1
|
Ma WB, Wang LG, Chen SR, Zhang X, Xuan J, Li F. Synthesis of spiro[indolenine]-methanofullerenes via Deoxofluor promoted deoxygenative cyclopropanation of 1,2-(3-indole)-fullerenols. Org Biomol Chem 2023; 21:9459-9462. [PMID: 37997156 DOI: 10.1039/d3ob01697h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Deoxofluor-promoted intramolecular cyclopropanation of 1,2-(3-indole)fullerenols has been developed as a straightforward and efficient protocol for the synthesis of various spiro[indolenine]-methanofullerenes. This approach exhibits low cost, operational simplicity, and convenient conditions, and thus has potential application value.
Collapse
Affiliation(s)
- Wen-Bin Ma
- Department of Chemistry, Anhui University; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China.
| | - Long-Ge Wang
- Department of Chemistry, Anhui University; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China.
| | - Shou-Rui Chen
- Department of Chemistry, Anhui University; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China.
| | - Xiang Zhang
- Department of Chemistry, Anhui University; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China.
| | - Jun Xuan
- Department of Chemistry, Anhui University; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China.
| | - Fei Li
- Department of Chemistry, Anhui University; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Hefei, Anhui 230601, China.
| |
Collapse
|
2
|
Huang G, Ide Y, Hashikawa Y, Hirose T, Murata Y. CH 3 CN@open-C 60 : An Effective Inner-Space Modification and Isotope Effect Inside a Nano-Sized Flask. Chemistry 2023; 29:e202301161. [PMID: 37264730 DOI: 10.1002/chem.202301161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Despite several small molecules being encapsulated inside cage-opened fullerene derivatives, such species have not considerably affected the structures and properties of the outer carbon cages. Herein, we achieved an effective inner-space modification for an open-cage C60 derivative by insertion of a neutral CH3 CN molecule into the cavity. The CH3 CN@open-C60 thus obtained showed an enhanced polarity, thus affording an easy separation from a mixture containing the empty cage by column chromatography on silica gel, without the preparative HPLC that was needed for previous cases. The less negative reduction potentials with respect to those of empty cage reflect the decreased energy level of the LUMO, which is supported by the DFT calculations. NMR spectroscopy, single-crystal X-ray analysis, and theoretical calculations revealed that both the presence of the encapsulated CH3 CN and cage deformation caused by the CH3 CN play an essential role in the change of the electronic properties. Furthermore, the favored binding affinity of deuterated acetonitrile CD3 CN with internal C60 surface is discussed.
Collapse
Affiliation(s)
- Guanglin Huang
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Yuki Ide
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
3
|
Gao R, Liu Z, Liu Z, Liang T, Su J, Gan L. Open-Cage Fullerene as a Selective Molecular Trap for LiF/[BeF] . Angew Chem Int Ed Engl 2023; 62:e202300151. [PMID: 36718977 DOI: 10.1002/anie.202300151] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
The insertion of ionic compounds into open-cage fullerenes is a challenging task due to the electropositive nature of the cavity. The present work reports the preparation of an open-cage C60 derivative with a hydroxy group pointing towards the centre of the cavity, which can coordinate to a metal cation, thus acting as a bait/hook to trap the metal cation such as the lithium cation in neutral LiF and the beryllium cation in the cationic [BeF]+ species. Other metal salts could not be inserted under similar conditions. The structure of MF in the cage was unambiguously determined by single-crystal X-ray diffraction. Owing to its tendency to undergo polycoordination, Li+ monomer salts have not been isolated before, despite extensive research on Li bonds. The present results provide a unique example of a Li bond.
Collapse
Affiliation(s)
- Rui Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhen Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zeyu Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Tongling Liang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jie Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Liangbing Gan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
4
|
Sun S, Liu Z, Colombo F, Gao R, Yu Y, Qiu Y, Su J, Gan L. Open-Cage Fullerene as Molecular Container for F - , Cl - , Br - and I . Angew Chem Int Ed Engl 2022; 61:e202212090. [PMID: 36316627 DOI: 10.1002/anie.202212090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/06/2022]
Abstract
A 19-membered open-cage fullerene derivative was prepared from C60 in 7 steps and 5.5 % yield through the peroxide-mediate pathway. There are four carbonyl groups, an ether oxygen and a quinoxaline moiety on the rim of the orifice. A chloride anion could be inserted into its cavity by heating with hydrochloric acid at 60 °C for 4 h. Encapsulation of fluoride, bromide and iodide anions was also achieved at slightly more forcing conditions, 90 °C for 14 h. Single crystal X-ray structures of the sodium salt of the chloride and the bromide encapsulated derivatives were obtained, which showed the halide anion in the center of the cavity and two sodium cations connecting two cages through coordination to the oxygen atoms on the rim of the orifices. The halide encapsulation ratio is quantitative in the isolated products.
