1
|
Wang S, Sigl J, Allmendinger L, Maurizot V, Huc I. Design of an abiotic unimolecular three-helix bundle. Chem Sci 2025; 16:1136-1146. [PMID: 39640026 PMCID: PMC11615733 DOI: 10.1039/d4sc07336c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Starting from the solid state structure of C 3-symmetrical homochiral parallel trimolecular bundle of three aromatic helices held together by intermolecular hydrogen bonds, we have used simple rational principles and molecular modelling to design a similar heterochiral structure where one helix had an opposite orientation and handedness. A rigid and a flexible linker to connect these helices and transform the bundle into a unimolecular object were designed and synthesized. Model sequences with two helices and one linker were then prepared. Their conformations were investigated in solution by nuclear magnetic resonance and circular dichroism, in the solid state by X-ray crystallography, and by molecular dynamics simulations, overall supporting the initial design. A final 6.9 kDa unimolecular three-helix bundle was then prepared using a fragment condensation approach. Solution studies support the formation of the targetted tertiary fold in the case of the rigid linker, thereby validating the overall approach.
Collapse
Affiliation(s)
- Shuhe Wang
- Department Pharmazie, Ludwig-Maximilians-Universität München Butenandtstraße 5-13 Munich D-81377 Germany
| | - Johannes Sigl
- Department Pharmazie, Ludwig-Maximilians-Universität München Butenandtstraße 5-13 Munich D-81377 Germany
| | - Lars Allmendinger
- Department Pharmazie, Ludwig-Maximilians-Universität München Butenandtstraße 5-13 Munich D-81377 Germany
| | - Victor Maurizot
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie Biologie 2 Rue Escarpit Pessac 33600 France
| | - Ivan Huc
- Department Pharmazie, Ludwig-Maximilians-Universität München Butenandtstraße 5-13 Munich D-81377 Germany
| |
Collapse
|
2
|
Kwon S, Morozov V, Wang L, Mandal PK, Chaignepain S, Douat C, Huc I. Interrogating the potential of helical aromatic foldamers for protein recognition. Org Biomol Chem 2024; 22:9342-9347. [PMID: 39501876 DOI: 10.1039/d4ob01436g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A biotinylated helical aromatic oligoamide foldamer equivalent in size to a 24mer peptide was designed without any prejudice other than to display various polar and hydrophobic side chains at its surface. It was synthesized on solid phase, its P- and M-helical conformers were separated by HPLC on a chiral stationary phase, and the solid state structure of a non-biotinylated analogue was elucidated by X-ray crystallography. Pull-down experiments from a yeast cell lysate using the foldamer as a bait followed by proteomic analysis revealed potential protein binding partners. Three of these proteins were recombinantly expressed. Biolayer interferometry showed submicromolar binding demonstrating the potential of a given foldamer to have affinity for certain proteins in the absence of design considerations. Yet, binding selectivity was low in all three cases since both P- and M-conformers bound to the proteins with similar affinities.
Collapse
Affiliation(s)
- Sunbum Kwon
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany.
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Vasily Morozov
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany.
| | - Lingfei Wang
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany.
| | - Pradeep K Mandal
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany.
| | - Stéphane Chaignepain
- CBMN (UMR5248), Univ. Bordeaux-CNRS-IPB, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Céline Douat
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany.
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany.
| |
Collapse
|
3
|
Wang S, Allmendinger L, Huc I. Abiotic Foldamer Quaternary Structures. Angew Chem Int Ed Engl 2024; 63:e202413252. [PMID: 39230977 DOI: 10.1002/anie.202413252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Abiotic aromatic foldamer sequences have been previously shown to fold in helix-turn-helix motifs in organic solvents. Using simple computational tools, a new helix-turn-helix motif was designed that bears additional hydrogen bond donor OH groups to promote its aggregation into a genuine, trimeric, abiotic quaternary structure. This sequence was synthesized and its self-assembly in solution was investigated by Nuclear Magnetic Resonance (NMR), Circular Dichroism (CD) and Molecular Dynamics (MD) simulations. The existence of two stable discrete aggregates was evidenced, one assigned to the initially designed trimer, the other to a dimer including multiple water molecules. The two species may be quantitatively interconverted upon changing the water content of the solution or the temperature. These results represent important steps in the design of protein-like abiotic architectures.
