1
|
Grover J, Sebastian AT, Maiti S, Bissember AC, Maiti D. Unified approaches in transition metal catalyzed C(sp 3)-H functionalization: recent advances and mechanistic aspects. Chem Soc Rev 2025. [PMID: 39838813 DOI: 10.1039/d0cs00488j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In organic synthesis, C(sp3)-H functionalization is a revolutionary method that allows direct alteration of unactivated C-H bonds. It can obviate the need for pre-functionalization and provides access to streamlined and atom economical routes for the synthesis of complex molecules starting from simple starting materials. Many strategies have evolved, such as photoredox catalysis, organocatalysis, non-directed C-H activation, transiently directed C-H activation, and native functionality directed C-H activation. Together these advances have reinforced the importance of C(sp3)-H functionalization in synthetic chemistry. C(sp3)-H functionalization has direct applications in pharmacology, agrochemicals, and materials science, demonstrating its ability to transform synthetic approaches by creating new retrosynthetic disconnections and boost the efficiency of chemical processes. This review aims to provide an overview of current state of C(sp3)-H functionalization, focusing more on recent breakthroughs and associated mechanistic insights.
Collapse
Affiliation(s)
- Jagrit Grover
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | | | - Siddhartha Maiti
- VIT Bhopal University School of Biosciences Engineering & Technology, India
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia.
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
2
|
Liu J, Wang K, Wan L, Yang X, Li B. Ruthenium-catalyzed C-H bond activation and annulation of phenothiazine-3-carbaldehydes: facile access to dual-emission materials. Chem Sci 2025:d4sc07825j. [PMID: 39829976 PMCID: PMC11740230 DOI: 10.1039/d4sc07825j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Reported herein is the first example of a ruthenium-catalyzed C-H activation/annulation of phenothiazine-3-carbaldehydes to construct structurally diverse pyrido[3,4-c]phenothiazin-3-iums with dual-emission characteristics. Novel organic single-molecule white-light materials based on pyrido[3,4-c]phenothiazin-3-iums with dual-emission and thermally activated delayed fluorescence (TADF) characteristics have been developed for the first time herein. Furthermore, the dual-emission molecule could be fabricated as water-dispersed NPs, which could be applied in two-channel emission intensity ratio imaging to observe the intercellular structure and can specifically target the cell membrane.
Collapse
Affiliation(s)
- Junxiang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Kangmin Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Liqiu Wan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Xianhui Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
3
|
Ali W, Oliver GA, Werz DB, Maiti D. Pd-catalyzed regioselective activation of C(sp 2)-H and C(sp 3)-H bonds. Chem Soc Rev 2024; 53:9904-9953. [PMID: 39212454 DOI: 10.1039/d4cs00408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Differentiating between two highly similar C-H bonds in a given molecule remains a fundamental challenge in synthetic organic chemistry. Directing group assisted strategies for the functionalisation of proximal C-H bonds has been known for the last few decades. However, distal C-H bond functionalisation is strenuous and requires distinctly specialised techniques. In this review, we summarise the advancement in Pd-catalysed distal C(sp2)-H and C(sp3)-H bond activation through various redox manifolds including Pd(0)/Pd(II), Pd(II)/Pd(IV) and Pd(II)/Pd(0). Distal C-H functionalisation, where a Pd-catalyst is directly involved in the C-H activation step, either through assistance of an external directing group or directed by an inherent functionality or functional group incorporated at the site of the Pd-C bond is covered. The purpose of this review is to portray the current state of art in Pd-catalysed distal C(sp2)-H and C(sp3)-H functionalisation reactions, their mechanism and application in the late-stage functionalisation of medicinal compounds along with highlighting its limitations, thus leaving the field open for further synthetic adjustment.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| | - Gwyndaf A Oliver
- Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, D-79104 Freiburg, Germany.
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, D-79104 Freiburg, Germany.