Collapse
Affiliation(s)
- Shijun Sun
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, 830017, Urumqi, Xinjiang, P. R. China
| | - Zhen Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Francesca Colombo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Rui Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Yuming Yu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, 830017, Urumqi, Xinjiang, P. R. China
| | - Yi Qiu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Jie Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Liangbing Gan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| |
Collapse
|
5
|
Synthesis of open‐cage fullerenes containing a H‐bond between the encapsulated water molecule and the amide moiety on the rim of the orifice. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Chen XR, Zhang JX, Zhu SK, Li YW, Yang R, Xuan J, Li F. Transition-Metal-Free Domino Reaction of [60]Fullerene, Indole, and DMSO/HCl: One-Pot Access to Diverse N-Substituted [60]Fulleroindole Derivatives. J Org Chem 2022; 87:7945-7954. [PMID: 35671227 DOI: 10.1021/acs.joc.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented multicomponent domino reaction of [60]fullerene, indole, and DMSO/HCl has been developed for the one-pot efficient synthesis of diverse N-substituted [60]fulleroindole derivatives. This methodology features simple operation, low cost, and transition-metal-circumvented and good functional group tolerance in indole.
Collapse
Affiliation(s)
- Xin-Rui Chen
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun-Xiang Zhang
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Shuai-Kang Zhu
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Yi-Wen Li
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Rong Yang
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Fei Li
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
7
|
Liu TX, Zhu X, Xia S, Wang X, Zhang P, Zhang G. NHC-Catalyzed Three-Component Hydroalkylation Reactions of [60]Fullerene: An Umpolung Approach to Diverse Monoalkylated Hydrofullerenes. Org Lett 2022; 24:3691-3695. [PMID: 35576614 DOI: 10.1021/acs.orglett.2c01301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel N-heterocyclic carbene-catalyzed three-component umpolung hydroalkylation of [60]fullerene with 4-(chloromethyl)-benzaldehydes/α,β-unsaturated aldehydes and alcohols/thioalcohols has been developed for the flexible and efficient preparation of diverse monoalkylated hydrofullerenes. Organic catalysis, broad substrate scope, excellent functional group tolerance, and products with high diversity and complexity levels are attractive features of this protocol.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xue Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shilu Xia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
8
|
Liu TX, Wu H, Ma N, Zhang C, Zhang P, Ma J, Zhang G. Acid-Responsive Dissociation of Ferrocene Compounds: Diels–Alder Diene Equivalents for Selective Preparation of [60]Fullerene-Fused Bicyclo[2.2.1]hept-5-enes. J Org Chem 2022; 87:3104-3113. [DOI: 10.1021/acs.joc.1c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Han Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chuanjie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Murata Y, Zhang S, Hashikawa Y. Cage‐Opened C60 Isomers with Different Reactivities. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yasujiro Murata
- Kyoto University Institute for Chemical Research Gokasyou 611-0011 Uji, Kyoto JAPAN
| | - Sheng Zhang
- Kyoto University Institute for Chemical Research JAPAN
| | | |
Collapse
|
10
|
Liu Z, Liu Z, Gao R, Su J, Qiu Y, Gan L. Preparation of π-extended fullerene derivatives through addition of phenylenediamine to open-cage fullerene derivatives. Org Chem Front 2022. [DOI: 10.1039/d1qo01593a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Open-cage fullerenes with a quinoxaline moiety on the rim of the orifice showed evident π-system extension effect on the NMR and UV-Vis spectra.
Collapse
Affiliation(s)
- Zeyu Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rui Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qiu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Liangbing Gan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Liu TX, Zhang C, Zhang P, Wang X, Ma J, Zhang G. Palladium-catalyzed decarboxylative [2 + 3] cyclocarbonylation reactions of [60]fullerene: selective synthesis of [60]fullerene-fused 3-vinylcyclopentan-4-ones and cyclopentane-4-carbaldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo01116f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new palladium-catalyzed decarboxylative strategy has been developed toward direct cyclocarbonylation of [60]fullerene, selectively furnishing novel [60]fullerene-fused 3-vinylcyclopentan-4-ones and cyclopentane-4-carbaldehydes.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Chuanjie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
12
|
Hashikawa Y, Sadai S, Murata Y. Reductive Decarbonylation of a Cage-Opened C 60 Derivative. Org Lett 2021; 23:9495-9499. [PMID: 34806898 DOI: 10.1021/acs.orglett.1c03694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The decarbonylation of a cage-opened C60 derivative was examined by employing single-electron reductants. During the reaction, an H2O molecule was spontaneously encapsulated inside the cage (up to 78%) through the thus-formed 14-membered-ring orifice even though the H2O encapsulation had long been considered to require an orifice consisting of at least 16 atoms. The crystallographic analysis revealed an orifice shape closer to a circle which significantly contributes to the decreased activation barrier for the H2O encapsulation.
