1
|
Nakajima T, Kotani M, Maeda Y, Sato M, Iwai K, Tanase T. Unsymmetric Ir 2 and RhIr Dinuclear Complexes Supported by a Linear Tetraphosphine meso-dpmppp, Showing High Reactivity for O 2, H 2, and HCl. Inorg Chem 2024; 63:19847-19863. [PMID: 39377495 DOI: 10.1021/acs.inorgchem.4c03241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Unsymmetric dinuclear Ir(I) complexes, [Ir2Cl2(L)(meso-dpmppp)] (L = XylNC (1aIr2), tBuNC (1bIr2), CO (1cIr2)), were synthesized using meso-Ph2PCH2P(Ph)(CH2)3P(Ph)CH2PPh2 (meso-dpmppp), which supports cis-P,P (M1) and trans-P,P (M2) metal sites, and exhibited high reactivity for O2, H2, and HCl. The IrRh heterodinuclear complexes, [M1M2Cl2(L)(meso-dpmppp)] (1xM1M2) (M1M2 = IrRh, RhIr; L = XylNC, CO (x = a, c)), were also synthesized and used together with the Rh2 complexes (1a,cRh2) to elucidate the role of each metal site. For the reactions of O2, 1aIr2 and 1aRhIr showed higher reactivity than those of 1aIrRh and 1aRh2, giving η2-peroxide complexes [{M1Cl2}{M2(η2-O2)(XylNC)}(meso-dpmppp)] (2aIr2, 2aRhIr), from which O2 would not dissociate. All the CO complexes 1cM1M2 (M1, M2 = Ir or Rh) showed no reactivity for O2. In the reactions with H2, 1aIr2 reacted with H2 to give the dihydride complex, [{IrCl2}{Ir(H)2L}(meso-dpmppp)] (11aIr2) and the tetrahydride complex, [{Ir(H)Cl2}(μ-H){Ir(H)2L}(meso-dpmppp)] (12aIr2), while 1aRhIr gave the dihydride complex, and 1aIrRh and 1aRh2 gave no hydride complexes. Reactions of 1a,cM1M2 with HCl afforded the dihydride complexes, [{IrCl3}(μ-H){Ir(H)Cl(XylNC)}(meso-dpmppp)] (14aIr2), [{Ir(H)Cl2}(μ-H){M2Cl2(L)}(meso-dpmppp)] (M2 = Ir, L = CO (15cIr2); M2 = Rh, L = XylNC (15aIrRh), CO (15cIrRh)), and [{Rh(H)Cl2}(μ-Cl){Ir(H)Cl(XylNC)}(meso-dpmppp)] (18aRhIr), the structures varying depending on M1 and M2 as well as L.
Collapse
Affiliation(s)
- Takayuki Nakajima
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Momoko Kotani
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Yuki Maeda
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Miwa Sato
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Kento Iwai
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Tomoaki Tanase
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| |
Collapse
|
2
|
Burt LK, Hill AF. Isonitrile μ 2-carbido complexes. Dalton Trans 2023; 52:13906-13922. [PMID: 37750400 DOI: 10.1039/d3dt02649c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The μ-carbido complex [WPt(μ-C)Br(CO)2(PPh3)2(Tp*)] (Tp = hydrotris(dimethylpyrazolyl)borate) undergoes substitution of one phosphine ligand with isonitriles to afford complexes [WPt(μ-C)Br(CNR)(CO)2(PPh3)(Tp*)] (R = tBu, C6H3Me2-2,6, C6H2Me3-2,4,6). For aryl but not alkyl isocyanides disubstitution follows to afford [WPt(μ-C)Br(CNR)2(CO)2(Tp*)] (R = C6H2Me2-2,6, C6H2Me3-2,4,6). The bis(isonitrile) derivatives, including [WPt(μ-C)Br(CNtBu)2(CO)2(Tp*)], may also be prepared from the reactions of triangulo-[Pt3(CNR)6] with [W(CBr)(CO)2(Tp*)]. Bis- and tris(dimethylpyrazolyl)borate pro-ligand salts replace the bromide and one phosphine in [WPt(μ-C)Br(CNC6H2Me3)(CO)2(PPh3)(Tp*)] or the bromide and one isonitrile in [WPt(μ-C)Br(CNC6H2Me3)2(CO)2(Tp*)] to afford [WPt(μ-C)(CNC6H2Me3)(CO)2(Tp*)(L)] (L = κ2-Tp*, dihydrobis(pyrazolyl)borate). Structural, spectroscopic and computational data for the complexes are discussed to interrogate the nature of the WC-Pt carbido bridge by analogy with a range of other sp-C1 and sp-B1 ligands (CN, CCH, CP, CAs, CSb, CNO, BO, BNH and BCH2).
