1
|
Fang Y, Hillman AS, Fox JM. Advances in the Synthesis of Bioorthogonal Reagents: s-Tetrazines, 1,2,4-Triazines, Cyclooctynes, Heterocycloheptynes, and trans-Cyclooctenes. Top Curr Chem (Cham) 2024; 382:15. [PMID: 38703255 DOI: 10.1007/s41061-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 05/06/2024]
Abstract
Aligned with the increasing importance of bioorthogonal chemistry has been an increasing demand for more potent, affordable, multifunctional, and programmable bioorthogonal reagents. More advanced synthetic chemistry techniques, including transition-metal-catalyzed cross-coupling reactions, C-H activation, photoinduced chemistry, and continuous flow chemistry, have been employed in synthesizing novel bioorthogonal reagents for universal purposes. We discuss herein recent developments regarding the synthesis of popular bioorthogonal reagents, with a focus on s-tetrazines, 1,2,4-triazines, trans-cyclooctenes, cyclooctynes, hetero-cycloheptynes, and -trans-cycloheptenes. This review aims to summarize and discuss the most representative synthetic approaches of these reagents and their derivatives that are useful in bioorthogonal chemistry. The preparation of these molecules and their derivatives utilizes both classical approaches as well as the latest organic chemistry methodologies.
Collapse
Affiliation(s)
- Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| | - Ashlyn S Hillman
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
2
|
Daher A, Bousfiha A, Tolbatov I, Mboyi CD, Cattey H, Roisnel T, Fleurat-Lessard P, Hissler M, Hierso JC, Bouit PA, Roger J. Tetrazo[1,2-b]indazoles: Straightforward Access to Nitrogen-Rich Polyaromatics from s-Tetrazines. Angew Chem Int Ed Engl 2023; 62:e202300571. [PMID: 36710261 DOI: 10.1002/anie.202300571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
The straightforward access to a new class of aza-polyaromatics is reported. Starting from readily available fluorinated s-tetrazine, a cyclization process with azide leads to the formation of an unprecedented tetrazo[1,2-b]indazole or a bis-tetrazo[1,2-b]indazole (cis and trans conformers). Based on the new nitrogen core, further N-directed palladium-catalyzed ortho-C-H bond functionalization allows the introduction of halides or acetates. The physicochemical properties of these compounds were studied by a joint experimental/theoretical approach. The tetrazo[1,2-b]indazoles display solid-state π-stacking, low reduction potential, absorption in the visible range up to the near-infrared, and intense fluorescence, depending on the molecular structure.
Collapse
Affiliation(s)
- Ahmad Daher
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | - Asmae Bousfiha
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | - Iogann Tolbatov
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | - Clève D Mboyi
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | - Hélène Cattey
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | | | - Paul Fleurat-Lessard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | | | - Jean-Cyrille Hierso
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | | | - Julien Roger
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| |
Collapse
|
3
|
Zhou S, Liu Y, Hao Y, Liu Z, Yu X. Dimesitylboryl-ended oligothiophene with tetrazine as core: Synthesis, structure and Diels–Alder reactivity. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
4
|
Shankar M, Kalyani A, Anitha M, Siva Reddy A, Swamy KCK. Divergent Reactivity of Phosphorylated and Related Allenes: [4 + 2] Cycloaddition with 3,6-Diphenyltetrazine, Self-Addition Leading to Dimers and [Pd]-Complex Formation. J Org Chem 2022; 87:13683-13697. [PMID: 36197101 DOI: 10.1021/acs.joc.2c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorus-based naphthalenes are formed by self-dimerization-cum-cyclization of α-aryl allenylphosphonates or allenylphosphine oxides using catalytic Pd(OAc)2in the presence of PPh3 and Et3N . This reaction involves [4 + 2]-cycloaddition with the (β,γ) double bond of one allene as the dienophile; the double bonds at the α-aryl-(β',γ') group and (α,β)-carbons of the second allene act as the diene part. A subsequent proton shift also takes place. Upon treating allenylphosphine oxides with Pd(OAc)2 [stoichiometry 2:1] in the presence of PPh3/Ag2CO3, a [Pd]-complex is isolated and structurally characterized. This complex can be used as a catalyst for C-C bond-forming reactions of phosphorus-based allenes with 2-iodophenol. Densely substituted 3,6-diphenylpyridazines are conveniently obtained in excellent yields by a thermally induced regioselective Inverse Electron Demand Diels-Alder (IEDDA) reaction of allenes with 3,6-diphenyltetrazine, followed by a [1,3]-H shift.