Collapse
Affiliation(s)
- Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shumpei Sadai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
13
|
Huang G, Hasegawa S, Hashikawa Y, Ide Y, Hirose T, Murata Y. An H 2 O 2 Molecule Stabilized inside Open-Cage C 60 Derivatives by a Hydroxy Stopper. Chemistry 2021; 28:e202103836. [PMID: 34850990 DOI: 10.1002/chem.202103836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 12/31/2022]
Abstract
An H2 O2 molecule was isolated inside hydroxylated open-cage fullerene derivatives by mixing an H2 O2 solution with a precursor molecule followed by reduction of one of carbonyl groups on its orifice. Depending on the reduction site, two structural isomers for H2 O2 @open-fullerenes were obtained. A high encapsulation ratio of 81 % was attained at low temperature. The structures of the peroxosolvate complexes thus obtained were studied by 1 H NMR spectroscopy, X-ray analysis, and DFT calculations, showing strong hydrogen bonding between the encapsulated H2 O2 and the hydroxy group located at the center of the orifice. This OH group was found to act as a kinetic stopper, and the formation of the hydrogen bonding caused thermodynamic stabilization of the H2 O2 molecule, both of which prevent its escape from the cage. One of the peroxosolvates was isolated by HPLC, affording H2 O2 @open-fullerene with 100 % encapsulation ratio, likely due to the intramolecular hydrogen-bonding interaction.
Collapse
Affiliation(s)
- Guanglin Huang
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shota Hasegawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuki Ide
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
14
|
Li Y, Kopcha WP, Emge TJ, Sun Y, Zhang J. Isocyanide-Induced Annulation Leading to Cyclopento-, Methano-, and Cyclopentano-[60]Fullerene Derivatives. Org Lett 2021; 23:8867-8872. [PMID: 34739256 DOI: 10.1021/acs.orglett.1c03371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three-component annulation reactions of C60, alkyl isocyanide, and dimethyl acetylenedicarboxylate (DMAD) or unsymmetric alkynes are investigated to afford cyclopent-2-en-1-imino- and ketenimine methano-[60]fullerene derivatives, which, upon hydration in the presence of acid, yield the corresponding fullerene amides. Dimethyl 2,3-pentadienedioate, the allene counterpart of DMAD, and ethyl buta-2,3-dienoate undergo four-component annulation with C60, alkyl isocyanide, and water under similar conditions to yield cyclopentano-[60]fullerene derivatives with similar amide groups.
Collapse
Affiliation(s)
- Yanbang Li
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Yue Sun
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
15
|
Liu Z, Gao R, Liu Z, Xia Z, Liu X, Ming J, Wang X, Su J, Gan L. Synthesis of Open‐Cage Fullerenes with Pyrrole, Pyrrolone, Pyridinone, Iminofuran, and Pyranone Fragments Embedded on the Rim of the Orifice. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhen Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Rui Gao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zeyu Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zongpu Xia
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xueli Liu
- Department of Chemistry College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 China
| | - Jialin Ming
- Department of Chemistry College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 China
| | - Xiaoge Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jie Su
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Liangbing Gan
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
16
|
Ma J, Liu TX, Zhang P, Zhao X, Zhang G. Metal-Free-Catalyzed Three-Component [2+2+2] Annulation Reaction of [60]Fullerene, Ketones, and Indoles: Access to Diverse [60]Fullerene-Fused 1,2-Tetrahydrocarbazoles. Org Lett 2021; 23:1775-1781. [PMID: 33576632 DOI: 10.1021/acs.orglett.1c00195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first example of metal-free-catalyzed multicomponent annulation reaction of [60]fullerene has been developed for concise and efficient construction of novel [60]fullerene-fused 1,2-tetrahydrocarbazoles. Using inexpensive and readily available I2 as a catalyst, [60]fullerene, ketones, and indoles undergo a formal [2+2+2] annulation process to conveniently assemble diverse 1,2-tetrahydrocarbazoles. Mechanistic studies indicate that this reaction proceeds through I2-promoted generation of a 3-vinylindole structure with the characteristics of a conjugated diene followed by cycloaddition to [60]fullerene.
Collapse
Affiliation(s)
- Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuna Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Chen XR, Li YM, Li X, Xuan J, Zhou HP, Tian YP, Li F. An "Umpolung Relay" Strategy: One-Pot, Twice Polarity Inversion Cascade Synthesis of Diversified [60]Fulleroindoles. Org Lett 2021; 23:1302-1308. [PMID: 33522830 DOI: 10.1021/acs.orglett.0c04290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An "umpolung relay" strategy, which includes an one-pot, twice polarity inversion cascade of C60 via carbanion and carbocation polarity reversed relay pathway, has been developed for the synthesis of a diverse range of novel [60]fulleroindole derivatives.
