1
|
Khariushin IV, Ovsyannikov AS, Baudron SA, Ward JS, Kiesilä A, Rissanen K, Kalenius E, Chessé M, Nowicka B, Solovieva SE, Antipin IS, Bulach V, Ferlay S. Face-controlled chirality induction in octahedral thiacalixarene-based porous coordination cages. NANOSCALE 2025; 17:1980-1989. [PMID: 39651803 DOI: 10.1039/d4nr03622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Nanosized chiral octahedral M32 coordination cages were prepared via self-assembly of sulfonylcalix[4]arene tetranuclear M(II) clusters (M = Co or Ni) with enantiomerically enriched linkers based on tris(dipyrrinato)cobalt(III) complexes, appended with peripheral carboxylic groups. Two pairs of enantiomers of cages were obtained and unambiguously characterized from a structural point of view, using single crystal X-ray diffraction. Chiral-HPLC was used to evidence the enantiomers. In the solid state, the compounds present intrinsic and extrinsic porosity: the intrinsic porosity is linked with the size of the cages, which present an inner diameter of ca. 19 Å. The obtained solid-state supramolecular architectures demonstrated good performances as adsorbents for water and 2-butanol guest molecules.
Collapse
Affiliation(s)
- Ivan V Khariushin
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Alexander S Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Stéphane A Baudron
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Anniina Kiesilä
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Elina Kalenius
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Matthieu Chessé
- LIMA UMR 7042, Université de Strasbourg et CNRS et UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Igor S Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Véronique Bulach
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| |
Collapse
|
2
|
Zhang X, Zhang J, Wang G, Zhang C, Fan L, Cao Y, Liu H, Gao G. Constructing dendrite-suppressing separators based on cellulose acetate and polyoxometalates toward uniform lithium electrodeposition. Dalton Trans 2025; 54:1665-1676. [PMID: 39670530 DOI: 10.1039/d4dt03157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Functionalized separators are expected to serve as protective barriers to conquer the lithium dendrite penetration in lithium metal batteries. Herein, a novel self-supporting separator material has been successfully synthesized based on the cellulose acetate and Keggin-type polyoxometalate H3PMo12O40·xH2O (denoted as CA/PMo12). The incorporation of PMo12 facilitates the transformation of the original finger-like structure of the CA separator into a uniform three-dimensional porous grid architecture, which is more effective in inhibiting the growth of lithium dendrites. For the obtained CA/PMo12 separator, the mechanical strength, electrolyte uptake capacity, and Li+ anchoring ability are significantly improved. The plentiful ether and carbonyl functional groups of CA can effectively adsorb lithium ions and regulate the uniform lithium plating. More significantly, density functional theory calculations show that the coordination environment formed between PMo12 and CA is conducive to enhancing the adsorption ability of lithium ions and promoting the rapid migration of lithium ions. Meanwhile, PMo12 can act as an "ion sponge" to form a lithium-rich layer, making the distribution of charges on the lithium surface more uniform, while undergoing a reversible transformation between its reduced and oxidized states during repeated plating/stripping processes. Consequently, the Li//Li symmetric cell using a CA/PMo12 separator shows excellent plating/stripping efficiency after 1075 cycles with a low hysteresis voltage of 38.1 mV under 5 mA cm-2 and 1 mA h cm-2. Meanwhile, a LiFePO4//Li cell achieves a superior reversible capacity of 90 mA h g-1 after 100 cycles under 1 C.
Collapse
Affiliation(s)
- Xiyue Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Jiayuan Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Gui Wang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Chunhui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Linlin Fan
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yundong Cao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Hong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Guanggang Gao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
3
|
Cong YC, Zhu ZK, Sun C, Li XX, Zheng ST. Indium-Assisted Construction of {SiNb 18O 54}-Based Aggregates and Their Assembly into Extended Polyoxoniobate Architectures. Inorg Chem 2024. [PMID: 39259874 DOI: 10.1021/acs.inorgchem.4c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this research, indium ions were introduced into polyoxoniobates (PONbs) reaction systems to facilitate the construction of different {SiNb18O54}-based aggregates, including an {In(en)2{SiNb18O54}2} (en = ethylenediamine) dimer, an {[InO2][In2(en)O3]2{SiNb18O54}3} trimer, and an {[In(en)2][InO2][In7(en)5O9]{SiNb18O54}4} tetramer. Interestingly, these aggregates were further assembled into three uncommon extended PONb architectures in the presence of [Cu(en)2]2+ complexes, namely, H3[Cu(en)2(H2O)][Cu(en)2]6[Cu(en)2]2{[In(en)2][K2{SiNb18O54}(H2O)6]2}·1.5en·16H2O, H9{[Cu(en)2]6{[Cu(en)2]3[Cu(en)2(H2O)][In(H2O)2][In2(en)(H2O)2(OH)]2{SiNb18O54}3}·5en·29H2O, and H14[Cu(en)2]0.5[Cu(en)2(H2O)]{[Cu(en)2]2{[Cu(en)2]3[Cu(en)2(H2O)]5[K(H2O)2][In(H2O)2][In(en)2][In7(OH)9(en)5]{SiNb18O54}4}·7en·39H2O. In addition, all of them have good water vapor adsorption capacities and moderate proton transport capabilities. The above results indicate that introducing suitable heteroatoms to induce the aggregation PONb building blocks and further assembling them into new structures is an effective strategy to enrich the PONbs' structural diversity and develop new functional materials.
Collapse
Affiliation(s)
- Yu-Chen Cong
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zeng-Kui Zhu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
4
|
Yu H, Lin YD, Sun YQ, Zheng ST. A Rare Inorganic-Organic Hybrid Polyoxoboroniobate Based on Pagoda-Shaped {LiB 2Nb 29O 86} Clusters and {Cd 2( cis-en) 2( trans-en)} Complexes. Inorg Chem 2024. [PMID: 39240828 DOI: 10.1021/acs.inorgchem.4c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
A new inorganic-organic hybrid polyoxoboroniobate {H4K2[Cu(cis-en)2(H2O)]9[Cu(cis-en)2]6[Cd2(cis-en)2(trans-en)][LiB2Nb29O86]2·79H2O} (1, en = ethylenediamine), is built from pagoda-shaped {LiB2Nb29O86} clusters, linear {Cd2(cis-en)2(trans-en)} bridging units, and copper-amine complexes. The {LiB2Nb29O86} cluster represents the first example of combining oxoboron clusters with polyoxoniobate clusters (PONbs). It consists of an unusual HPONb fragment {LiNb18O54}, a fused-ring structural boroniobate cluster {B2Nb5O13}, and a classical Lindqvist {Nb6O19} fragment. The {Cd2(cis-en)2(trans-en)} and [Cu(cis-en)2]2+ complexes link the pagoda-shaped {LiB2Nb29O86} clusters into 1D infinite ladder chains. This is the first instance of simultaneous coordination of the cis-en and trans-en ligands with a single metal cation in the inorganic-organic hybrid PONb family. Furthermore, 1 exhibits good proton conductivity.