Collapse
Affiliation(s)
- Mallepalli Shankar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Adula Kalyani
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mandala Anitha
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Alla Siva Reddy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
5
|
Battisti UM, García-Vázquez R, Svatunek D, Herrmann B, Löffler A, Mikula H, Herth MM. Synergistic Experimental and Computational Investigation of the Bioorthogonal Reactivity of Substituted Aryltetrazines. Bioconjug Chem 2022; 33:608-624. [PMID: 35290735 PMCID: PMC9026259 DOI: 10.1021/acs.bioconjchem.2c00042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Tetrazines (Tz) have
been applied as bioorthogonal agents for various
biomedical applications, including pretargeted imaging approaches.
In radioimmunoimaging, pretargeting increases the target-to-background
ratio while simultaneously reducing the radiation burden. We have
recently reported a strategy to directly 18F-label highly
reactive tetrazines based on a 3-(3-fluorophenyl)-Tz core structure.
Herein, we report a kinetic study on this versatile scaffold. A library
of 40 different tetrazines was prepared, fully characterized, and
investigated with an emphasis on second-order rate constants for the
reaction with trans-cyclooctene (TCO). Our results
reveal the effects of various substitution patterns and moreover demonstrate
the importance of measuring reactivities in the solvent of interest,
as click rates in different solvents do not necessarily correlate
well. In particular, we report that tetrazines modified in the 2-position
of the phenyl substituent show high intrinsic reactivity toward TCO,
which is diminished in aqueous systems by unfavorable solvent effects.
The obtained results enable the prediction of the bioorthogonal reactivity
and thereby facilitate the development of the next generation of substituted
aryltetrazines for in vivo applications.
Collapse
Affiliation(s)
- Umberto M Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Barbara Herrmann
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Andreas Löffler
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Sun H, Xue Q, Zhang C, Wu H, Feng P. Derivatization based on tetrazine scaffolds: synthesis of tetrazine derivatives and their biomedical applications. Org Chem Front 2022. [DOI: 10.1039/d1qo01324f] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recent advances in tetrazine scaffold-based derivatizations have been summarized. The advantages and limitations of derivatization methods and applications of the developed tetrazine derivatives in bioorthogonal chemistry have been highlighted.
Collapse
Affiliation(s)
- Hongbao Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qinghe Xue
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Feng
- Clinical Trial Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Beletskaya IP, Averin AD. Metal-catalyzed reactions for the C(sp2)–N bond formation: achievements of recent years. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review deals with the main catalytic methods for the C(sp2)–N bond formation, including Buchwald–Hartwig palladium-catalyzed amination of aryl and heteroaryl halides, renaissance of the Ullmann chemistry, i.e., the application of catalysis by copper complexes to form the carbon–nitrogen bond, and Chan–Lam reactions of (hetero)arylboronic acids with amines. Also, oxidative amination with C–H activation, which has been booming during the last decade, is addressed. Particular attention is paid to achievements in the application of heterogenized catalysts.
The bibliography includes 350 references.
Collapse
|
8
|
Coordination Chemistry of a Bis(Tetrazine) Tweezer: A Case of Host-Guest Behavior with Silver Salts. Molecules 2021; 26:molecules26092705. [PMID: 34063008 PMCID: PMC8124956 DOI: 10.3390/molecules26092705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
The carbon-carbon cross-coupling of phenyl s-tetrazine (Tz) units at their ortho-phenyl positions allows the formation of constrained bis(tetrazines) with original tweezer structures. In these compounds, the face-to-face positioning of the central tetrazine cores is reinforced by π-stacking of the electron-poor nitrogen-containing heteroaromatic moieties. The resulting tetra-aromatic structure can be used as a weak coordinating ligand with cationic silver. This coordination generates a set of bis(tetrazine)-silver(I) coordination complexes tolerating a large variety of counter anions of various geometries, namely, PF6−, BF4−, SbF6−, ClO4−, NTf2−, and OTf−. These compounds were characterized in the solid state by single-crystal X-ray diffraction (XRD) and diffuse reflectance spectroscopy, and in solution by 1H-NMR, mass spectrometry, electroanalysis, and UV-visible absorption spectrophotometry. The X-ray crystal structure of complexes {[Ag(3)][PF6]}∞ (4) and {[Ag(3)][SbF6]}∞ (6), where 3 is 3,3′-[(1,1′-biphenyl)-2,2′-diyl]-6,6′-bis(phenyl)-1,2,4,5-tetrazine, revealed the formation of 1D polymeric chains, characterized by an evolution to a large opening of the original tweezer and a coordination of silver(I) via two chelating nitrogen atom and some C=C π-interactions. Electrochemical and UV spectroscopic properties of the original tweezer and of the corresponding silver complexes are reported and compared. 1H-NMR titrations with AgNTf2 allowed the determination of the stoichiometry and apparent stability of two solution species, namely [Ag(3)]+ and [Ag(3)2]2+, that formed in CDCl3/CD3OD 2:1 v/v mixtures.