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Wu K, Lam N, Strassfeld DA, Fan Z, Qiao JX, Liu T, Stamos D, Yu JQ. Palladium (II)-Catalyzed C-H Activation with Bifunctional Ligands: From Curiosity to Industrialization. Angew Chem Int Ed Engl 2024; 63:e202400509. [PMID: 38419352 PMCID: PMC11216193 DOI: 10.1002/anie.202400509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
In 2001, our curiosity to understand the stereochemistry of C-H metalation with Pd prompted our first studies in Pd(II)-catalyzed asymmetric C-H activation (RSC Research appointment: 020 7451 2545, Grant: RG 36873, Dec. 2002). We identified four central challenges: 1. poor reactivity of simple Pd salts with native substrates; 2. few strategies to control site selectivity for remote C-H bonds; 3. the lack of chiral catalysts to achieve enantioselectivity via asymmetric C-H metalation, and 4. low practicality due to limited coupling partner scope and the use of specialized oxidants. These challenges necessitated new strategies in catalyst and reaction development. For reactivity, we developed approaches to enhance substrate-catalyst affinity together with novel bifunctional ligands which participate in and accelerate the C-H cleavage step. For site-selectivity, we introduced the concept of systematically modulating the distance and geometry between a directing template, catalyst, and substrate to selectively access remote C-H bonds. For enantioselectivity, we devised predictable stereomodels for catalyst-controlled enantioselective C-H activation based on the participation of bifunctional ligands. Finally, for practicality, we have developed varied catalytic manifolds for Pd(II) to accommodate diverse coupling partners while employing practical oxidants such as simple peroxides. These advances have culminated in numerous C-H activation reactions, setting the stage for broad industrial applications.
Collapse
Affiliation(s)
- Kevin Wu
- Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nelson Lam
- Department of Chemistry, Cambridge University, Cambridge, CB2 1EW, UK
| | - Daniel A Strassfeld
- Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhoulong Fan
- Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jennifer X Qiao
- Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, 250 Water Street, Cambridge, MA 02141, USA
| | - Tao Liu
- Discovery Chemistry Research & Technology Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Dr, San Diego, CA 92121, USA
| | - Dean Stamos
- Research & Development, Flagship Pioneering, 55 Cambridge Parkway Suite 800E, Cambridge, MA 02142, USA
| | - Jin-Quan Yu
- Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Higham JI, Ma TK, Bull JA. When is an Imine Directing Group a Transient Imine Directing Group in C-H Functionalization? Chemistry 2024; 30:e202400345. [PMID: 38375941 DOI: 10.1002/chem.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
'Transient' C-H functionalization has emerged in recent years to describe the use of a dynamic linkage, often an imine, to direct cyclometallation and subsequent functionalization. As the field continues to grow in popularity, we consider the features that make an imine directing group transient. A transient imine should be i) formed dynamically in situ, ii) avoid discrete introduction or cleavage steps, and iii) offer the potential for catalysis in both the directing group and metal. This concept article contrasts transient imines with pioneering early studies of imines as directing groups for the formation of metallacycles and the use of preformed imines in C-H functionalization. Leading developments in the use of catalytic additives to form transient directing groups (as aldehyde or amine) are covered including selected highlights of the most recent examples of catalytic imine directed C-H functionalization with transition metals.
Collapse
Affiliation(s)
- Joe I Higham
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Tsz-Kan Ma
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
6
|
Xu Z, Li Z, Liu C, Yang K, Ge H. Palladium-Catalyzed β-C(sp 3)-H Bond Arylation of Tertiary Aldehydes Facilitated by 2-Pyridone Ligands. Molecules 2024; 29:259. [PMID: 38202841 PMCID: PMC10780448 DOI: 10.3390/molecules29010259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
2-Pyridone ligand-facilitated palladium-catalyzed direct C-H bond functionalization via the transient directing group strategy has become an attractive topic. Here, we report a Pd-catalyzed direct β-C(sp3)-H arylation reaction of tertiary aliphatic aldehydes by using an α-amino acid as a transient directing group in combination with a 2-pyridone ligand.
Collapse
Affiliation(s)
- Ziting Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (Z.X.); (Z.L.)
| | - Zhi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (Z.X.); (Z.L.)
| | - Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (Z.X.); (Z.L.)
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
7
|
Zhou J, Jiao T, Fu Q, Wang J, Lu J, Yang L, Wei J, Wei S, Cong X, Hao N. Catalytic C-H alkynylation of benzylamines and aldehydes with aldimine-directing groups generated in situ. Chem Commun (Camb) 2023; 59:6355-6358. [PMID: 37139669 DOI: 10.1039/d3cc01414b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Iridium-catalysed regioselective C-H alkynylation of unprotected primary benzylamines and aliphatic aldehydes has been achieved using in situ-installed aldimine directing groups. This protocol provides a straightforward route for the synthesis of the alkynylated primary benzylamine and aliphatic aldehyde derivatives, featuring good substrate compatibility and high regioselectivity.