Collapse
Affiliation(s)
- Hao Yu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yu-Diao Lin
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Provincial Key Laboratory of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing, Fujian 350300, China
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
5
|
Wu PX, Chen CX, Sun YQ, Zheng ST. A water-soluble mixed-valent {Mn 11} cluster embedded heteropolyoxoniobate with magnetic properties. Chem Commun (Camb) 2024; 60:8888-8891. [PMID: 39086271 DOI: 10.1039/d4cc02720e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A rare all-inorganic high-nuclearity mixed-valent {Mn11} cluster embedded polyoxoniobate, K25H43{(Te4Nb9O33)3(Nb6O19)5(TeVINb5O14)[(TeIVO3)2(MnII7MnIII4O19)]}·97H2O (1), has been synthesized by a one-pot reaction. Compound 1 contains the largest manganese cluster {Mn11} core among polyoxoniobates reported to date. {Mn11} consists of three quasi-cubane {Mn3O4} units and is simultaneously encapsulated by lacunary α-Keggin {Te4Nb9O36} and Lindqvist {Nb6O19} units. Compound 1 exhibits significant magnetic anisotropy and excellent water solubility and stability. The findings suggest a new, all-inorganic polynulear Mn-based structural paradigm for aqueous solution chemistry and magnetic materials.
Collapse
Affiliation(s)
- Ping-Xin Wu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Chun-Xia Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
6
|
Chen B, Zheng W, Chun F, Xu X, Zhao Q, Wang F. Synthesis and hybridization of CuInS 2 nanocrystals for emerging applications. Chem Soc Rev 2023; 52:8374-8409. [PMID: 37947021 DOI: 10.1039/d3cs00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Copper indium sulfide (CuInS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap with a high absorption coefficient. In attempts to explore their practical applications, nanoscale CuInS2 has been synthesized with crystal sizes down to the quantum confinement regime. The merits of CuInS2 nanocrystals (NCs) include wide emission tunability, a large Stokes shift, long decay time, and eco-friendliness, making them promising candidates in photoelectronics and photovoltaics. Over the past two decades, advances in wet-chemistry synthesis have achieved rational control over cation-anion reactivity during the preparation of colloidal CuInS2 NCs and post-synthesis cation exchange. The precise nano-synthesis coupled with a series of hybridization strategies has given birth to a library of CuInS2 NCs with highly customizable photophysical properties. This review article focuses on the recent development of CuInS2 NCs enabled by advanced synthetic and hybridization techniques. We show that the state-of-the-art CuInS2 NCs play significant roles in optoelectronic and biomedical applications.
Collapse
Affiliation(s)
- Bing Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
7
|
Song J, Jiang Y, Lu Y, Cao Y, Zhang Y, Fan L, Liu H, Gao G. A Forceful "Dendrite-Killer" of Polyoxomolybdate with Reusability Effectively Dominating Dendrite-Free Lithium Metal Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301740. [PMID: 37312611 DOI: 10.1002/smll.202301740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/29/2023] [Indexed: 06/15/2023]
Abstract
In this work, a series of Mo-containing polyoxometalates (POMs) modified separators to inhibit the growth of lithium dendrites, and thus improving the lifespan and safety of the cells is proposed. When the deposited lithium forms dendrites and touches the separator, the optimized Dawson-type POM of (NH4 )6 [P2 Mo18 O62 ]·11H2 O (P2 Mo18 ) with the stronger oxidizability, acts like a "killer", is more inclined to oxidize Li0 into Li+ , thus weakening the lethality of lithium dendrites. The above process is accompanied by the formation of Lix [P2 Mo18 O62 ] (x = 6-10) in its reduced state. Converting to the stripping process, the reduced state Lix [P2 Mo18 O62 ] (x = 6-10) can be reoxidized to P2 Mo18 , which achieves the reusability of P2 Mo18 functional material. Meanwhile, lithium ions are released into the cell system to participate in the subsequent electrochemical cycles, thus the undesired lithium dendrites are converted into usable lithium ions to prevent the generation of "dead lithium". As a result, the Li//Li symmetrical cell with P2 Mo18 modified separator delivers exceptional cyclic stability for over 1000 h at 3 mA cm-2 and 5 mAh cm-2 , and the assembled Li-S full cell maintains superior reversible capacity of 600 mAh g-1 after 200 cycles at 2 C.
Collapse
Affiliation(s)
- Jian Song
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yuanyuan Jiang
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yizhong Lu
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yundong Cao
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yuxi Zhang
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Linlin Fan
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Hong Liu
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Guanggang Gao
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
8
|
Lai QS, Li XX, Zheng ST. All-inorganic POM cages and their assembly: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
9
|
Zhu L, Yang X, Sun JK. Cooperative cage hybrids enabled by electrostatic marriage. Chem Commun (Camb) 2023; 59:6020-6023. [PMID: 37186246 DOI: 10.1039/d3cc00779k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A cage hybrid (C-Cage-PB) was developed by electrostatic complexation of a quaternary ammonium cage (C-Cage+) and an anionic inorganic Prussian blue (PB-). Given the unique synergy of the two parts, such a cage hybrid can be used as a promising platform for the efficient removal of toxic compounds in wastewater through adsorption, delivery or catalytic degradation via a Fenton oxidation reaction. In addition, C-Cage-PB can encapsulate Pd clusters, which amplifies the function of the hybrid for enhanced catalytic performance in the sequential degradation of toxic organic compounds and heavy metal pollution in wastewater treatment.
Collapse
Affiliation(s)
- Liying Zhu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
| | - Xinchun Yang
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, P. R. China.