Collapse
Affiliation(s)
- Shuhe Wang
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
4
|
Wang S, Wicher B, Douat C, Maurizot V, Huc I. Domain Swapping in Abiotic Foldamers. Angew Chem Int Ed Engl 2024; 63:e202405091. [PMID: 38661252 DOI: 10.1002/anie.202405091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Foldamer sequences that adopt tertiary helix-turn-helix folds mediated by helix-helix hydrogen bonding in organic solvents have been previously reported. In an attempt to create genuine abiotic quaternary structures, i.e. assemblies of tertiary structures, new sequences were prepared that possess additional hydrogen bond donors at positions that may promote an association between the tertiary folds. However, a solid state structure and extensive solution state investigations by Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) show that, instead of forming a quaternary structure, the tertiary folds assemble into stable domain-swapped dimer motifs. Domain swapping entails a complete reorganization of the arrays of hydrogen bonds and changes in relative helix orientation and handedness that can all be rationalized.
Collapse
Affiliation(s)
- Shuhe Wang
- Department of Pharmacy, Ludwig-Maximilians-Universität in Munich, Butenandtstr. 5-13, 81377, München, Germany
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806, Poznan, Poland
| | - Céline Douat
- Department of Pharmacy, Ludwig-Maximilians-Universität in Munich, Butenandtstr. 5-13, 81377, München, Germany
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2, Rue Robert Escarpit, 33600, Pessac, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität in Munich, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
5
|
Zika A, Agarwal M, Zika W, Guldi DM, Schweins R, Gröhn F. Photoacid-macroion assemblies: how photo-excitation switches the size of nano-objects. NANOSCALE 2024; 16:923-940. [PMID: 38108137 DOI: 10.1039/d3nr04570f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Electrostatic self-assembly of photoacids with oppositely charged macroions yields supramolecular nano-objects in aqueous solutions, whose size is controlled through light irradiation. Nano-assemblies are formed due to electrostatic attractions and mutual hydrogen bonding of the photoacids. Irradiation with UV light leads to the deprotonation of the photoacid and, consequently, a change in particle size. Overall, the hydrodynamic radii of the well-defined photoacid-macroion nano-objects lie between 130 and 370 nm. For a set of photoacids, we determine the acidity constants in the ground and excited state, discuss the sizes of photoacid-macroion nano-objects (by dynamic and static light scattering), their composition and the particle shapes (by small-angle neutron scattering), and relate their charge characteristics to size, structure and shape. We investigate the association thermodynamics and relate nanoscale structures to thermodynamics and, in turn, thermodynamics to molecular features, particularly the ionization energy of the photoacid hydroxyl group proton. Structure-directing effects completely differ from those for previously investigated systems, with hydrogen bonding and entropic effects playing a major role herein. This combined approach allows developing a comprehensive understanding of assembly formation and photo-response, anchored in molecular parameters (pKa, ionization energy, substituent group location), charge characteristics, and the association enthalpy and entropy. This fundamental understanding again paves the way for tailoring application solutions with novel photoresponsive materials.
Collapse
Affiliation(s)
- Alexander Zika
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, and Bavarian Polymer Institute Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany.
| | - Mohit Agarwal
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, and Bavarian Polymer Institute Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany.
- DS LSS Institut Laue - Langevin, 71 Avenue des Martyrs, CS 20 156, 38042 Grenoble CEDEX 9, France
| | - Wiebke Zika
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Ralf Schweins
- DS LSS Institut Laue - Langevin, 71 Avenue des Martyrs, CS 20 156, 38042 Grenoble CEDEX 9, France
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, and Bavarian Polymer Institute Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany.
| |
Collapse
|
6
|
Do CD, Pál D, Belyaev A, Pupier M, Kiesilä A, Kalenius E, Galmés B, Frontera A, Poblador-Bahamonde A, Cougnon FBL. Sulfate-induced large amplitude conformational change in a Solomon link. Chem Commun (Camb) 2023; 59:13010-13013. [PMID: 37830390 DOI: 10.1039/d3cc04555b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A doubly-interlocked [2]catenane - or Solomon link - undergoes a complex conformational change upon addition of sulfate in methanol. This transformation generates a single pocket where two SO42- anions bind through multiple hydrogen bonds and electrostatic interactions. Despite the close proximity of the two anions, binding is highly cooperative.