Collapse
Affiliation(s)
- Xin-Rui Chen
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Ying-Meng Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Xiang Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Hong-Ping Zhou
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Yu-Peng Tian
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Fei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
18
|
Hashikawa Y, Hasegawa S, Murata Y. Precise Fixation of an NO Molecule inside Carbon Nanopores: A Long‐Range Electron–Nuclear Interaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Shota Hasegawa
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Yasujiro Murata
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
19
|
Liu J, Zhao X, Nie W, Yang Y, Wu C, Liu W, Zhang K, Zhang Z, Shi J. Tumor cell-activated "Sustainable ROS Generator" with homogeneous intratumoral distribution property for improved anti-tumor therapy. Am J Cancer Res 2021; 11:379-396. [PMID: 33391481 PMCID: PMC7681092 DOI: 10.7150/thno.50028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) holds a number of advantages for tumor therapy. However, its therapeutic efficiency is limited by non-sustainable reactive oxygen species (ROS) generation and heterogeneous distribution of photosensitizer (PS) in tumor. Herein, a "Sustainable ROS Generator" (SRG) is developed for efficient antitumor therapy. Methods: SRG was prepared by encapsulating small-sized Mn3O4-Ce6 nanoparticles (MC) into dendritic mesoporous silica nanoparticles (DMSNs) and then enveloped with hyaluronic acid (HA). Due to the high concentration of HAase in tumor tissue, the small-sized MC could be released from DMSNs and homogeneously distributed in whole tumor. Then, the released MC would be uptaken by tumor cells and degraded by high levels of intracellular glutathione (GSH), disrupting intracellular redox homeostasis. More importantly, the released Ce6 could efficiently generate singlet oxygen (1O2) under laser irradiation until the tissue oxygen was exhausted, and the manganese ion (Mn2+) generated by degraded MC would then convert the low toxic by-product (H2O2) of PDT to the most harmful ROS (·OH) for sustainable and recyclable ROS generation. Results: MC could be homogeneously distributed in whole tumor and significantly reduced the level of intracellular GSH. At 2 h after PDT, obvious intracellular ROS production was still observed. Moreover, during oxygen recovery in tumor tissue, ·OH could be continuously produced, and the nanosystem could induce 82% of cell death comparing with 30% of cell death induced by free Ce6. For in vivo PDT, SRG achieved a complete inhibition on tumor growth. Conclusion: Based on these findings, we conclude that the designed SRG could induce sustainable ROS generation, homogeneous intratumoral distribution and intracellular redox homeostasis disruption, presenting an efficient strategy for enhanced ROS-mediated anti-tumor therapy.
Collapse
|
20
|
Ma J, Liu TX, Zhang P, Zhang C, Zhang G. Palladium-catalyzed domino spirocyclization of [60]fullerene: synthesis of diverse [60]fullerene-fused spiro[4,5]/[5,5] derivatives. Chem Commun (Camb) 2021; 57:49-52. [PMID: 33244545 DOI: 10.1039/d0cc07143a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein a new, general and practical method for the spirocyclization of [60]fullerene through a palladium-catalyzed domino Heck/C-H activation reaction is presented. A wide range of novel [60]fullerene-fused spirocyclic derivatives can be easily and flexibly synthesized with a broad substrate scope and excellent functional-group tolerance. A plausible mechanism involving an alkyl Pd(ii) species as a key intermediate has been proposed.
Collapse
Affiliation(s)
- Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | | | | | | | | |
Collapse
|
21
|
Hashikawa Y, Hasegawa S, Murata Y. Precise Fixation of an NO Molecule inside Carbon Nanopores: A Long‐Range Electron–Nuclear Interaction. Angew Chem Int Ed Engl 2020; 60:2866-2870. [DOI: 10.1002/anie.202012538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 11/09/2022]
Affiliation(s)
| | - Shota Hasegawa
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Yasujiro Murata
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
22
|
Hussain M, Niu C, Wang GW. Palladium-catalyzed synthesis of [60]fullerene-fused furochromenones and further electrochemical functionalization. Org Chem Front 2020. [DOI: 10.1039/d0qo00264j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The palladium-catalyzed heteroannulation of [60]fullerene with 4-hydroxycoumarins affords [60]fullerene-fused furochromenones, which can be further derivatized via an electrochemical method to synthesize 1,2,3,4-adducts.
Collapse
Affiliation(s)
- Majid Hussain
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at Microscale
- and Department of Chemistry
- University of Science and Technology of China
- Hefei
| | - Chuang Niu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at Microscale
- and Department of Chemistry
- University of Science and Technology of China
- Hefei
| | - Guan-Wu Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at Microscale
- and Department of Chemistry
- University of Science and Technology of China
- Hefei
| |
Collapse
|