Collapse
Affiliation(s)
- Jiao Zhou
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Tenggang Jiao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Qiang Fu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jun Wang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Ji Lu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Lin Yang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jun Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Siping Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Xuefeng Cong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Na Hao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
8
|
Meng G, Wang Z, Chan HSS, Chekshin N, Li Z, Wang P, Yu JQ. Dual-Ligand Catalyst for the Nondirected C-H Olefination of Heteroarenes. J Am Chem Soc 2023; 145:8198-8208. [PMID: 36975773 PMCID: PMC10173962 DOI: 10.1021/jacs.3c01631] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Pd(II)-catalyzed nondirected C-H functionalization of heteroarenes is a significant challenge for the following reasons: poor reactivity of electron-deficient heterocycles and the unproductive coordination of Lewis basic nitrogen atoms. Existing methodologies using palladium catalysis often employ a large excess of heterocycle substrates to overcome these hurdles. Despite recent advances in nondirected functionalization of arenes that allow them to be used as limiting reagents, the reaction conditions are incompatible with electron-deficient heteroarenes. Herein we report a dual-ligand catalyst that enables Pd(II)-catalyzed nondirected C-H olefination of heteroarenes without using a large excess of substrate. In general, the use of 1-2 equiv of substrates was sufficient to obtain synthetically useful yields. The reactivity was rationalized by the synergy between two types of ligands: a bidentate pyridine-pyridone ligand promotes C-H cleavage; the monodentate heterocycle substrate acts as a second ligand to form a cationic Pd(II) complex that has high affinity for arenes. The proposed dual-ligand cooperation is supported by a combination of X-ray, kinetics, and control experiments.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhen Wang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Hau Sun Sam Chan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhen Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Wang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Teng Q, Liu Z, Song H, Liu J, Zhao Y, Jiang W, Huynh HV, Meng Q. Versatile halogenation via a C NHC^C sp3 palladacycle intermediate. Dalton Trans 2023; 52:2223-2226. [PMID: 36779836 DOI: 10.1039/d3dt00113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stable cyclopalladated complexes containing an (sp3)C-Pd bond were synthesized via α-CH2 deprotonation and palladation of N-alkyl groups of carbene ligands bearing electron-withdrawing substituents. The strong electron donating strengths of the resulting CNHC^Csp3 chelators were experimentally identified, and the palladacycle underwent template-directed, versatile C-halogenation with X2.
Collapse
Affiliation(s)
- Qiaoqiao Teng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Ziwei Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Haobin Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Jiayu Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yaru Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Weihua Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Han Vinh Huynh
- Department of Chemistry, National University of Singapore, 117543 Singapore, Republic of Singapore.
| | - Qi Meng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
10
|
Xiao Y, Zheng K, Zhang N, Wang Y, Yan J, Wang D, Liu X. Facile Synthesis of Tetraphenylethene (TPE)-Based Fluorophores Derived by π-Extended Systems: Opposite Mechanofluorochromism, Anti-Counterfeiting and Bioimaging. Chemistry 2023; 29:e202203772. [PMID: 36746746 DOI: 10.1002/chem.202203772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Although remarkable progresses are achieved in the design and development of the mono-shift in photoluminescence for mechanofluorochromic materials, it is still a severe challenge to explore the opposite mechanofluorochromic materials with both blue- and red-shifted photoluminescence. Herein, two unprecedented 4,5-bis(TPE)-1H-imidazole fused pyridine or quinoline-based fluorophores X-1 and X-2 were designed and synthesized, and X-1 and X-2, exhibit completely opposite mechanofluorochromic behavior. Under UV lamp, the color of pristine X-1 changed from blue to green with reversible redshifted 27 nm in fluorescence emission spectra after ground, while the color of pristine X-2 changed from red to yellow with reversible blue-shifted 74 nm after ground. The detailed characterizations (including PXRD, SEM and DSC) confirmed that this opposite mechanofluorochromism was attributed to the transformation of order-crystalline and amorphous states. The crystal structure analysis and theoretical calculation further explain that opposite mechanofluorochromic behavior take into account different π-π stacking mode by induced π-extended systems. In addition, these TPE-based fluorophores (X-1 and X-2) exhibited excellent bio-compatibility and fluorescence properties for bio-imaging, writable data storage and anti-counterfeiting materials.