Collapse
Affiliation(s)
- Liam K Burt
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Anthony F Hill
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
3
|
Watson LJ, Hill AF. C-H activation in bimetallic rhodium complexes to afford N-heterocyclic carbene pincer complexes. Dalton Trans 2023; 52:2164-2174. [PMID: 36723105 DOI: 10.1039/d2dt03984b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The pro-ligands 1,8-bis(di-R-phosphinomethyl)-2,3-dihydroperimidine (RH2Pm, R = phenyl, cyclohexyl) react with [RhCl(CE)(PPh3)2] (E = O, S) to afford the bimetallic complexes [RhCl(CE)(μ-RH2Pm)]2 (E = O, S). Upon heating, these species undergo double C-H activation to afford the N-heterocyclic carbene (NHC) pincer complexes [RhCl(RPm)]. Reduction of [RhCl(CO)(μ-PhH2Pm)]2 with KC8 results in the bimetallic rhodium(0) complex, [Rh(μ-CO)(PhH2Pm)]2, with a formal Rh-Rh bond and a hydrogen-bonding interaction between rhodium and the central methylene group (C-H⋯Rh = 2.802 Å). Upon treatment with tritylium, ferrocenium or triphenylcyclopropenium tetrafluoroborates this species undergoes double C-H activation to afford a mononuclear NHC pincer complex salt, [Rh(CO)(PhPm)]BF4. Treatment of [RhCl(CO)(PhH2Pm)]2 with lithium (trimethylsilyl)acetylide provides another bimetallic species, [Rh(CCSiMe3)(CO)(PhH2Pm)]2, however heating this species does not proceed cleanly to the monomeric NHC complex, [Rh(CCSiMe3)(CO)(PhPm)] which may however be obtained from [RhCl(RPm)] and LiCCSiMe3.
Collapse
Affiliation(s)
- Lachlan J Watson
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
| | - Anthony F Hill
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
4
|
Hu C, Wang XF, Wei R, Hu C, Ruiz DA, Chang XY, Liu LL. Crystalline monometal-substituted free carbenes. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Hill A, Burt LK, Onn CS, Kong RY, Dewhurst RD, Nahon EE. Heterobimetallic μ 2-Halocarbyne complexes. Dalton Trans 2022; 51:12080-12099. [DOI: 10.1039/d2dt01558g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The halocarbyne complexes [M(≡CX)(CO)2(Tp*)] (M = Mo, W; X = Cl, Br; Tp* = hydrotris(dimethylpyrazolyl)borate) react with [AuCl(SMe2)], [Pt(-H2C=CH2)(PPh3)2] or [Pt(nbe)3] (nbe = norbornene) to furnish rare examples of μ2-halocarbyne...