Collapse
|
9
|
Choi SK, Kim J, Kim E. Overview of Syntheses and Molecular-Design Strategies for Tetrazine-Based Fluorogenic Probes. Molecules 2021; 26:1868. [PMID: 33810254 PMCID: PMC8037913 DOI: 10.3390/molecules26071868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Various bioorthogonal chemistries have been used for fluorescent imaging owing to the advantageous reactions they employ. Recent advances in bioorthogonal chemistry have revolutionized labeling strategies for fluorescence imaging, with inverse electron demand Diels-Alder (iEDDA) reactions in particular attracting recent attention owing to their fast kinetics and excellent specificity. One of the most interesting features of the iEDDA labeling strategy is that tetrazine-functionalized dyes are known to act as fluorogenic probes. In this review, we will focus on the synthesis, molecular-design strategies, and bioimaging applications of tetrazine-functionalized fluorogenic probes. Traditional Pinner reaction and "Pinner-like" reactions for tetrazine synthesis are discussed here, as well as metal-catalyzed C-C bond formations with convenient tetrazine intermediates and the fabrication of tetrazine-conjugated fluorophores. In addition, four different quenching mechanisms for tetrazine-modified fluorophores are presented.
Collapse
Affiliation(s)
- Sang-Kee Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| | - Jonghoon Kim
- Department of Chemistry, Soongsil University, Seoul 06978, Korea
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| |
Collapse
|
10
|
Schnell SD, Schilling M, Sklyaruk J, Linden A, Luber S, Gademann K. Nucleophilic Attack on Nitrogen in Tetrazines by Silyl-Enol Ethers. Org Lett 2021; 23:2426-2430. [PMID: 33703907 DOI: 10.1021/acs.orglett.0c04113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleophilic addition of silyl-enol ethers to nitrogen in 3-monosubstituted s-tetrazines mediated by BF3 is reported. The preference for this azaphilic addition over the usually observed inverse electron demand Diels-Alder reactions was evaluated theoretically and corroborated by experiments. The substrate dependency of this unusual reaction was rationalized by determination of the activation barriers and on the basis of the activation strain model by employing density functional theory.
Collapse
Affiliation(s)
- Simon D Schnell
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mauro Schilling
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jan Sklyaruk
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
11
|
Lipunova GN, Nosova EV, Zyryanov GV, Charushin VN, Chupakhin ON. 1,2,4,5-Tetrazine derivatives as components and precursors of photo- and electroactive materials. Org Chem Front 2021. [DOI: 10.1039/d1qo00465d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic approaches to 3,6-disubstituted-1,2,4,5-tetrazine systems are analyzed, and their properties attractive to practical applications in photo- and electroactive materials are overviewed.
Collapse
Affiliation(s)
- Galina N. Lipunova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
| | - Emiliya V. Nosova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg 620002, Russia
| | - Grigory V. Zyryanov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg 620002, Russia
| | - Valery N. Charushin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg 620002, Russia
| | - Oleg N. Chupakhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg 620002, Russia
| |
Collapse
|
12
|
Xie Y, Fang Y, Huang Z, Tallon AM, am Ende CW, Fox JM. Divergent Synthesis of Monosubstituted and Unsymmetrical 3,6‐Disubstituted Tetrazines from Carboxylic Ester Precursors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yixin Xie
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Yinzhi Fang
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Zhen Huang
- Pfizer Worldwide Research and Development 1 Portland Street Cambridge MA 02139 USA
| | - Amanda M. Tallon
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | | | - Joseph M. Fox
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| |
Collapse
|
13
|
Xie Y, Fang Y, Huang Z, Tallon AM, Am Ende CW, Fox JM. Divergent Synthesis of Monosubstituted and Unsymmetrical 3,6-Disubstituted Tetrazines from Carboxylic Ester Precursors. Angew Chem Int Ed Engl 2020; 59:16967-16973. [PMID: 32559350 PMCID: PMC7733736 DOI: 10.1002/anie.202005569] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Indexed: 11/06/2022]
Abstract
Since tetrazines are important tools to the field of bioorthogonal chemistry, there is a need for new approaches to synthesize unsymmetrical and 3-monosubstituted tetrazines. Described here is a general, one-pot method for converting (3-methyloxetan-3-yl)methyl carboxylic esters into 3-thiomethyltetrazines. These versatile intermediates were applied to the synthesis of unsymmetrical tetrazines through Pd-catalyzed cross-coupling and in the first catalytic thioether reduction to access monosubstituted tetrazines. This method enables the development of new tetrazine compounds possessing a favorable combination of kinetics, small size, and hydrophilicity. It was applied to a broad range of aliphatic and aromatic ester precursors and to the synthesis of heterocycles including BODIPY fluorophores and biotin. In addition, a series of tetrazine probes for monoacylglycerol lipase (MAGL) were synthesized and the most reactive one was applied to the labeling of endogenous MAGL in live cells.