Collapse
Affiliation(s)
- Yufeng Xiao
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P.R. China
| | - Kaibo Zheng
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P.R. China
| | - Nuonuo Zhang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P.R. China
| | - Yanlan Wang
- Department of chemistry and chemical engineering, 252059, Liaocheng, P.R. China
| | - Jiaying Yan
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P.R. China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Xiang Liu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P.R. China
| |
Collapse
|
11
|
Liu Z, Han W, Lan J, Sun L, Tang J, Zhang C, You J. Molecular Engineering of Chalcogen-Embedded Anthanthrenes via peri-Selective C-H Activation: Fine-Tuning of Crystal Packing for Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2023; 62:e202211412. [PMID: 36347830 DOI: 10.1002/anie.202211412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Disclosed herein is a RhCl3 -catalyzed peri-selective C-H/C-H oxidative homo-coupling of 1-substituted naphthalenes, which provides a highly efficient and streamlined approach to chalcogen-embedded anthanthrenes from readily available starting materials. Introducing O, S, and Se into the anthanthrene skeleton leads to gradually increased π-π stacking distances but significantly enhanced π-π overlaps with the growth of the hetero-atom radius. Moderate π-π distance, overlap area, and intermolecular S-S interactions endow S-embedded anthanthrene (PTT) with excellent 2D charge-transport properties. Moreover, the transformation of p-type to n-type S-embedded anthanthrenes is realized for the first time via the S-atom oxidation from PTT to PTT-O4. In organic field-effect transistor devices, PTT derivatives exhibit hole transport with mobilities up to 1.1 cm2 V-1 s-1 , while PTT-O4 shows electron transport with a mobility of 0.022 cm2 V-1 s-1 .
Collapse
Affiliation(s)
- Zheng Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Weiguo Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Lingyan Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Junbin Tang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
12
|
Li H, Yin C, Liu S, Tu H, Lin P, Chen J, Su W. Multiple remote C(sp 3)-H functionalizations of aliphatic ketones via bimetallic Cu-Pd catalyzed successive dehydrogenation. Chem Sci 2022; 13:13843-13850. [PMID: 36544736 PMCID: PMC9710215 DOI: 10.1039/d2sc05370e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The dehydrogenation-triggered multiple C(sp3)-H functionalizations at remote positions γ, δ or ε, ζ to carbonyl groups of aliphatic ketones with aryl/alkenyl carboxylic acids as coupling partners have been achieved using a bimetallic Cu-Pd catalyst system. This reaction allows access to alkenylated isocoumarins and their derivatives in generally good yields with high functional group tolerance. The identification of bimetallic Cu-Pd synergistic catalysis for efficient successive dehydrogenation of aliphatic ketones, which overcomes the long-standing challenge posed by the successive dehydrogenation desaturation of terminally unsubstituted alkyl chains in aliphatic ketones, is essential to achieving this bimetallic Cu-Pd catalyzed dehydrogenation coupling reaction.
Collapse
Affiliation(s)
- Hongyi Li
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Chang Yin
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
| | - Sien Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Hua Tu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Ping Lin
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Jing Chen
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| |
Collapse
|
13
|
Ligand enabled none-oxidative decarbonylation of aliphatic aldehydes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Li Y, Fu ZT, Shen Y, Zhu J, Luo K, Wu L. Divergent Auto‐oxidative Alkylation and Alkanoacylation of Quinoxalin‐2(1H)‐ones with Aliphatic Aldehydes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Li
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Zi-Tong Fu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Yawei Shen
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Jie Zhu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Kai Luo
- Nanjing Agricultural University College of Sciences Weigang No. 1 210095 Nanjing CHINA
| | - Lei Wu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| |
Collapse
|
15
|
Li YH, Ouyang Y, Chekshin N, Yu JQ. Pd II-Catalyzed γ-C(sp 3)-H (Hetero)Arylation of Ketones Enabled by Transient Directing Groups. ACS Catal 2022; 12:10581-10586. [PMID: 37305173 PMCID: PMC10249709 DOI: 10.1021/acscatal.2c03400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pd(II)-catalyzed γ-C(sp3)-H (hetero)arylation of aliphatic ketones is developed using α-amino acid as transient directing groups (TDG). A variety of aliphatic ketones were (hetero)arylated at the γ-position via a 5,6-membered fused cyclopalladation intermediate to afford the remotely arylated products in up to 88% yield. The crucial ligand effect of 2-pyridone is further enhanced by reducing the loading of acid additives. Consequentially, the improved reactivity of this catalytic system has also made possible the cyclic γ-methylene C(sp3)-H arylation of ketones. Mechanistic investigtigation and comparison to the γ-C-H arylation of aldehydes revealed a structural insight for designing site selective TDG.