Collapse
|
6
|
Nakajima T, Maeda M, Matsui A, Nishigaki M, Kotani M, Tanase T. Unsymmetric Dinuclear Rh I2 and Rh IRh III Complexes Supported by Tetraphosphine Ligands and Their Reactivity of Oxidative Protonation and Reductive Dechlorination. Inorg Chem 2021; 61:1102-1117. [PMID: 34962387 DOI: 10.1021/acs.inorgchem.1c03278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two linear tetradentate phosphine ligands, meso-Ph2PCH2P(Ph)CH2XCH2P(Ph)CH2PPh2 (X = CH2 (meso-dpmppp), NBn (meso-dpmppmNBn; Bn = benzyl)) were utilized to synthesize unsymmetrical dinuclear RhI complexes, [Rh2Cl2(meso-dpmppp)(L)] (L = XylNC (1a), CO (1b)) and [Rh2Cl2(meso-dpmppmNBn)(L)] (L = XylNC (1c), CO (1d)), where electron-deficient RhI → RhI centers with 30 valence electrons are supported by a tetraphosphine in an unusual cis-/trans-P,P coordination mode. The RhI dimers of 1a-d were treated with HCl under air to afford the RhI → RhIII dimers with 32 e-, [Rh2Cl4(meso-dpmppp)(L)] (L = XylNC (4a), CO (4b)) and [Rh2Cl4(meso-dpmppmNBn)(L)] (L = XylNC (4c), CO (4d)), via intermediate hydride complexes, [{RhCl2(μ-H)RhCl(L)}(meso-dpmppp)] (L = XylNC (2a), CO (2b)) and [{RhCl2(μ-H)RhCl(L)}(meso-dpmppmNBn)] (L = XylNC (2c), CO (2d)), and [{Rh(H)Cl2(μ-Cl)Rh(L)}(meso-dpmppp)] (L = XylNC (3a), CO (3b)) and [{Rh(H)Cl2(μ-Cl)Rh(L)}(meso-dpmppmNBn)] (L = XylNC (3c), CO (3d)). The hydride intermediates 2 and 3 were monitored under nitrogen by 1H{31P} and 31P{1H} NMR techniques to reveal two reaction pathways depending on the terminal auxiliary ligand L. Further, the reductive dechlorination converting RhIRhIII (4b,d) to RhI2 (1b,d) was accomplished with a CO terminal ligand by reacting with various amines that acted as one-electron reducing agents through an inner-sphere electron transfer mechanism. DFT calculations were performed to elucidate the electronic structures of 1a-d and 4a-d and to estimate the structures of the hydride intermediate complexes 2 and 3.
Collapse
Affiliation(s)
- Takayuki Nakajima
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Mami Maeda
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Aya Matsui
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Mariko Nishigaki
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Momoko Kotani
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Tomoaki Tanase
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| |
Collapse
|
7
|
Abstract
Carbide complexes remain a rare class of molecules. Their paucity does not reflect exceptional instability but is rather due to the generally narrow scope of synthetic procedures for constructing carbide complexes. The preparation of carbide complexes typically revolves around generating LnM-CEx fragments, followed by cleavage of the C-E bonds of the coordinated carbon-based ligands (the alternative being direct C atom transfer). Prime examples involve deoxygenation of carbonyl ligands and deprotonation of methyl ligands, but several other p-block fragments can be cleaved off to afford carbide ligands. This Review outlines synthetic strategies toward terminal carbide complexes, bridging carbide complexes, as well as carbide-carbonyl cluster complexes. It then surveys the reactivity of carbide complexes, covering stoichiometric reactions where the carbide ligands act as C1 reagents, engage in cross-coupling reactions, and enact Fischer-Tropsch-like chemistry; in addition, we discuss carbide complexes in the context of catalysis. Finally, we examine spectroscopic features of carbide complexes, which helps to establish the presence of the carbide functionality and address its electronic structure.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Kurogi T, Irifune K, Takai K. Chromium carbides and cyclopropenylidenes. Chem Sci 2021; 12:14281-14287. [PMID: 34760214 PMCID: PMC8565369 DOI: 10.1039/d1sc04910k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
Carbon tetrabromide can be reduced with CrBr2 in THF to form a dinuclear carbido complex, [CrBr2(thf)2)][CrBr2(thf)3](μ-C), along with formation of [CrBr3(thf)3]. An X-ray diffraction (XRD) study of the pyridine adduct displayed a dinuclear structure bridged by a carbido ligand between 5- and 6-coordinate chromium centers. The carbido complex reacted with two equivalents of aldehydes to form α,β-unsaturated ketones. Treatment of the carbido complex with alkenes resulted in a formal double-cyclopropanation of alkenes by the carbido moiety to afford spiropentanes. Isotope labeling studies using a 13C-enriched carbido complex, [CrBr2(thf)2)][CrBr2(thf)3](μ-13C), identified that the quaternary carbon in the spiropentane framework was delivered by carbide transfer from the carbido complex. Terminal and internal alkynes also reacted with the carbido complex to form cyclopropenylidene complexes. A solid-state structure of the diethylcyclopropenylidene complex, prepared from 3-hexyne, showed a mononuclear cyclopropenylidene chromium(iii) structure.