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
| |
Collapse
|
10
|
Zhang Y, Chen RQ, Wang ST, Liu YJ, Fang WH, Zhang J. From an aluminum oxo cluster to an aluminum oxo cluster organic cage. Chem Commun (Camb) 2023; 59:3411-3414. [PMID: 36852667 DOI: 10.1039/d2cc06524j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Presented herein is an example of the conversion of an aluminum oxo cluster (AlOC) to an aluminum oxo cluster organic cage (AlOCOC). We successfully synthesized the first example of an aluminum cluster-based organic cage-Al12 tetrahedral cage via an Al3 cluster. The use of 4-pyrazolecarboxylic acid plays an important role in the construction of the organic cage. Due to the presence of partially deprotonated ligands, the hydrogen-bonding interactions between the discrete tetrahedra generate porous supramolecular structures. Considering the high porosity and the abundant N-H sites, we further investigated the performance of the material towards iodine capture.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Ran-Qi Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Ya-Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
11
|
Müscher-Polzin P, Hauberg P, Näther C, Bensch W. Decoration of the [Nb 6O 19] 8– cluster shell with six Cu 2+-centred complexes generates the [(Cu(cyclen)) 6Nb 6O 19] 4+ moiety: room temperature synthesis, crystal structure and selected properties. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2023. [DOI: 10.1515/znb-2023-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Abstract
Mixing an aqueous solution of K8[Nb6O19]⋅16H2O with a DMSO/H2O solution of Cu(ClO4)2 · 6 H2O and cyclen at room temperature afforded crystallization of blue crystals of [(Cu(cyclen))6Nb6O19]⋅[ClO4]4·≈4H2O after slow evaporation of the solvents. The crystal structure contains the Lindqvist anion [Nb6O19]8– which is covalently expanded by six symmetry-related [Cu(cyclen)]2+ complexes via Nb-μ
2-O-Cu bridges yielding the positively charged [(Cu(cyclen))6Nb6O19]4+ cluster shell. The ClO4
− anions and crystal water molecules reside in the empty spaces of the packed clusters. The compound shows two electronic d-d transitions at energetic positions explaining the blue color.
Collapse
Affiliation(s)
- Philipp Müscher-Polzin
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
| | - Patrik Hauberg
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
| | - Christian Näther
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
| | - Wolfgang Bensch
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
| |
Collapse
|
12
|
Liu ZY, Ye JP, Li YL, Sun YQ, Li XX, Sun C, Zheng ST. Cadmium-containing windmill-like heteropolyoxoniobate macrocycle with high yield for catalyzing Knoevenagel condensation. Dalton Trans 2023; 52:1193-1197. [PMID: 36688608 DOI: 10.1039/d2dt03706h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A rare cadmium-containing windmill-like heteropolyoxoniobate macrocycle has been successfully synthesized with stable 1-D cyclic cluster aggregates. The compound exhibited promising basic catalytic ability for Knoevenagel condensation with a high yield under mild reaction conditions and high cycling stability. The theoretical calculation showed that the promising basic catalytic ability is due to the dense and stronger basic sites of the surface terminal O atoms.
Collapse
Affiliation(s)
- Zheng-Yi Liu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Jian-Ping Ye
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Yi-Lun Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
13
|
Luo XM, Li YK, Dong XY, Zang SQ. Platonic and Archimedean solids in discrete metal-containing clusters. Chem Soc Rev 2023; 52:383-444. [PMID: 36533405 DOI: 10.1039/d2cs00582d] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-containing clusters have attracted increasing attention over the past 2-3 decades. This intense interest can be attributed to the fact that these discrete metal aggregates, whose atomically precise structures are resolved by single-crystal X-ray diffraction (SCXRD), often possess intriguing geometrical features (high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties, providing invaluable opportunities for the intersection of different disciplines including chemistry, physics, mathematical geometry and materials science. In this review, we attempt to reinterpret and connect these fascinating clusters from the perspective of Platonic and Archimedean solid characteristics, focusing on highly symmetrical and complex metal-containing (metal = Al, Ti, V, Mo, W, U, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, lanthanoids (Ln), and actinoids) high-nuclearity clusters, including metal-oxo/hydroxide/chalcogenide clusters and metal clusters (with metal-metal binding) protected by surface organic ligands, such as thiolate, phosphine, alkynyl, carbonyl and nitrogen/oxygen donor ligands. Furthermore, we present the symmetrical beauty of metal cluster structures and the geometrical similarity of different types of clusters and provide a large number of examples to show how to accurately describe the metal clusters from the perspective of highly symmetrical polyhedra. Finally, knowledge and further insights into the design and synthesis of unknown metal clusters are put forward by summarizing these "star" molecules.
Collapse
Affiliation(s)
- Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ke Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Lai RD, Zhu ZK, Wu YL, Sun YQ, Sun C, Li XX, Zheng ST. Proton-Conductive Polyoxometalate Architectures Constructed from Lanthanide-Incorporated Polyoxoniobate Cages. Inorg Chem 2022; 61:21047-21054. [PMID: 36512697 DOI: 10.1021/acs.inorgchem.2c03576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two new extended polyoxometalate (POM) architectures based on lanthanide-incorporated polyoxoniobate (Ln-incorporated PONb) cages, namely, H4[CuII(en)2]4{K4(H2O)2[CuII(en)2]5[CuII5(trz)2(en)4(OH)2][Dy2CuII2(en)2(CO3)3(H2O)2(OH)3][Dy(H2O)4][DyNb23O68(H2O)4]2}·60H2O (1, en = ethylenediamine) and H20[CuII(en)2]4{[CuII(en)2]4[Dy2(C2O4)(H2O)4]2[(Nb32(OH)4(H2O)3O89]2}·54H2O (2), have been successfully synthesized and structurally characterized, demonstrating a feasible strategy to develop functional POM materials. In addition, the proton conductivity and magnetic behaviors of both 1 and 2 were studied.