Collapse
Affiliation(s)
- Cuong Dat Do
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Dávid Pál
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Andrey Belyaev
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 JYU, Finland.
| | - Marion Pupier
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Anniina Kiesilä
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 JYU, Finland.
| | - Elina Kalenius
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 JYU, Finland.
| | - Bartomeu Galmés
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Amalia Poblador-Bahamonde
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Fabien B L Cougnon
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 JYU, Finland.
| |
Collapse
|
7
|
Kuila S, Singh AK, Shrivastava A, Dey S, Singha T, Roy L, Satpati B, Nanda J. Probing Molecular Chirality on the Self-Assembly and Gelation of Naphthalimide-Conjugated Dipeptides. J Phys Chem B 2023. [PMID: 37196104 DOI: 10.1021/acs.jpcb.3c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this work, 1,8-naphthalimide (NMI)-conjugated three hybrid dipeptides constituted of a β-amino acid and an α-amino acid have been designed, synthesized, and purified. Here, in the design, the chirality of the α-amino acid was varied to study the effect of molecular chirality on the supramolecular assembly. Self-assembly and gelation of three NMI conjugates were studied in mixed solvent systems [water and dimethyl sulphoxide (DMSO)]. Interestingly, chiral NMI derivatives [NMI-βAla-lVal-OMe (NLV) and NMI-βAla-dVal-OMe (NDV)] formed self-supported gels, while the achiral NMI derivative [NMI-βAla-Aib-OMe, (NAA)] failed to form any kind of gel at 1 mM concentration and in a mixed solvent (70% water in DMSO medium). Self-assembly processes were thoroughly investigated using UV-vis spectroscopy, nuclear magnetic resonance (NMR), fluorescence, and circular dichroism (CD) spectroscopy. A J-type molecular assembly was observed in the mixed solvent system. The CD study indicated the formation of chiral assembled structures for NLV and NDV, which were mirror images of one another, and the self-assembled state by NAA was CD-silent. The nanoscale morphology of the three derivatives was studied using scanning electron microscopy (SEM). In the case of NLV and NDV, left- and right-handed fibrilar morphologies were observed, respectively. In contrast, a flake-like morphology was noticed for NAA. The DFT study indicated that the chirality of the α-amino acid influenced the orientation of π-π stacking interactions of naphthalimide units in the self-assembled structure that in turn regulated the helicity. This is a unique work where molecular chirality controls the nanoscale assembly as well as the macroscopic self-assembled state.
Collapse
Affiliation(s)
- Soumen Kuila
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Akash Shrivastava
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Sukantha Dey
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Tukai Singha
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| |
Collapse
|
8
|
Menke FS, Wicher B, Maurizot V, Huc I. Homochiral versus Heterochiral Dimeric Helical Foldamer Bundles: Chlorinated-Solvent-Dependent Self-Sorting. Angew Chem Int Ed Engl 2023; 62:e202217325. [PMID: 36625790 DOI: 10.1002/anie.202217325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Aromatic oligoamide sequences programmed to fold into stable helical conformations were designed to display a linear array of hydrogen-bond donors and acceptors at their surface. Sequences were prepared by solid-phase synthesis. Solution 1 H NMR spectroscopic studies and solid-state crystallographic structures demonstrated the formation of stable hydrogen-bond-mediated dimeric helix bundles that could be either heterochiral (with a P and an M helix) or homochiral (with two P or two M helices). Formation of the hetero- or homochiral dimers could be driven quantitatively using different chlorinated solvents-exemplifying a remarkable case of either social or narcissistic chiral self-sorting or upon imposing absolute handedness to the helices to forbid PM species.
Collapse
Affiliation(s)
- Friedericke S Menke
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, München, Germany
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 6 Grunwaldzka St., 60-780, Poznan, Poland
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2, Rue Robert Escarpit, 33600, Pessac, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
9
|
Menke FS, Mazzier D, Wicher B, Allmendinger L, Kauffmann B, Maurizot V, Huc I. Molecular torsion springs: alteration of helix curvature in frustrated tertiary folds. Org Biomol Chem 2023; 21:1275-1283. [PMID: 36645374 DOI: 10.1039/d2ob02109a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The first abiotic foldamer tertiary structures have been recently reported in the form of aromatic helix-turn-helix motifs based on oligo-quinolinecarboxamides held together by intramolecular hydrogen bonds. Tertiary folds were predicted by computational modelling of the hydrogen-bonding interfaces between helices and later verified by X-ray crystallography. However, the prognosis of how the conformational preference inherent to each helix influences the tertiary structure warranted further investigation. Several new helix-turn-helix sequences were synthesised in which some hydrogen bonds have been removed. Contrary to expectations, this change did not strongly destabilise the tertiary folds. On closer inspection, a new crystal structure revealed that helices adopt their natural curvature when some hydrogen bonds are missing and undergo some spring torsion upon forming the said hydrogen bonds, thus potentially giving rise to a conformational frustration. This phenomenon sheds light on the aggregation behaviour of the helices when they are not linked by a turn unit.