Collapse
Affiliation(s)
- Takashi Kurogi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Keiichi Irifune
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| |
Collapse
|
9
|
Abstract
The new isonitrile-μ-carbido complexes [WPt(μ-C)Br(CNR)(PPh3)(CO)2(Tp*)] (R = C6H2Me3-2,4,6, C6H3Me2-2,6; Tp* = hydrotris(dimethylpyrazolyl)borate) rearrange irreversibly in polar solvents to provide the first examples of iminoketenylidene (CCNR) complexes.
Collapse
Affiliation(s)
- Liam K Burt
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
| | | |
Collapse
|
10
|
Musgrave CB, Zhu W, Coutard N, Ellena JF, Dickie DA, Gunnoe TB, Goddard WA. Mechanistic Studies of Styrene Production from Benzene and Ethylene Using [(η 2-C 2H 4) 2Rh(μ-OAc)] 2 as Catalyst Precursor: Identification of a Bis-Rh I Mono-Cu II Complex As the Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Charles B. Musgrave
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Nathan Coutard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jeffrey F. Ellena
- Biomolecular Magnetic Resonance Facility, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - William A. Goddard
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Abstract
The linear μ-carbido complex [Rh2(μ-C)Cl2(dppm)2] (dppm = bis(diphenylphosphino)methane) reacts with a benzyne equivalent (Me3SiC6H4OTf-2/F-) to afford [Rh2(μ-CC6H4)(μ-Cl)(C6H5)Cl2(μ-dppm)2], in which the benzyne moiety adds across one of the two metal-carbon double bonds.
Collapse
Affiliation(s)
- Harrison J Barnett
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory ACT 2601, Australia.
| | - Anthony F Hill
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory ACT 2601, Australia.
| |
Collapse
|
12
|
De Palo A, Zacchini S, Pampaloni G, Marchetti F. Construction of a Functionalized Selenophene‐Allylidene Ligand via Alkyne Double Action at a Diiron Complex. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Alice De Palo
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
13
|
Frogley BJ, Hill AF, Watson LJ. Advances in Transition Metal Seleno‐ and Tellurocarbonyl Chemistry. Chemistry 2020; 26:12706-12716. [DOI: 10.1002/chem.202001588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Benjamin J. Frogley
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Anthony F. Hill
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Lachlan J. Watson
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
14
|
Sarbajna A, Swamy VSVSN, Gessner VH. Phosphorus-ylides: powerful substituents for the stabilization of reactive main group compounds. Chem Sci 2020; 12:2016-2024. [PMID: 34163963 PMCID: PMC8179322 DOI: 10.1039/d0sc03278f] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phosphorus ylides are 1,2-dipolar compounds with a negative charge on the carbon atom. This charge is stabilized by the neighbouring onium moiety, but can also be shifted towards other substituents thus making ylides strong π donor ligands and hence ideal substituents to stabilize reactive compounds such as cations and low-valent main group species. Furthermore, the donor strength and the steric properties can easily be tuned to meet different requirements for stabilizing reactive compounds and for tailoring the properties and reactivities of the main group element. Although the use of ylide substituents in main group chemistry is still in its infancy, the first examples of isolated compounds impressively demonstrate the potential of these ligands. This review summarizes the most important discoveries also in comparison to other substituents, thus outlining avenues for future research directions.