Collapse
Affiliation(s)
- Rong-Da Lai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zeng-Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Lan Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Qiong Sun
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cai Sun
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
15
|
Li S, Sun JY, Zhang Z, Yang L, Liu GC, Wang XL. A New [δ-PMoVMoVI11O40]-Based Hybrid as Multifunctional Fluorescent Sensor for Detecting Cations, Anions, and Antibiotics in Aqueous Solution. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
16
|
Recent advances on high-nuclear polyoxometalate clusters. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Li J, Song N, Wang M, Zhang Z, Li Y, Chen L, Zhao J. Two Types of Subgroup-Valence Heteroatoms (P III, Te IV) Synergistically Controlling Octa-Ce III-Encapsulated Heteropolyoxotungstate and Its Electrochemical Recognition Properties. Inorg Chem 2022; 61:17166-17177. [PMID: 36240053 DOI: 10.1021/acs.inorgchem.2c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid development of the synthetic chemistry of polyoxometalates (POMs) has greatly driven the generation of structurally variable innovative POM-based materials. Herein, we synthesized a novel PIII and TeIV synergistically controlling octa-CeIII-encapsulated heteropolyoxotungstate [H2N(CH3)2]11K2Na6H11[Ce8(CH3COO)2(HPIIIO3)2W8O20(H2O)12(B-β-TeW8O30)2(B-α-TeW8O31)4]·64H2O (1). Its distinctive anion skeleton [Ce8(CH3COO)2(HPIIIO3)2W8O20(H2O)12(B-β-TeW8O30)2(B-α-TeW8O31)4]30- is built by two tetra-vacancy [B-β-TeW8O30]8- and four tetra-vacancy [B-α-TeW8O31]10- moieties linked through an inorganic-organic hybrid [Ce8(CH3COO)2(HPIIIO3)2W8O20(H2O)12]26+ {Ce8P2W8} cluster core. Interestingly, {Ce8P2W8} is assembled from four [W2O11]10- groups and two [HPIIIO3]2- anions and eight Ce3+ ions. Besides, 1 was further composited with carboxylated multiwalled carbon nanotube (CMCN), resulting in a bi-component 1/CMCN nanocomposite. An electrochemical recognition platform (named as 1/CMCN/GCE) was built by modifying 1/CMCN on a glassy carbon electrode (GCE) for electrochemical detection of dopamine (DPA) at physiological pH (pH = 7.0). The findings have shown that 1/CMCN/GCE exhibits a good detection limit of 4.95 nM for DPA. This work provides considerable inspiration to promote innovative and rational structure designs of POM-based materials and expand their applications to electrochemical and biological detection fields.
Collapse
Affiliation(s)
- Juan Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Nizi Song
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Menglu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Zhimin Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
18
|
A series of high-nuclear planar equilateral triangle-shaped {Ln6(µ3-OH)6} cluster encapsulated polyoxoniobates with frequency dependent magnetic property. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Zhao Y, Wan R, Li H, Zhao R, Chen W, Song H, Ma P, Niu J, Wang J. 183W Nuclear Magnetic Resonance and Photocatalysis Studies of Two Ruthenium-Decorated Isopolyoxometalates {Ru 2W 10} and {Ru 2W 13} via pH-Induced Assemblies. Inorg Chem 2022; 61:12097-12105. [DOI: 10.1021/acs.inorgchem.2c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujie Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Rong Wan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Ruikun Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Wenjing Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Haoming Song
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
20
|
Bhattacharya S, Barba‐Bon A, Zewdie TA, Müller AB, Nisar T, Chmielnicka A, Rutkowska IA, Schürmann CJ, Wagner V, Kuhnert N, Kulesza PJ, Nau WM, Kortz U. Discrete, Cationic Palladium(II)-Oxo Clusters via f-Metal Ion Incorporation and their Macrocyclic Host-Guest Interactions with Sulfonatocalixarenes. Angew Chem Int Ed Engl 2022; 61:e202203114. [PMID: 35384204 PMCID: PMC9324968 DOI: 10.1002/anie.202203114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 12/28/2022]
Abstract
We report on the discovery of the first two examples of cationic palladium(II)-oxo clusters (POCs) containing f-metal ions, [PdII6 O12 M8 {(CH3 )2 AsO2 }16 (H2 O)8 ]4+ (M=CeIV , ThIV ), and their physicochemical characterization in the solid state, in solution and in the gas phase. The molecular structure of the two novel POCs comprises an octahedral {Pd6 O12 }12- core that is capped by eight MIV ions, resulting in a cationic, cubic assembly {Pd6 O12 MIV8 }20+ , which is coordinated by a total of 16 terminal dimethylarsinate and eight water ligands, resulting in the mixed PdII -CeIV /ThIV oxo-clusters [PdII6 O12 M8 {(CH3 )2 AsO2 }16 (H2 O)8 ]4+ (M=Ce, Pd6 Ce8 ; Th, Pd6 Th8 ). We have also studied the formation of host-guest inclusion complexes of Pd6 Ce8 and Pd6 Th8 with anionic 4-sulfocalix[n]arenes (n=4, 6, 8), resulting in the first examples of discrete, enthalpically-driven supramolecular assemblies between large metal-oxo clusters and calixarene-based macrocycles. The POCs were also found to be useful as pre-catalysts for electrocatalytic CO2 -reduction and HCOOH-oxidation.
Collapse
Affiliation(s)
- Saurav Bhattacharya
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Andrea Barba‐Bon
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Tsedenia A. Zewdie
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Anja B. Müller
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Talha Nisar
- Department of Physics and Earth SciencesJacobs UniversityCampus Ring 128759BremenGermany
| | - Anna Chmielnicka
- Faculty of ChemistryUniversity of WarsawPasteura 102-093WarsawPoland
| | | | | | - Veit Wagner
- Department of Physics and Earth SciencesJacobs UniversityCampus Ring 128759BremenGermany
| | - Nikolai Kuhnert
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Pawel J. Kulesza
- Faculty of ChemistryUniversity of WarsawPasteura 102-093WarsawPoland
| | - Werner M. Nau
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Ulrich Kortz
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| |
Collapse
|
21
|
Yu H, Lin YD, Liu ZY, Sun YQ, Zheng ST. A Three-Dimensional (3D) Indium-Containing Polyoxoniobate Framework Based on {In 5Nb 71} n Helical Pillars. Inorg Chem 2022; 61:8112-8116. [PMID: 35588277 DOI: 10.1021/acs.inorgchem.2c00705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A rare 3D Indium-containing polyoxoniobate framework {H9[Cu(en)2(H2O)2][Cu(en)2]12[In(en)]5[Nb23-O65(OH)3(H2O)2]{Nb24O67(OH)2(H2O)3]2}·68H2O(1), based on the In-containing polyoxoniobate cluster, {[In(en)]5[Nb23O65(OH)3(H2O)2][Nb24O67(OH)2(H2O)3]2}35- ({In5Nb71}) and [Cu(en)2]2+ linkers has been successfully synthesized. The nest-like cluster {In5Nb71} is constructed from one brand-new V-shaped {Nb23O70}, two triangle-shaped {Nb24O72} and five [In(en)]3+. The [In(en)] fragments link {Nb24O72} and {Nb23O70} units into unique {In5Nb71}n helical pillars. The copper-amine complexes connect the {In5Nb71}n helical pillars into a three-dimensional (3D) inorganic-organic hybrid In-Cu-containing framework. This material also exhibits good ionic conductivity and vapor adsorption capacity properties.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yu-Diao Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zheng-Yi Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Qiong Sun
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
22
|
Chang Q, Meng X, Ruan W, Feng Y, Li R, Zhu J, Ding Y, Lv H, Wang W, Chen G, Fang X. Metal–Organic Cages with {SiW
9
Ni
4
} Polyoxotungstate Nodes. Angew Chem Int Ed Engl 2022; 61:e202117637. [DOI: 10.1002/anie.202117637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 01/14/2023]
Affiliation(s)
- Qing Chang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiangyu Meng