Collapse
Affiliation(s)
- Friedericke S Menke
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Daniela Mazzier
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Brice Kauffmann
- Institut Européen de Chimie et Biologie (UMS3011/US001), CNRS, Inserm, Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| |
Collapse
|
10
|
Liu B, Xing P. Hydrogen Bonded Foldamers with Axial Chirality: Chiroptical Properties and Applications. Chemistry 2023; 29:e202202665. [PMID: 36281580 DOI: 10.1002/chem.202202665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Folding phenomenon refers to the formation of a specific conformation widely featured by the intramolecular interactions, which broadly exist in biomacromolecules, and are closely related to their structures and functions. A variety of oligomeric folded molecules have been designed and synthesized, namely "foldamer", exhibiting potentials in pharmaceutical and catalysis. Molecular folding is a promising strategy to transfer chirality from substituents to the whole skeleton, when chirality transfer, amplification, evolution, and other behaviors could be achieved. Investigating chirality using foldamer model deepens the understanding of the structure-function correlation in biomacromolecules and expands the molecular toolbox towards chiroptical and asymmetrical chemistry. Substitutes with abundant hydrogen bonding sites conjugated to a rotatable aryl group afford a parallel β-sheet-like conformation, which enables the emergence and manipulation of axial chirality. This concept aims to give a brief introduction and summary of the hydrogen bonded foldamers with anchored axial chirality, by taking some recent cases as examples. Design principles, control over axial chirality and applications are also reviewed.
Collapse
Affiliation(s)
- Bingyu Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
11
|
Wang J, Wicher B, Maurizot V, Huc I. Directing the Self-Assembly of Aromatic Foldamer Helices using Acridine Appendages and Metal Coordination. Chemistry 2022; 28:e202201345. [PMID: 35965255 PMCID: PMC9826129 DOI: 10.1002/chem.202201345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 01/11/2023]
Abstract
Folded molecules provide complex interaction interfaces amenable to sophisticated self-assembly motifs. Because of their high conformational stability, aromatic foldamers constitute suitable candidates for the rational elaboration of self-assembled architectures. Several multiturn helical aromatic oligoamides have been synthesized that possess arrays of acridine appendages pointing in one or two directions. The acridine units were shown to direct self-assembly in the solid state via aromatic stacking leading to recurrent helix-helix association patterns under the form of discrete dimers or extended arrays. In the presence of Pd(II), metal coordination of the acridine units overwhelms other forces and generates new metal-mediated multihelical self-assemblies, including macrocycles. These observations demonstrate simple access to different types of foldamer-containing architectures, ranging from discrete objects to 1D and, by extension, 2D and 3D arrays.
Collapse
Affiliation(s)
- Jinhua Wang
- CBMN (UMR5248)Univ. Bordeaux – CNRS – IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Barbara Wicher
- Department of Chemical Technology of DrugsPoznan University of Medical SciencesGrunwaldzka 660-780PoznanPoland
| | - Victor Maurizot
- CBMN (UMR5248)Univ. Bordeaux – CNRS – IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Ivan Huc
- CBMN (UMR5248)Univ. Bordeaux – CNRS – IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
- Department of PharmacyLudwig-Maximilians-UniversitätButenandtstrasse 5–1381377MünchenGermany
- Cluster of Excellence e-conversion85748GarchingGermany
| |
Collapse
|
12
|
Yoo SH, Buratto J, Roy A, Morvan E, Pasco M, Pulka-Ziach K, Lombardo CM, Rosu F, Gabelica V, Mackereth CD, Collie GW, Guichard G. Adaptive Binding of Alkyl Glycosides by Nonpeptidic Helix Bundles in Water: Toward Artificial Glycolipid Binding Proteins. J Am Chem Soc 2022; 144:15988-15998. [PMID: 35998571 DOI: 10.1021/jacs.2c05234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amphipathic water-soluble helices formed from synthetic peptides or foldamers are promising building blocks for the creation of self-assembled architectures with non-natural shapes and functions. While rationally designed artificial quaternary structures such as helix bundles have been shown to contain preformed cavities suitable for guest binding, there are no examples of adaptive binding of guest molecules by such assemblies in aqueous conditions. We have previously reported a foldamer 6-helix bundle that contains an internal nonpolar cavity able to bind primary alcohols as guest molecules. Here, we show that this 6-helix bundle can also interact with larger, more complex guests such as n-alkyl glycosides. X-ray diffraction analysis of co-crystals using a diverse set of guests together with solution and gas-phase studies reveals an adaptive binding mode whereby the apo form of the 6-helix bundle undergoes substantial conformational change to accommodate the hydrocarbon chain in a manner reminiscent of glycolipid transfer proteins in which the cavity forms upon lipid uptake. The dynamic nature of the self-assembling and molecular recognition processes reported here marks a step forward in the design of functional proteomimetic molecular assemblies.