Collapse
Affiliation(s)
- Abir Sarbajna
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - V S V S N Swamy
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Viktoria H Gessner
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
15
|
Beaumier EP, Gordon CP, Harkins RP, McGreal ME, Wen X, Copéret C, Goodpaster JD, Tonks IA. Cp 2Ti(κ 2-tBuNCN tBu): A Complex with an Unusual κ 2 Coordination Mode of a Heterocumulene Featuring a Free Carbene. J Am Chem Soc 2020; 142:8006-8018. [PMID: 32240590 PMCID: PMC7201867 DOI: 10.1021/jacs.0c02487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although there are myriad binding modes of heterocumulenes to metal centers, the monometallic κ2-ECE (E = O, S, NR) coordination mode has not been reported. Herein, the synthesis, isolation, and physical characterization of Cp2Ti(κ2-tBuNCNtBu) (3) (Cp = cyclopentadienyl, tBu = tert-butyl), a strained 4-membered metallacycle bearing a free carbene, is described. Computational (DFT, CASSCF, QT-AIM, ELF) and solid-state CP-MAS 13C NMR spectroscopic analysis indicate that 3 is best described as a free carbene with partial Ti-Cβ bonding that results from Ti-N π-bonding mixing with N-C-N σ-bonding of the bent N-C-N framework. Reactivity studies of 3 corroborate its carbene-like nature: protonation with [LutH]I results in the formation of a Ti-formamidinate (4), while oxidation with S8 yields a Ti-thioureate (5). Additionally, a related bridged dititanamidocarbene, (Cp2Ti)2(μ-η1,η1-CyNCNCy) (10) (Cy = cyclohexyl) is reported. Taken together, this work suggests that the 2-electron reduction of heterocumulene moieties can allow access to unusual free carbene coordination geometries given the proper stabilizing coordination environment from the reducing transition metal fragment.
Collapse
Affiliation(s)
- Evan P. Beaumier
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Christopher P. Gordon
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Robin P. Harkins
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Meghan E. McGreal
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Xuelan Wen
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Ian A. Tonks
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| |
Collapse
|
16
|
Burt LK, Hill AF. Heterobimetallic μ2-carbido complexes of platinum and tungsten. Dalton Trans 2020; 49:8143-8161. [DOI: 10.1039/d0dt01617a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tungsten–platinum μ-carbido complex [WPt(μ-C)Br(CO)2(PPh3)2(Tp*)] (Tp* = hydrotris(dimethylpyrazol-1-yl)borate) undergoes facile substitution of both bromide and phosphine ligands to afford a diverse library of μ-carbido complexes.
Collapse
Affiliation(s)
- Liam K. Burt
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Anthony F. Hill
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
17
|
Abstract
Cleavage of a selenocarbonyl ligand in [W(CSe)(NO)(CO)(Tp*)] by [Re(THF)(CO)2(Cp)] provides heterobimetallic cumulenic μ-carbido and μ-selenido complexes.
Collapse
Affiliation(s)
- Anthony F. Hill
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Lachlan J. Watson
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| |
Collapse
|
18
|
Barnett HJ, Hill AF. Dimetalla-heterocyclic carbenes: the interconversion of chalcocarbonyl and carbido ligands. Chem Commun (Camb) 2020; 56:12593-12596. [DOI: 10.1039/d0cc05106c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different classes of dirhodium μ-carbido complexes cleave CS2 to afford mono- and bi-nuclear CS complexes, the CSe analogues of which are also described.
Collapse
Affiliation(s)
| | - Anthony F. Hill
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| |
Collapse
|
19
|
Barnett HJ, Hill AF. Halogenation of A-frame μ-carbido complexes: a diamagnetic rhodium(ii) carbido complex. Chem Commun (Camb) 2020; 56:7738-7740. [DOI: 10.1039/d0cc02349c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chlorination of the new μ-carbido [Rh2(μ-C)Cl2(μ-dppf)2] (dppf = 1,1′-bis(diphenylphosphino)ferrocene) affords the dirhodium(ii) complex [Rh2(μ-C)Cl4(μ-dppf)2] the carbido bridge of which can only be adequately described by delocalised bonding.
Collapse
Affiliation(s)
| | - Anthony F. Hill
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| |
Collapse
|