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Wenjun Ruan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Yeqin Feng
- MOE Key Laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Rui Li
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Jiayu Zhu
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Xiamen Institute of Rare Earth Materials Haixi Institutes Chinese Academy of Sciences Xiamen Fujian 361021 China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
23
|
Bhattacharya S, Barba‐Bon A, Zewdie TA, Müller AB, Nisar T, Chmielnicka A, Rutkowska IA, Schürmann CJ, Wagner V, Kuhnert N, Kulesza PJ, Nau WM, Kortz U. Discrete, Cationic Palladium(II)‐Oxo Clusters via f‐Metal Ion Incorporation and their Macrocyclic Host‐Guest Interactions with Sulfonatocalixarenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Saurav Bhattacharya
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Andrea Barba‐Bon
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Tsedenia A. Zewdie
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Anja B. Müller
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Talha Nisar
- Department of Physics and Earth Sciences Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Anna Chmielnicka
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Iwona A. Rutkowska
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | | | - Veit Wagner
- Department of Physics and Earth Sciences Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Pawel J. Kulesza
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Werner M. Nau
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| |
Collapse
|
24
|
Wang L, Wang AN, Xue ZZ, Wang YR, Han SD, Wang GM. In situ growth of polyoxometalate-based metal-organic framework nanoflower arrays for efficient hydrogen evolution. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Wu YL, Wang YJ, Sun YQ, Li XX, Zheng ST. Two high-nuclearity isopolyoxoniobates containing {Nb 54 O 151}-based helical nanotubes for the decomposition of chemical warfare agent simulants. Chem Commun (Camb) 2022; 58:3322-3325. [PMID: 35179528 DOI: 10.1039/d1cc06878d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two inorganic-organic hybrid isopolyoxoniobates (1 and 2) based on new high-nuclearity {Nb54O151} clusters have been synthesized under hydrothermal conditions. In particular, the combination of the unique {Nb54O151} clusters with copper-amine complexes has led to rare helical nanotubes, which are further linked by alkali metal cations or copper-amine complexes into two 2D similar bamboo-raft-like layered networks (1 and 2), respectively. Compound 1 exhibits effective base-catalytic decomposition of chemical warfare agent simulants dimethyl methylphosphonate (DMMP) and diethyl cyanophosphonate (DECP).
Collapse
Affiliation(s)
- Yan-Lan Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Yong-Jiang Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Yan-Qiong Sun
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
26
|
Chang Q, Meng X, Ruan W, Feng Y, Li R, Zhu J, Ding Y, Lv H, Wang W, Chen G, Fang X. Metal–Organic Cages with {SiW9Ni4} Polyoxotungstate Nodes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Chang
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Xiangyu Meng
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Wenjun Ruan
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yeqin Feng
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Rui Li
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Jiayu Zhu
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Yong Ding
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Hongjin Lv
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Wei Wang
- Chinese Academy of Sciences Fujian Institute of Research of the Structural of Matter CHINA
| | - Guanying Chen
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Xikui Fang
- Harbin Institute of Technology Department of Applied Chemistry A405 Mingde Building 150001 Harbin CHINA
| |
Collapse
|
27
|
Bao SJ, Xu ZM, Yu TC, Song YL, Wang H, Niu Z, Li X, Abrahams BF, Braunstein P, Lang JP. Flexible Vertex Engineers the Controlled Assembly of Distorted Supramolecular Tetrahedral and Octahedral Cages. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9819343. [PMID: 35282470 PMCID: PMC8897743 DOI: 10.34133/2022/9819343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022]
Abstract
Designing and building unique cage assemblies attract increasing interest from supramolecular chemists but remain synthetically challenging. Herein, we propose the use of a flexible vertex with adjustable angles to selectively form highly distorted tetrahedral and octahedral cages, for the first time, in which the flexible vertex forms from the synergistic effect of coordination and covalent interactions. The inherent interligand angle of the vertex can be modulated by guest anions present, which allows for the fine-tuning of different cage geometries. Furthermore, the reversible structural transformation between tetrahedral and octahedral cages was achieved by anion exchange monitored by mass spectrometric technique, the smaller anions favoring tetrahedral cages, while the larger anions supporting octahedral cages. Additionally, the KBr-based cage thin films exhibited prominent enhancement of their third-order NLO responses in two or three orders of magnitude compared to those obtained for their corresponding solutions. This work not only provides a new methodology to build irregular polyhedral structures in a controlled and tunable way but also provides access to new kinds of promising functional optical materials.
Collapse
Affiliation(s)
- Shu-Jin Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ze-Ming Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Tian-Chen Yu
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Ying-Lin Song
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | | | - Pierre Braunstein
- Université de Strasbourg-CNRS, Institut de Chimie (UMR 7177 CNRS), 4 Rue Blaise Pascal CS 90032, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
28
|
Zhu Z, Zhang J, Cong Y, Ge R, Li Z, Li X, Zheng S. Two Giant
Calixarene‐Like
Polyoxoniobate Nanocups {Cu
12
Nb
120
} and {Cd
16
Nb
128
} Built from Mixed Macrocyclic Cluster Motifs. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zeng‐Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Jing Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Yu‐Chen Cong
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Rui Ge
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Zhong Li
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Xin‐Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Shou‐Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
29
|
Zhu ZK, Zhang J, Cong YC, Ge R, Li Z, Li XX, Zheng ST. Two Giant Calixarene-Like Polyoxoniobate Nanocups {Cu 12 Nb 120 } and {Cd 16 Nb 128 } Built from Mixed Macrocyclic Cluster Motifs. Angew Chem Int Ed Engl 2021; 61:e202113381. [PMID: 34919310 DOI: 10.1002/anie.202113381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 11/10/2022]
Abstract
Cup-shaped molecules are of great interest due to their appealing architectures and properties. Compared with widely studied calixarenes, polyoxometalate-based cup-shaped molecules currently remain a virgin land waiting for exploration. In this work, we report the first discovery of two giant cup-shaped inorganic-organic hybrid polyoxoniobates (PONbs) of {Cu12 Nb120 } and {Cd16 Nb128 }. The former integrates three tricyclic Nb24 clusters and a hexacyclic Nb48 cluster into a cup-shaped molecule via a Cu12 metallacalixarene, while the latter unifies two tricyclic Nb24 clusters and a brand-new pentacyclic Nb40 cluster into another cup-shaped molecule via a hybrid Cd16 unit. With 132 and 144 metal centers, {Cu12 Nb120 } and {Cd16 Nb128 } show the largest two inorganic-organic hybrid PONbs known to date.