Collapse
Affiliation(s)
- Sung Hyun Yoo
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Jérémie Buratto
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Arup Roy
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Estelle Morvan
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR3033, US001, F-33600 Pessac, France
| | - Morgane Pasco
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France
| | | | - Caterina M Lombardo
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR3033, US001, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR3033, US001, F-33600 Pessac, France.,Univ. Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, F-33600 Bordeaux, France
| | - Cameron D Mackereth
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, F-33600 Bordeaux, France
| | - Gavin W Collie
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France
| |
Collapse
|
13
|
Algar JL, Findlay JA, Preston D. Roles of Metal Ions in Foldamers and Other Conformationally Flexible Supramolecular Systems. ACS ORGANIC & INORGANIC AU 2022; 2:464-476. [PMID: 36855532 PMCID: PMC9955367 DOI: 10.1021/acsorginorgau.2c00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
Conformational control is a key prerequisite for much molecular function. As chemists seek to create complex molecules that have applications beyond the academic laboratory, correct spatial positioning is critical. This is particularly true of flexible systems. Conformationally flexible molecules show potential because they resemble in many cases naturally occurring analogues such as the secondary structures found in proteins and peptides such as α-helices and β-sheets. One of the ways in which conformation can be controlled in these molecules is through interaction with or coordination to metal ions. This review explores how secondary structure (i.e., controlled local conformation) in foldamers and other conformationally flexible systems can be enforced or modified through coordination to metal ions. We hope to provide examples that illustrate the power of metal ions to influence this structure toward multiple different outcomes.
Collapse
|
14
|
Krieger A, Zika A, Gröhn F. Functional Nano-Objects by Electrostatic Self-Assembly: Structure, Switching, and Photocatalysis. Front Chem 2022; 9:779360. [PMID: 35359487 PMCID: PMC8961288 DOI: 10.3389/fchem.2021.779360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
The design of functional nano-objects by electrostatic self-assembly in solution signifies an emerging field with great potential. More specifically, the targeted combination of electrostatic interaction with other effects and interactions, such as the positioning of charges on stiff building blocks, the use of additional amphiphilic, π-π stacking building blocks, or polyelectrolytes with certain architectures, have recently promulgated electrostatic self-assembly to a principle for versatile defined structure formation. A large variety of architectures from spheres over rods and hollow spheres to networks in the size range of a few tenths to a few hundred nanometers can be formed. This review discusses the state-of-the-art of different approaches of nano-object formation by electrostatic self-assembly against the backdrop of corresponding solid materials and assemblies formed by other non-covalent interactions. In this regard, particularly promising is the facile formation of triggerable structures, i.e. size and shape switching through light, as well as the use of electrostatically assembled nano-objects for improved photocatalysis and the possible solar energy conversion in the future. Lately, this new field is eliciting an increasing amount of understanding; insights and limitations thereof are addressed in this article. Special emphasis is placed on the interconnection of molecular building block structures and the resulting nanoscale architecture via the key of thermodynamics.
Collapse
Affiliation(s)
| | | | - Franziska Gröhn
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
15
|
Jang HJ, Lee S, An BJ, Song G, Jeon HG, Jeong KS. Tweezer-type binding cavity formed by the helical folding of a carbazole-pyridine oligomer. Chem Commun (Camb) 2022; 58:1410-1413. [PMID: 34994755 DOI: 10.1039/d1cc06569f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have synthesised a new aromatic foldamer based on the carbazole-pyridine oligomers that adopt helical conformations via dipole-dipole interactions and π-stacking between two ethynyl bond-linked monomers. This foldamer scaffold has been further modified into a synthetic receptor with a tweezer-type binding cavity outside the helical backbone upon folding, in contrast to most aromatic foldamers with internal binding cavities. The tweezer-type cavity is composed of two parallel pyrenyl planes, allowing for the intercalation of a naphthalenediimide guest via π-stacking and CH⋯O interactions, as demonstrated using its 1H NMR spectra and X-ray crystal structure.
