimental chemist to understand the applicability of this domain and employ it over any targeted substrate.
Collapse
Affiliation(s)
- Karunanidhi Murali
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Luana A Machado
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Renato L Carvalho
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Leandro F Pedrosa
- Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Rishav Mukherjee
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| | | | - Debabrata Maiti
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
23
|
Sarkar T, Shah TA, Maharana PK, Talukdar K, Das BK, Punniyamurthy T. Transition-Metal-Catalyzed Directing Group Assisted (Hetero)aryl C-H Functionalization: Construction of C-C/C-Heteroatom Bonds. CHEM REC 2021; 21:3758-3778. [PMID: 34164920 DOI: 10.1002/tcr.202100143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Transition-metal-catalyzed C-H functionalization is one of the fascinating scientific fronts in organic synthesis for the formation of conjugated arenes and has emerged as a benchmark to revolutionize the synthetic enterprise since past decades. In this realm, chelation-guided functionalization of C-H bonds using an exogenous directing group has received considerable attention recently for the expedient regioselective construction of C-C and C-heteroatom bonds as an efficient and sustainable alternative. This article outlines our contribution towards a wide variety of transformations that have been achieved by the directed C-H functionalization through the fine tuning of catalytic systems.
Collapse
Affiliation(s)
- Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039
| | - Tariq A Shah
- Department of Chemistry, University of Kashmir, Srinagar, 190006, India
| | | | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039
| | - Bijay Ketan Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039
| | | |
Collapse
|
24
|
Sikari R, Chakraborty G, Guin AK, Paul ND. Nickel-Catalyzed [4 + 2] Annulation of Nitriles and Benzylamines by C-H/N-H Activation. J Org Chem 2021; 86:279-290. [PMID: 33314935 DOI: 10.1021/acs.joc.0c02069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nickel-catalyzed [4 + 2] annulation of benzylamines and nitriles via C-H/N-H bond activation, providing straightforward atom-economic access to a wide variety of multisubstituted quinazolines, is reported. Mechanistic investigation revealed that the in situ formed amidines from the coupling of benzylamines and nitriles direct the nickel catalyst to activate the ortho-C-H bond of the phenyl ring of the benzylamine.
Collapse
Affiliation(s)
- Rina Sikari
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
25
|
Li JJ, Wang CG, Yu JF, Wang P, Yu JQ. Cu-Catalyzed C-H Alkenylation of Benzoic Acid and Acrylic Acid Derivatives with Vinyl Boronates. Org Lett 2020; 22:4692-4696. [PMID: 32511925 DOI: 10.1021/acs.orglett.0c01469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient Cu-catalyzed C-H alkenylation with acyclic and cyclic vinyl boronates was realized for the first time under mild conditions. The scope of the vinyl borons and the compatibility with functional groups including heterocycles are superior than Pd-catalyzed C-H coupling with vinyl borons, providing a reliable access to multisubstituted alkenes and dienes. Subsequent hydrogenation of the product from the internal vinyl borons will lead to installation of secondary alkyls.
Collapse
Affiliation(s)
- Jian-Jun Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China
| | - Cheng-Gang Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China
| | - Jin-Feng Yu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China
| | - Jin-Quan Yu
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla 92037, California, United States
| |
Collapse
|
26
|
Karjee P, Sarkar T, Kar S, Punniyamurthy T. Transition-Metal-Free Stereospecific Oxidative Annulative Coupling of Indolines with Aziridines. J Org Chem 2020; 85:8261-8270. [PMID: 32468818 DOI: 10.1021/acs.joc.0c00899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tandem C-N bond formation for the oxidative annulation of indolines with aziridines is accomplished employing the combination of DDQ and NaOCl at ambient conditions. Optically active aziridine can be coupled with high enantiomeric purity (>99% ee). The substrate scope, stereocontrol with the enantioenriched substrate, and scale-up are the important practical advantages.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
27
|
Micellar catalysis enabled synthesis of indolylbenzothiazoles and their functionalization via Mn(II)-catalyzed C2–H amination using pyridones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Affiliation(s)
- Quan Zheng
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chen‐Fu Liu
- College of Pharmaceutical ScienceGannan Medical University Ganzhou 341000 People's Republic of China
| | - Jie Chen
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Guo‐Wu Rao
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
29
|
Kumar M, Sharma R, Raziullah, Khan AA, Ahmad A, Dutta HS, Koley D. Cu(II)-Catalyzed Ortho C(sp 2)-H Diarylamination of Arylamines To Synthesize Triarylamines. Org Lett 2020; 22:2152-2156. [PMID: 32129076 DOI: 10.1021/acs.orglett.0c00196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A copper-catalyzed, directed ortho C-H diarylamination of indoles, indolines, anilines, and N-aryl-7-azaindoles has been established. Only copper salt as the catalyst and oxygen as the terminal oxidant are used to synthesize triarylamines using various diarylamines including carbazole and phenothiazine. Mechanistic interrogation reveals that copper plays a dual role.
Collapse
Affiliation(s)
- Mohit Kumar
- Academy of Scientific and Innovative Research, New Delhi, 110001, India
| | - Rishabh Sharma
- National Institute of Pharmaceutical Education and Research, Chunilal Bhawan, 168, Manicktala Road, Kolkata, 700054, India
| | - Raziullah
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Afsar Ali Khan
- Academy of Scientific and Innovative Research, New Delhi, 110001, India
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Dipankar Koley
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research, New Delhi, 110001, India
| |
Collapse
|
30
|
Grandhi GS, Dana S, Mandal A, Baidya M. Copper-Catalyzed 8-Aminoquinoline-Directed Oxidative C–H/N–H Coupling for N-Arylation of Sulfoximines. Org Lett 2020; 22:2606-2610. [DOI: 10.1021/acs.orglett.0c00545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Gowri Sankar Grandhi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
31
|
Kang E, Kim HT, Joo JM. Transition-metal-catalyzed C–H functionalization of pyrazoles. Org Biomol Chem 2020; 18:6192-6210. [DOI: 10.1039/d0ob01265c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review describes recent advances in transition-metal-catalyzed C–H functionalization reactions of pyrazoles to form new C–C and C–heteroatom bonds on the pyrazole ring.
Collapse
Affiliation(s)
- Eunsu Kang
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Hyun Tae Kim
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|