Collapse
Affiliation(s)
- Zeng-Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jing Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yu-Chen Cong
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Rui Ge
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
30
|
Virovets AV, Peresypkina E, Scheer M. Structural Chemistry of Giant Metal Based Supramolecules. Chem Rev 2021; 121:14485-14554. [PMID: 34705437 DOI: 10.1021/acs.chemrev.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review presents a bird-eye view on the state of research in the field of giant nonbiological discrete metal complexes and ions of nanometer size, which are structurally characterized by means of single-crystal X-ray diffraction, using the crystal structure as a common key feature. The discussion is focused on the main structural features of the metal clusters, the clusters containing compact metal oxide/hydroxide/chalcogenide core, ligand-based metal-organic cages, and supramolecules as well as on the aspects related to the packing of the molecules or ions in the crystal and the methodological aspects of the single-crystal neutron and X-ray diffraction of these compounds.
Collapse
Affiliation(s)
- Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
31
|
Two new 3D tubular polyoxoniobates frameworks based on {SiNb18O54} clusters with proton conduction properties. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Sun Y, Gao MY, Sun Y, Lu DF, Wang F, Zhang J. Two Isostructural Titanium Metal-Organic Frameworks for Light Hydrocarbon Separation. Inorg Chem 2021; 60:13955-13959. [PMID: 34498867 DOI: 10.1021/acs.inorgchem.1c02179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Presented here is the light hydrocarbon separation of titanium metal-organic frameworks (Ti-MOFs). Compared with the cyclic Ti-oxo cluster (Ti8O8(CO2)16, Ti8Ph), porous structures of FIR-125 and FIR-126 (FIR = Fujian Institute Research) can effectively improve the adsorption amounts of light hydrocarbons. The introduction of different functional groups and Ti-oxo clusters with small window sizes enables them to exhibit the highly selective separation of C2 and C3 hydrocarbons versus methane in an ambient atmosphere. The results show that Ti-MOFs are potential porous adsorbents for the separation of light hydrocarbons.
Collapse
Affiliation(s)
- Yayong Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mei-Yan Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Yuexin Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Dong-Fei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
33
|
State-of-the-art advances in the structural diversities and catalytic applications of polyoxoniobate-based materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213966] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Wang K, Feng S, Ma P. Synthesis, characterization and photoluminescence properties of an organic–inorganic hybrid monolacunary Keggin-type polyoxotungstate. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Yang Z, Shang J, Yang Y, Ma P, Niu J, Wang J. Synthesis, structures and stability of three V-substituted polyoxoniobate clusters based on [TeNb 9O 33] 17- units. Dalton Trans 2021; 50:7610-7620. [PMID: 33988637 DOI: 10.1039/d1dt00223f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three structurally intriguing polyoxoniobates (PONbs) based on the trivacant B-type α-Keggin ion {TeNb9O33}, H4K(CN3H6)2{[Cu4(2,2'-bipy)4(H2O)2][TeNb9V2O37]}·29H2O (1, 2,2'-bipy = 2,2'-bipyridine), H0.5K5Na2.5{[Cu(en)H2O]3[TeNb9V3O39]}·10H2O (2, en = ethylenediamine), and K3Na5{[Cu(1,3-dap)H2O]3[TeNb9V3O39]}·11H2O (3, 1,3-dap = 1,3-diaminopropane), are assembled by the conventional aqueous solution methods using a series of N-containing organic ligands. In 1, each of the two {VO4} units is attached to two coplanar NbO6 octahedra on the {Nb3O13} cluster of the {TeNb9O33} unit. Differently, three {VO4} units in 2 and 3 are linked to two edge-sharing NbO6 octahedra, respectively. Compounds 1-3 represent the first oxo NbTeV clusters and also the first vanadoniobates based on the trivacant Keggin PONb units. All three compounds were characterised by single-crystal X-ray structural analysis, TGA and IR, ESI-MS and 51V NMR spectroscopy. Furthermore, the magnetic properties of compounds 1 and 2 were also studied.
Collapse
Affiliation(s)
- Zongfei Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Jingjing Shang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Yuanyuan Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
36
|
Liu W, Kinyon JS, Bassil BS, Lin Z, Bindra JK, Dalal NS, Kortz U. Arsenic(III)-Capped 12-Tungsto-2-Arsenates(III) [M 2(As IIIW 6O 25) 2(As IIIOH) x] n- (M = Cr III, Fe III, Sc III, In III, Ti IV, Mn II) and Their Magnetic Properties. Inorg Chem 2021; 60:8267-8275. [PMID: 34041905 DOI: 10.1021/acs.inorgchem.1c00965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Six arsenic(III)-capped 12-tungsto-2-arsenates(III) of the type [M2(AsIIIW6O25)2(AsIIIOH)x]n- (M = CrIII, 1; FeIII, 2; ScIII, 3; InIII, 4; TiIV, 5; MnII, 6) have been synthesized in aqueous medium by direct reaction of the elements using a one-pot strategy and structurally characterized by FT-IR spectroscopy, single-crystal XRD, and elemental analysis. Polyanions 1-6 are comprised of two octahedrally coordinated guest metal ions M sandwiched between two {AsW6} units, resulting in a structure with C2h point-group symmetry. Polyanions 1-5 contain tri- and tetravalent metal ion guests M (M = CrIII, FeIII, ScIII, InIII, and TiIV, respectively), and they have one {AsIIIOH} group grafted on each {AsW6} unit, whereas the divalent MnII-containing derivative 6 has two such {AsIIIOH} groups grafted on each {AsW6} unit. Magnetic studies on polyanions 3-5 over the temperature range 1.8-295 K and magnetic fields of 0-7 T confirmed that they are diamagnetic. On the other hand, polyanions 1, 2, and 6 are strongly magnetic and follow the Curie-Weiss law above 30 K. The susceptibility plots of 1 and 6 exhibit broad peaks suggesting short-range antiferromagnetic ordering, while the very weak antiferromagnetic ordering of 2 is overshadowed by traces of a paramagnetic impurity. The magnetization data of 1, 2, and 6 at 1.8 K over 0-7 T were analyzed by using the Heisenberg exchange procedure. Small (negative) values of the obtained J values help in understanding the absence of long-range antiferromagnetic ordering.