Collapse
Affiliation(s)
- Hye Jin Jang
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Seungwon Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Byung Jun An
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Geunmoo Song
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hae-Geun Jeon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
16
|
Pandey S, Mandal S, Danielsen MB, Brown A, Hu C, Christensen NJ, Kulakova AV, Song S, Brown T, Jensen KJ, Wengel J, Lou C, Mao H. Chirality transmission in macromolecular domains. Nat Commun 2022; 13:76. [PMID: 35013247 PMCID: PMC8748818 DOI: 10.1038/s41467-021-27708-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Chiral communications exist in secondary structures of foldamers and copolymers via a network of noncovalent interactions within effective intermolecular force (IMF) range. It is not known whether long-range chiral communication exists between macromolecular tertiary structures such as peptide coiled-coils beyond the IMF distance. Harnessing the high sensitivity of single-molecule force spectroscopy, we investigate the chiral interaction between covalently linked DNA duplexes and peptide coiled-coils by evaluating the binding of a diastereomeric pair of three DNA-peptide conjugates. We find that right-handed DNA triple helices well accommodate peptide triple coiled-coils of the same handedness, but not with the left-handed coiled-coil stereoisomers. This chiral communication is effective in a range (<4.5 nm) far beyond canonical IMF distance. Small-angle X-ray scattering and molecular dynamics simulation indicate that the interdomain linkers are tightly packed via hydrophobic interactions, which likely sustains the chirality transmission between DNA and peptide domains. Our findings establish that long-range chiral transmission occurs in tertiary macromolecular domains, explaining the presence of homochiral pairing of superhelices in proteins. Chiral communication can propagate in secondary structures within the effective intermolecular force (IMF) range but it is not known whether long-range chiral communication exists between tertiary peptide structures. Here, the authors use single-molecule force spectroscopy to investigate chiral interaction between DNA duplexes/triplexes and peptide coiled-coils and demonstrate chiral communication beyond the IMF distance.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Mathias Bogetoft Danielsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Asha Brown
- ATDBio Ltd., Magdalen Centre, Oxford Science Park, 1 Robert Robinson Avenue, Oxford, OX4 4GA, UK
| | - Changpeng Hu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Niels Johan Christensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | | | - Shixi Song
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tom Brown
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Chenguang Lou
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
17
|
Bindl D, Mandal PK, Allmendinger L, Huc I. Discrete Stacked Dimers of Aromatic Oligoamide Helices. Angew Chem Int Ed Engl 2021; 61:e202116509. [PMID: 34962351 PMCID: PMC9305948 DOI: 10.1002/anie.202116509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 12/03/2022]
Abstract
Tight binding was observed between the C‐terminal cross section of aromatic oligoamide helices in aqueous solution, leading to the formation of discrete head‐to‐head dimers in slow exchange on the NMR timescale with the corresponding monomers. The nature and structure of the dimers was evidenced by 2D NOESY and DOSY spectroscopy, mass spectrometry and X‐ray crystallography. The binding interface involves a large hydrophobic aromatic surface and hydrogen bonding. Dimerization requires that helices have the same handedness and the presence of a C‐terminal carboxy function. The protonation state of the carboxy group plays a crucial role, resulting in pH dependence of the association. Dimerization is also influenced by neighboring side chains and can be programmed to selectively produce heteromeric aggregates.
Collapse
Affiliation(s)
- Daniel Bindl
- LMU München: Ludwig-Maximilians-Universitat Munchen, Pharmacy, GERMANY
| | - Pradeep K Mandal
- LMU München: Ludwig-Maximilians-Universitat Munchen, Pharmacy, GERMANY
| | - Lars Allmendinger
- LMU München: Ludwig-Maximilians-Universitat Munchen, Pharmacy, GERMANY
| | - Ivan Huc
- Ludwig-Maximilians-Universitat Munchen, Pharmacy, Butenandtstraße 5 - 13, 81377, Munich, GERMANY
| |
Collapse
|
18
|
Bindl D, Mandal PK, Allmendinger L, Huc I. Discrete Stacked Dimers of Aromatic Oligoamide Helices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel Bindl
- LMU München: Ludwig-Maximilians-Universitat Munchen Pharmacy GERMANY
| | - Pradeep K. Mandal
- LMU München: Ludwig-Maximilians-Universitat Munchen Pharmacy GERMANY
| | - Lars Allmendinger
- LMU München: Ludwig-Maximilians-Universitat Munchen Pharmacy GERMANY
| | - Ivan Huc
- Ludwig-Maximilians-Universitat Munchen Pharmacy Butenandtstraße 5 - 13 81377 Munich GERMANY
| |
Collapse
|
19
|
Matsumura K, Tateno K, Tsuchido Y, Kawai H. Spacer-Dependent Cooperativity of Helicity in Fluorescent Bishelical Foldamers Based on L-Shaped Dibenzopyrrolo[1,2-a][1,8]naphthyridine. Chempluschem 2021; 86:1421-1425. [PMID: 34636489 DOI: 10.1002/cplu.202100407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Indexed: 12/21/2022]
Abstract
For the construction of helical foldamers composed of π-frameworks, the choice of appropriate π-π stacking units and π-spacers connecting them is important. The transfer of helicity between the minimal helix structural units is also an essential factor in the construction of homochiral helical foldamers. Tetramers 4 a-4 d, which have four L-shaped dibenzopyrrolo[1,2-a]naphthyridine units, were synthesized to investigate the interplay and cooperativity of the helical structures. Tetramer 4 a bridged with a biphenyl unit formed a homochiral bishelical structure with π-π stacking between the L-shaped units (3.3 Å), consisting only of (P,P)- and (M,M)-enantiomers without the (P,M)-diastereomer, owing to interplay through the axial chirality of biphenyl unit in the solid state. Similarly, in solution, thermodynamic stabilization of the two helix formations worked cooperatively to favor the bishelical form of 4 a. Furthermore, bishelical foldamer 4 a emitted intense fluorescence (Φ=0.86).