Collapse
Affiliation(s)
- Yixin Xie
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Zhen Huang
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA
| | - Amanda M Tallon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Christopher W Am Ende
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT, 06340, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
14
|
Adachi K, Meguro T, Sakata Y, Igawa K, Tomooka K, Hosoya T, Yoshida S. Selective strain-promoted azide-alkyne cycloadditions through transient protection of bicyclo[6.1.0]nonynes with silver or gold. Chem Commun (Camb) 2020; 56:9823-9826. [PMID: 32716445 DOI: 10.1039/d0cc04606j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Complexation of bicyclo[6.1.0]nonynes with a cationic silver or gold salt results in protection from a click reaction with azides. The cycloalkyne protection using the silver or gold salt enables selective strain-promoted azide-alkyne cycloadditions of diynes keeping the bicyclo[6.1.0]nonyne moiety unreacted.
Collapse
Affiliation(s)
- Keisuke Adachi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
15
|
Xiong H, Gu Y, Zhang S, Lu F, Ji Q, Liu L, Ma P, Yang G, Hou W, Xu H. Correction: Iridium-catalyzed C-H amidation of s-tetrazines. Chem Commun (Camb) 2020; 56:4252. [PMID: 32255116 DOI: 10.1039/d0cc90150d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correction for 'Iridium-catalyzed C-H amidation of s-tetrazines' by Huan Xiong et al., Chem. Commun., 2020, DOI: 10.1039/d0cc01647k.
Collapse
Affiliation(s)
- Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Wei Hou
- College of Pharmaceutical Science, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
16
|
Mboyi CD, Daher A, Khirzada N, Devillers CH, Cattey H, Fleurat-Lessard P, Roger J, Hierso JC. Synthesis and structural characterisation of bulky heptaaromatic (hetero)aryl o-substituted s-aryltetrazines. NEW J CHEM 2020. [DOI: 10.1039/d0nj02338h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hexaphenylbenzene analogs with an electron-poor tetrazine core are synthesized in two high-yield steps from diphenyl-s-tetrazine. Crystal packing of these unique non-planar heptaaromatics is analyzed in details.
Collapse
Affiliation(s)
- Clève D. Mboyi
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB UMR-CNRS 6302)
- Université de Bourgogne Franche-Comté (UBFC)
- 21078 Dijon
- France
| | - Ahmad Daher
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB UMR-CNRS 6302)
- Université de Bourgogne Franche-Comté (UBFC)
- 21078 Dijon
- France
| | - Neelab Khirzada
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB UMR-CNRS 6302)
- Université de Bourgogne Franche-Comté (UBFC)
- 21078 Dijon
- France
| | - Charles H. Devillers
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB UMR-CNRS 6302)
- Université de Bourgogne Franche-Comté (UBFC)
- 21078 Dijon
- France
| | - Hélène Cattey
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB UMR-CNRS 6302)
- Université de Bourgogne Franche-Comté (UBFC)
- 21078 Dijon
- France
| | - Paul Fleurat-Lessard
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB UMR-CNRS 6302)
- Université de Bourgogne Franche-Comté (UBFC)
- 21078 Dijon
- France
| | - Julien Roger
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB UMR-CNRS 6302)
- Université de Bourgogne Franche-Comté (UBFC)
- 21078 Dijon
- France
| | - Jean-Cyrille Hierso
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB UMR-CNRS 6302)
- Université de Bourgogne Franche-Comté (UBFC)
- 21078 Dijon
- France
| |
Collapse
|