Collapse
Affiliation(s)
- Wenjing Liu
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211800, China
| | - Jared S Kinyon
- Department of Chemistry and Biochemistry, Florida State University, 95 Chiefan Way, Tallahassee, Florida 32306, United States
| | - Bassem S Bassil
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany.,Department of Chemistry, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, Lebanon
| | - Zhengguo Lin
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Jasleen K Bindra
- Department of Chemistry and Biochemistry, Florida State University, 95 Chiefan Way, Tallahassee, Florida 32306, United States
| | - Naresh S Dalal
- Department of Chemistry and Biochemistry, Florida State University, 95 Chiefan Way, Tallahassee, Florida 32306, United States
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
37
|
Zhang TT, Zhao ZQ, Tian G, Cui XB. Two new polyoxoniobosilicate-based compounds: Syntheses, structures, characterizations and their catalytic properties for epoxidation and water oxidation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Guo J, Chang Q, Liu Z, Wang Y, Liu C, Wang M, Huang D, Chen G, Zhao H, Wang W, Fang X. How to not build a cage: endohedral functionalization of polyoxometalate-based metal-organic polyhedra. Chem Sci 2021; 12:7361-7368. [PMID: 34163825 PMCID: PMC8171318 DOI: 10.1039/d1sc01243f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/02/2021] [Indexed: 01/14/2023] Open
Abstract
Introducing functionalities into the interior of metal-organic cage complexes can confer properties and utilities (e.g. catalysis, separation, drug delivery, and guest recognition) that are distinct from those of unfunctionalized cages. Endohedral functionalization of such cage molecules, for decades, has largely relied on modifying their organic linkers to covalently append targeted functional groups to the interior surface. We herein introduce an effective coordination method to bring in functionalities at the metal sites instead, for a set of polyhedral cages where the nodes are in situ formed polyoxovanadate clusters, [VIV 6O6(OCH3)9(μ6-SO4)(COO)3]2-. Replacing the central sulfates of these hexavanadate clusters with more strongly coordinating phosphonate groups allows the installation of functionalities within the cage cavities. Organophosphonates with phenyl, biphenyl, and terphenyl tails were examined for internalization. Depending on the size/shape of the cavities, small phosphonates can fit into the molecular containers whereas larger ones inhibit or transform the framework architecture, whereby the first non-cage complex was isolated from a reaction that otherwise would lead to entropically favored regular polyhedra cages. The results highlight the complex and dynamic nature of the self-assembly process involving polyoxometalates and the scope of molecular variety accessible by the introduction of endo functional groups.
Collapse
Affiliation(s)
- Ji Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Qing Chang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Zhiwei Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Yangming Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Chuanhong Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Mou Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Danmeng Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Hongmei Zhao
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Xiamen Fujian 361021 China
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences Xiamen Fujian 361021 China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
39
|
Wan R, Liu Z, Ma X, Li H, Ma P, Zhang C, Niu J, Wang J. Discovery of two Na +-centered Silverton-type polyoxometalates {NaM 12O 42} (M = Mo, W). Chem Commun (Camb) 2021; 57:2172-2175. [PMID: 33524095 DOI: 10.1039/d0cc07590f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new members of highly charged Silverton archetype [NaM12O42]11- were demonstrated in the 3D POM-based frameworks Na3[NaM12O42(Ru(DMSO)3)4]·13H2O (M = Mo (1), W (2)), where the unusual icosahedron coordination of a Na+ ion incubated as a heteroatom is reported for the first time in topical POMs. Furthermore, 23Na NMR was applied to certify the interpretation of X-ray diffraction data concerning Na localization. Additionally, the porous nature of the frameworks 1 and 2 has also been investigated.
Collapse
Affiliation(s)
- Rong Wan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Zhen Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Xinyi Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Chao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| |
Collapse
|
40
|
Zhu ZK, Lin YY, Li XX, Zhao D, Zheng ST. Integration of metallacycles and polyoxometalate macrocycles. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01293a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of polyoxometalate–metallacycle composite macrocycles with interesting bi/tri-layer cyclic structures have been synthesized, which show a remarkable integration of metallacycles and polyoxometalate macrocycles at molecular level.
Collapse
Affiliation(s)
- Zeng-Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Ya-Yun Lin
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Dan Zhao
- Fuqing Branch of Fujian Normal University
- Fuqing
- China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| |
Collapse
|
41
|
Shi N, Wang YJ, Li XX, Sun YQ, Zheng ST. An inorganic Co-containing heteropolyoxoniobate: reversible chemochromism and H 2O-dependent proton conductivity properties. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01065d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel pure inorganic cobalt-containing heteropolyoxoniobate is constructed from crescent-shaped [SiNb18O54]14− units. It exhibits reversible chemochromism, H2O-dependent proton conductivity, water vapor adsorption and magnetic properties.
Collapse
Affiliation(s)
- Nian Shi
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Yong-Jiang Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Xin-Xiong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Yan-Qiong Sun
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Shou-Tian Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
42
|
Lin YD, Zhu ZK, Ge R, Yu H, Li Z, Sun C, Sun YQ, Li XX, Zheng ST. Proton conductive polyoxoniobate frameworks constructed from nanoscale {Nb68O200} cages. Chem Commun (Camb) 2021; 57:4702-4705. [DOI: 10.1039/d1cc00388g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoscale {Nb68O200} cages have been successfully employed as flexible and stable secondary building units to combine with bridging copper–amine complexes to construct two proton conductive polyoxoniobate frameworks, demonstrating a promising strategy for making new porous materials.
Collapse
Affiliation(s)
- Yu-Diao Lin
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Zeng-Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Rui Ge
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Hao Yu
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Zhong Li
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Cai Sun
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Yan-Qiong Sun
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| |
Collapse
|
43
|
Zhu ZZ, Tian CB, Sun QF. Coordination-Assembled Molecular Cages with Metal Cluster Nodes. CHEM REC 2020; 21:498-522. [PMID: 33270374 DOI: 10.1002/tcr.202000130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/15/2023]
Abstract
Molecular cages have attracted great attention because of their fascinating topological structures and well-defined functional cavities. These discrete cages were usually fabricated by coordination assembly approach, a process employing directional metal-ligand coordination bonds due to the nature of the divinable coordination geometry and the required lability to encode dynamic equilibrium/error-correction. Compared to these coordination molecular cages with mononulcear metal-nodes, an increasing number of molecular cages featuring dinuclear and then polynuclear metal-cluster nodes have been synthesized. These metal-cluster-based coordination cages (MCCCs) combine the merits of both metal clusters and the cage structure, and exhibit excellent performances in catalysis, separation, host-guest chemistry and so on. In this review, we highlight the syntheses of MCCCs and their potential functions that is donated by the metal-cluster nodes.