Collapse
Affiliation(s)
- Yi-Hao Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Yuxin Ouyang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Hu G, Brenner-Moyer SE. Design and synthesis of novel pyrrolidine-bipyridine structures. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Guang Hu
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | | |
Collapse
|
17
|
Higham JI, Bull JA. Amine-Catalyzed Copper-Mediated C-H Sulfonylation of Benzaldehydes via a Transient Imine Directing Group. Angew Chem Int Ed Engl 2022; 61:e202202933. [PMID: 35441781 PMCID: PMC9321081 DOI: 10.1002/anie.202202933] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 12/28/2022]
Abstract
Transient directing groups (TDGs) can provide a powerful means for C-H functionalization without requiring additional steps for directing group introduction and removal. We report the first use of a TDG in combination with copper to effect C-H functionalization. The regioselective copper mediated β-C(sp2 )-H sulfonylation of aldehydes with sulfinate salts is accomplished using catalytic β-alanine to form a transient imine. A broad range of sulfonylated benzaldehydes are prepared using copper fluoride as both copper source and oxidant, involving a [5,6] cupracyclic intermediate. γ-(peri)-Sulfonylation of napthyl and phenanthrenyl carboxaldehydes is achieved through [6,6] cupracyclic intermediates. Further derivatisation of the aldehyde products is demonstrated. Kinetic experiments and Hammett analysis suggest the turnover limiting step to be a concerted asynchronous C-H cleavage via a dearomative Wheland-type transition state.
Collapse
Affiliation(s)
- Joe I. Higham
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub, White City CampusWood LaneLondonW12 0BZUK
| | - James A. Bull
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub, White City CampusWood LaneLondonW12 0BZUK
| |
Collapse
|
18
|
Yang K, Li Z, Liu C, Li Y, Hu Q, Elsaid M, Li B, Das J, Dang Y, Maiti D, Ge H. Ligand-promoted palladium-catalyzed β-methylene C-H arylation of primary aldehydes. Chem Sci 2022; 13:5938-5943. [PMID: 35685787 PMCID: PMC9132077 DOI: 10.1039/d2sc01677j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022] Open
Abstract
The transient directing group (TDG) strategy allowed long awaited access to the direct β-C(sp3)-H functionalization of unmasked aliphatic aldehydes via palladium catalysis. However, the current techniques are restricted to terminal methyl functionalization, limiting their structural scopes and applicability. Herein, we report the development of a direct Pd-catalyzed methylene β-C-H arylation of linear unmasked aldehydes by using 3-amino-3-methylbutanoic acid as a TDG and 2-pyridone as an external ligand. Density functional theory calculations provided insights into the reaction mechanism and shed light on the roles of the external and transient directing ligands in the catalytic transformation.