Collapse
Affiliation(s)
- Kotaro Matsumura
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kotaro Tateno
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yoshitaka Tsuchido
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Hidetoshi Kawai
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
20
|
Rhys GG, Dawson WM, Beesley JL, Martin FJO, Brady RL, Thomson AR, Woolfson DN. How Coiled-Coil Assemblies Accommodate Multiple Aromatic Residues. Biomacromolecules 2021; 22:2010-2019. [PMID: 33881308 DOI: 10.1021/acs.biomac.1c00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational protein design requires understanding the contribution of each amino acid to a targeted protein fold. For a subset of protein structures, namely, α-helical coiled coils (CCs), knowledge is sufficiently advanced to allow the rational de novo design of many structures, including entirely new protein folds. Current CC design rules center on using aliphatic hydrophobic residues predominantly to drive the folding and assembly of amphipathic α helices. The consequences of using aromatic residues-which would be useful for introducing structural probes, and binding and catalytic functionalities-into these interfaces are not understood. There are specific examples of designed CCs containing such aromatic residues, e.g., phenylalanine-rich sequences, and the use of polar aromatic residues to make buried hydrogen-bond networks. However, it is not known generally if sequences rich in tyrosine can form CCs, or what CC assemblies these would lead to. Here, we explore tyrosine-rich sequences in a general CC-forming background and resolve new CC structures. In one of these, an antiparallel tetramer, the tyrosine residues are solvent accessible and pack at the interface between the core and the surface. In another more complex structure, the residues are buried and form an extended hydrogen-bond network.
Collapse
Affiliation(s)
- Guto G Rhys
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,Department of Biochemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - William M Dawson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Joseph L Beesley
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Freddie J O Martin
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - R Leo Brady
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Andrew R Thomson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.,Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
21
|
Atcher J, Mateus P, Kauffmann B, Rosu F, Maurizot V, Huc I. Large-Amplitude Conformational Changes in Self-Assembled Multi-Stranded Aromatic Sheets. Angew Chem Int Ed Engl 2021; 60:2574-2577. [PMID: 33156974 PMCID: PMC7898896 DOI: 10.1002/anie.202014670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 02/03/2023]
Abstract
The orchestration of ever larger conformational changes is made possible by the development of increasingly complex foldamers. Aromatic sheets, a rare motif in synthetic foldamer structures, have been designed so as to form discrete stacks of intercalated aromatic strands through the self‐assembly of two identical subunits. Ion‐mobility ESI‐MS confirms the formation of compact dimers. X‐ray crystallography reveals the existence of two distinct conformational dimeric states that require large changes to interconvert. Molecular dynamics simulation validates the stability of the two conformations and the possibility of their interconversion.
Collapse
Affiliation(s)
- Joan Atcher
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, München, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Pedro Mateus
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Brice Kauffmann
- Université de Bordeaux, CNRS, Inserm, IECB (UMS 3033-US001), Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Frédéric Rosu
- Université de Bordeaux, CNRS, Inserm, IECB (UMS 3033-US001), Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Victor Maurizot
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, München, Germany
| |
Collapse
|
22
|
Zwillinger M, Reddy PS, Wicher B, Mandal PK, Csékei M, Fischer L, Kotschy A, Huc I. Aromatic Foldamer Helices as α-Helix Extended Surface Mimetics. Chemistry 2020; 26:17366-17370. [PMID: 32910480 PMCID: PMC7839445 DOI: 10.1002/chem.202004064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 12/15/2022]
Abstract
Helically folded aromatic oligoamide foldamers have a size and geometrical parameters very distinct from those of α-helices and are not obvious candidates for α-helix mimicry. Nevertheless, they offer multiple sites for attaching side chains. It was found that some arrays of side chains at the surface of an aromatic helix make it possible to mimic extended α-helical surfaces. Synthetic methods were developed to produce quinoline monomers suitably functionalized for solid phase synthesis. A dodecamer was prepared. Its crystal structure validated the initial design and showed helix bundling involving the α-helix-like interface. These results open up new uses of aromatic helices to recognize protein surfaces and to program helix bundling in water.