Collapse
Affiliation(s)
- Zheng-Zhong Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
44
|
Affiliation(s)
- Nicolas P. Martin
- Department of Chemistry Oregon State University Gilbert Hall Corvallis Oregon 97331 USA
| | - May Nyman
- Department of Chemistry Oregon State University Gilbert Hall Corvallis Oregon 97331 USA
| |
Collapse
|
45
|
Martin NP, Nyman M. Directional Bonding in Decaniobate Inorganic Frameworks. Angew Chem Int Ed Engl 2020; 60:954-960. [PMID: 32959487 DOI: 10.1002/anie.202010902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Indexed: 12/28/2022]
Abstract
Metal-oxo clusters offer an opportunity to assemble inorganic and metal-organic frameworks (MOFs) by a controlled building-block approach, which led to the revolutionary discoveries of zeolites and MOFs. Polyoxometalate clusters are soluble in water, but more challenging to link into frameworks; the inert oxo-caps that provide solubility are resistant to replacement or further connectivity. We demonstrate how the unique directional bonding and varying basicity of the decaniobate ([Nb10 ]) oxo-caps can be exploited to build 1D, 2D, and 3D inorganic frameworks. In nine structures, A+ (A=Li, Na, K, Rb and Cs), AE2+ (AE=Ca, Sr, Ba) and Mn2+ demonstrate that the dimensionality of the obtained material is controlled by cation charge and size. Increased cation charge decreases selectivity for oxo-site bonding, leading to higher dimensional linking. Larger cation radii also decreases bonding selectivity, yielding higher dimensional materials. Ion-exchange studies of the A+ -Nb10 family shows exclusive selectivity for Cs+ over other alkalis, which is important for radioactive Cs removal and sequestration.
Collapse
Affiliation(s)
- Nicolas P Martin
- Department of Chemistry, Oregon State University, Gilbert Hall, Corvallis, Oregon, 97331, USA
| | - May Nyman
- Department of Chemistry, Oregon State University, Gilbert Hall, Corvallis, Oregon, 97331, USA
| |
Collapse
|
46
|
Zhu ZK, Lin YY, Lin LD, Li XX, Sun YQ, Zheng ST. A Rare 3D Porous Inorganic-Organic Hybrid Polyoxometalate Framework Based on a Cubic Polyoxoniobate-Cupric-Complex Cage with a High Water Vapor Adsorption Capacity. Inorg Chem 2020; 59:11925-11929. [PMID: 32852208 DOI: 10.1021/acs.inorgchem.0c01826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rare 3D porous inorganic-organic polyoxoniobate framework based on the cubic polyoxoniobate-cupric-complex cage {[Cu(en)2]@{[Cu2(en)2(trz)2]6(Nb68O188)}} (1a), has been successfully synthesized by a hydrothermal method. The cubic cages 1a are connected with 4-(tetrazol-5-yl)pyridine to form a 1D pillar-like chain structure, and every 1D pillar-like chain is further linked with four adjacent pillar-like chains by the [Cu(en)2]2+ complex to form a 3D porous inorganic-organic polyoxoniobate framework with 4-connected CdSO4-type topology. To our knowledge, it is the first time that three different types of organic ligands are simultaneously introduced into one polyoxoniobate. This material also exhibits a high vapor adsorption capacity and good ionic conductivity properties.
Collapse
Affiliation(s)
- Zeng-Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ya-Yun Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Li-Dan Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Qiong Sun
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
47
|
Müscher-Polzin P, Näther C, Bensch W. Hexaniobate anions connected by [Ni(cyclam)] 2+ complexes yield two interpenetrating three-dimensional networks. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2020. [DOI: 10.1515/znb-2020-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Syntheses were performed at room temperature using Ni(NO3)2·6H2O, cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane) and the precursors Li8[Nb6O19]· ≈22H2O or Na7[HNb6O19]·15H2O in a DMSO-H2O mixture. Yellow crystals of the new compound {[Ni(cyclam)]2H4Nb6O19}·12H2O could be obtained after one week applying the Li+ or Na+ salt as starting materials. The crystal structure is unique in polyoxoniobate (PONb) chemistry and displays two interpenetrating three-dimensional (3D) networks. The [Nb6O19]8– anion is expanded by four Ni2+ centered complexes via Ni–O bonds to terminal O2− anions of the hexaniobate anion. The 3D networks are generated by further Ni–O bond formation between neighboring [Nb6O19]8− anions. The remaining void space is occupied by H2O molecules which form a water cluster.
Collapse
Affiliation(s)
- Philipp Müscher-Polzin
- Institut für Anorganische Chemie , Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2 , 24118 Kiel , Germany
| | - Christian Näther
- Institut für Anorganische Chemie , Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2 , 24118 Kiel , Germany
| | - Wolfgang Bensch
- Institut für Anorganische Chemie , Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2 , 24118 Kiel , Germany
| |
Collapse
|
48
|
Affiliation(s)
- Aeri J. Gosselin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Casey A. Rowland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Eric D. Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
49
|
|
50
|
Colliard I, Morrison G, Loye HCZ, Nyman M. Supramolecular Assembly of U(IV) Clusters and Superatoms with Unconventional Countercations. J Am Chem Soc 2020; 142:9039-9047. [PMID: 32319763 DOI: 10.1021/jacs.0c03041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superatoms are nanometer-sized molecules or particles that form ordered lattices, mimicking their atomic counterparts. Hierarchical assembly of superatoms gives rise to emergent properties in lattices of quantum dots, p-block clusters, and fullerenes. Here, we introduce a family of uranium-oxysulfate cluster anions whose hierarchical assembly in water is controlled by two parameters: acidity and the lanthanide or transition-metal countercation. In acid, larger LnIII (Ln = La-Ho) link hexamer (U6) oxoclusters into body-centered cubic frameworks, while smaller LnIII (Ln = Er-Lu and Y) promote linking of 14 U6 clusters into hollow superclusters (U84 superatoms). U84 assembles into superlattices including cubic-closest packed, body-centered cubic, and interpenetrating networks, bridged by interstitial countercations and U6 clusters. Divalent transition metals (TM = MnII and ZnII) charge-balance and promote the fusion of 10 U6 and 10 U monomers into a wheel-shaped cluster (U70). Dissolution of U70 in organic media reveals (by small-angle X-ray scattering) that differing supramolecular assemblies are accessed, controlled by TMII-linking of U70 clusters. Magnetic measurements of these assemblies reveal Curie-Weiss behavior at high temperatures, without pairing of the 5f2-electrons down to 2 K.
Collapse
Affiliation(s)
- Ian Colliard
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Gregory Morrison
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Hans-Conrad Zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|