Collapse
Affiliation(s)
- Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Jiangsu 213164 China
| | - Zhi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Jiangsu 213164 China
| | - Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061
| | - Yunjian Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Jiangsu 213164 China
| | - Qingyue Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Jiangsu 213164 China
| | - Mazen Elsaid
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061
| | - Bijin Li
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061
| | - Jayabrata Das
- Department of Chemistry and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay Mumbai 400076
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072
| | - Debabrata Maiti
- Department of Chemistry and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay Mumbai 400076
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061
| |
Collapse
|
19
|
Higham JI, Bull JA. Amine‐Catalyzed Copper‐Mediated C−H Sulfonylation of Benzaldehydes via a Transient Imine Directing Group**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joe I. Higham
- Department of Chemistry Imperial College London Molecular Sciences Research Hub, White City Campus Wood Lane London W12 0BZ UK
| | - James A. Bull
- Department of Chemistry Imperial College London Molecular Sciences Research Hub, White City Campus Wood Lane London W12 0BZ UK
| |
Collapse
|
20
|
Rapid formation of Csp3–Csp3 bonds through copper-catalyzed decarboxylative Csp3–H functionalization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
|
22
|
Cheng JT, Xiao LJ, Qian SQ, Zhuang Z, Liu A, Yu JQ. Palladium(II)-Catalyzed Selective Arylation of Tertiary C-H Bonds of Cyclobutylmethyl Ketones Using Transient Directing Groups. Angew Chem Int Ed Engl 2022; 61:e202117233. [PMID: 35112447 PMCID: PMC9084898 DOI: 10.1002/anie.202117233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/11/2022]
Abstract
We report the first example of selective PdII -catalyzed tertiary C-H activation of cyclobutylmethyl ketones using a transient directing group. An electron-deficient 2-pyridone ligand was identified as the optimal external ligand to enable tertiary C-H activation. A variety of cyclobutylmethyl ketones bearing quaternary carbon centers was readily accessed without preinstalling internal directing groups in up to 81 % yield and >95 : 5 regioisomeric ratios of tertiary C-H arylation to β-methylene (β-methyl) or γ-C-H arylation.
Collapse
Affiliation(s)
- Jin-Tang Cheng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li-Jun Xiao
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shao-Qun Qian
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - An Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Supramolecular interaction controlled and calix[4]arene ligand assisted Pd-catalyzed C(sp3)−H arylation of aliphatic aldehydes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Li YH, Ouyang Y, Chekshin N, Yu JQ. Pd II-Catalyzed Site-selective β- and γ-C(sp 3)-H Arylation of Primary Aldehydes Controlled by Transient Directing Groups. J Am Chem Soc 2022; 144:4727-4733. [PMID: 35286807 PMCID: PMC9084563 DOI: 10.1021/jacs.1c13586] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pd(II)-catalyzed site-selective β- and γ-C(sp3)-H arylation of primary aldehydes is developed by rational design of L,X-type transient directing groups (TDG). External 2-pyridone ligands are identified to be crucial for the observed reactivity. By minimizing the loading of acid additives, the ligand effect is enhanced to achieve high reactivities of the challenging primary aldehyde substrates. Site selectivity can be switched from the proximate to the relatively remote position by changing the bite angle of TDG to match the desired palladacycle size. Experimental and computational investigations support this rationale for designing TDG to potentially achieve remote site-selective C(sp3)-H functionalizations.
Collapse
Affiliation(s)
- Yi-Hao Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yuxin Ouyang
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
25
|
Cheng J, Xiao L, Qian S, Zhuang Z, Liu A, Yu J. Palladium(II)‐Catalyzed Selective Arylation of Tertiary C−H Bonds of Cyclobutylmethyl Ketones Using Transient Directing Groups. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jin‐Tang Cheng
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Li‐Jun Xiao
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Shao‐Qun Qian
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Zhe Zhuang
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - An Liu
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Jin‐Quan Yu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
26
|
Wang K, Zhang J, Hu R, Liu C, Bartholome TA, Ge H, Li B. Transition-Metal-Catalyzed C–C Bond-Forming Reactions via C–H Activation for the Development of Fluorescent Materials with Practical Value. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kangmin Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Jingxian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Ruike Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Tyler A. Bartholome
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
27
|
Liu S, Zhuang Z, Qiao JX, Yeung KS, Su S, Cherney EC, Ruan Z, Ewing WR, Poss MA, Yu JQ. Ligand Enabled Pd(II)-Catalyzed γ-C(sp 3)-H Lactamization of Native Amides. J Am Chem Soc 2021; 143:21657-21666. [PMID: 34914877 PMCID: PMC9116424 DOI: 10.1021/jacs.1c10183] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
γ-Lactams form important structural cores of a range of medicinally relevant natural products and clinical drugs, principal examples being the new generation of immunomodulatory imide drugs (IMiDs) and the brivaracetam family. Compared to conventional multistep synthesis, an intramolecular γ-C-H amination of aliphatic amides would allow for the direct construction of valuable γ-lactam motifs from abundant amino acid precursors. Herein we report a novel 2-pyridone ligand enabled Pd(II)-catalyzed γ-C(sp3)-H lactamization of amino acid derived native amides, providing the convenient synthesis of γ-lactams, isoindolinones, and 2-imidazolidinones. C6-Substitution of the 2-pyridone ligand is crucial for the lactam formation. This protocol features the use of N-acyl amino acids, which serve as both the directing group and cyclization partner, practical and environmentally benign tert-butyl hydrogen peroxide (TBHP) as the sole bystanding oxidant, and a broad substrate scope. The utility of this protocol was demonstrated through the two-step syntheses of a lenalidomide analog and brivaracetam from readily available carboxylic acids and amino acids.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jennifer X. Qiao
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kap-Sun Yeung
- Bristol Myers Squibb Research and Development, 100 Binney Street, Cambridge, MA 02142, United States
| | - Shun Su
- Bristol Myers Squibb, 10300 Campus Point Drive Suite 100, San Diego, CA 92121, United States
| | - Emily C. Cherney
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Zheming Ruan
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - William R. Ewing
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael A. Poss
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States,Corresponding Author.