Collapse
Affiliation(s)
- Márton Zwillinger
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityBudapestHungary
| | - Post Sai Reddy
- CNRS, Bordeaux Institut National PolytechniqueCBMN (UMR 5248)IECBUniversité de Bordeaux2 rue Robert Escarpit33600PessacFrance
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Barbara Wicher
- Department of Chemical Technology of DrugsPoznan University of Medical SciencesGrunwaldzka 660780PoznanPoland
| | - Pradeep K. Mandal
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Márton Csékei
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
| | - Lucile Fischer
- CNRS, Bordeaux Institut National PolytechniqueCBMN (UMR 5248)IECBUniversité de Bordeaux2 rue Robert Escarpit33600PessacFrance
| | - András Kotschy
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
23
|
Atcher J, Mateus P, Kauffmann B, Rosu F, Maurizot V, Huc I. Umfangreiche Konformationsänderungen in selbstassemblierten mehrsträngigen aromatischen Faltblättern. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joan Atcher
- Department of Pharmacy and Center for Integrated Protein Science Ludwig-Maximilians-Universität Butenandtstraße 5–13 81377 München Deutschland
- Université de Bordeaux CNRS, Bordeaux Institut National Polytechnique CBMN (UMR 5248) Institut Européen de Chimie et Biologie 2 rue Robert Escarpit 33600 Pessac Frankreich
| | - Pedro Mateus
- Université de Bordeaux CNRS, Bordeaux Institut National Polytechnique CBMN (UMR 5248) Institut Européen de Chimie et Biologie 2 rue Robert Escarpit 33600 Pessac Frankreich
| | - Brice Kauffmann
- Université de Bordeaux CNRS Inserm, IECB (UMS 3033 – US001) Institut Européen de Chimie et Biologie 2 rue Robert Escarpit 33600 Pessac Frankreich
| | - Frédéric Rosu
- Université de Bordeaux CNRS Inserm, IECB (UMS 3033 – US001) Institut Européen de Chimie et Biologie 2 rue Robert Escarpit 33600 Pessac Frankreich
| | - Victor Maurizot
- Université de Bordeaux CNRS, Bordeaux Institut National Polytechnique CBMN (UMR 5248) Institut Européen de Chimie et Biologie 2 rue Robert Escarpit 33600 Pessac Frankreich
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science Ludwig-Maximilians-Universität Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
24
|
Kirinda VC, Schrage BR, Ziegler CJ, Hartley CS. ortho
‐Phenylene‐Based Macrocyclic Hydrocarbons Assembled Using Olefin Metathesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Viraj C. Kirinda
- Department of Chemistry & Biochemistry Miami University 45056 Oxford OH USA
| | | | | | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University 45056 Oxford OH USA
| |
Collapse
|
25
|
|
26
|
Mazzier D, De S, Wicher B, Maurizot V, Huc I. Parallel Homochiral and Anti-Parallel Heterochiral Hydrogen-Bonding Interfaces in Multi-Helical Abiotic Foldamers. Angew Chem Int Ed Engl 2020; 59:1606-1610. [PMID: 31671236 PMCID: PMC7004161 DOI: 10.1002/anie.201912805] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 11/25/2022]
Abstract
A hydrogen-bonding interface between helical aromatic oligoamide foldamers has been designed to promote the folding of a helix-turn-helix motif with a head-to-tail arrangement of two helices of opposite handedness. This design complements an earlier helix-turn-helix motif with a head-to-head arrangement of two helices of identical handedness interface. The two motifs were shown to have comparable stability and were combined in a unimolecular tetra-helix fold constituting the largest abiotic tertiary structure to date.
Collapse
Affiliation(s)
- Daniela Mazzier
- Department of Pharmacy and Centre for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstrasse 5–1381377MunichGermany
- CBMN LaboratoryUniversité de BordeauxCNRS, IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Soumen De
- CBMN LaboratoryUniversité de BordeauxCNRS, IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Barbara Wicher
- Department of Chemical Technology of DrugsPoznan University of Medical SciencesGrunwaldzka 660–780PoznanPoland
| | - Victor Maurizot
- CBMN LaboratoryUniversité de BordeauxCNRS, IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Ivan Huc
- Department of Pharmacy and Centre for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstrasse 5–1381377MunichGermany
- CBMN LaboratoryUniversité de BordeauxCNRS, IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| |
Collapse
|