| |
Collapse
|
28
|
Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp 3)-H Bonds. Chem Rev 2021; 121:14957-15074. [PMID: 34714620 PMCID: PMC8968411 DOI: 10.1021/acs.chemrev.1c00519] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
Collapse
Affiliation(s)
- Bin Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Andrew M. Romine
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States.,Corresponding Author- (K. M. E.); (B.-F. S.)
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China,Corresponding Author- (K. M. E.); (B.-F. S.)
| |
Collapse
|
29
|
Bai C, Chao B, Muschin T, Bao A, Baiyin M, Liu D, Bao YS. Regiodivergent CDC reactions of aromatic aldehydes with unactivated arenes controlled by transient directing strategy. Chem Commun (Camb) 2021; 57:11229-11232. [PMID: 34633012 DOI: 10.1039/d1cc04121e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The regiodivergent catalytic dehydrogenative cross-coupling reactions at both sp2 and sp3 hybridized carbons of aromatic compounds are particularly challenging. Herein, we report the finding of transient directing group controlled regiodivergent C(sp3)-C(sp2) and C(sp2)-C(sp2) cross-coupling in the o-methyl benzaldehyde frameworks. Catalyzed by palladium, using K2S2O8 or [F+] reagents as by-standing oxidants and unactivated arenes as substrates/solvents, various benzyl benzaldehydes or phenyl benzaldehydes were prepared. A mechanism study indicated that the regiospecificity is dominated by the [5,6]-fused palladacycle or [6,5]-fused palladacycle intermediates, which are generated from Pd-chelation with specified transient directing groups and further C-H activations.
Collapse
Affiliation(s)
- Chaolumen Bai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Bao Chao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Tegshi Muschin
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Agula Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Menghe Baiyin
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Dan Liu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Yong-Sheng Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| |
Collapse
|
30
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
31
|
Jacob C, Maes BUW, Evano G. Transient Directing Groups in Metal-Organic Cooperative Catalysis. Chemistry 2021; 27:13899-13952. [PMID: 34286873 DOI: 10.1002/chem.202101598] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 12/13/2022]
Abstract
The direct functionalization of C-H bonds is among the most fundamental chemical transformations in organic synthesis. However, when the innate reactivity of the substrate cannot be utilized for the functionalization of a given single C-H bond, this selective C-H bond functionalization mostly relies on the use of directing groups that allow bringing the catalyst in close proximity to the C-H bond to be activated and these directing groups need to be installed before and cleaved after the transformation, which involves two additional undesired synthetic operations. These additional steps dramatically reduce the overall impact and the attractiveness of C-H bond functionalization techniques since classical approaches based on substrate pre-functionalization are sometimes still more straightforward and appealing. During the past decade, a different approach involving both the in situ installation and removal of the directing group, which can then often be used in a catalytic manner, has emerged: the transient directing group strategy. In addition to its innovative character, this strategy has brought C-H bond functionalization to an unprecedented level of usefulness and has enabled the development of remarkably efficient processes for the direct and selective introduction of functional groups onto both aromatic and aliphatic substrates. The processes unlocked by the development of these transient directing groups will be comprehensively overviewed in this review article.
Collapse
Affiliation(s)
- Clément Jacob
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium
| |
Collapse
|
32
|
Wu LF, Yao JW, Zhang X, Liu SY, Zhuang ZN, Wei K. Pd-Catalyzed β-C-H Arylation of Aldehydes and Ketones Based on a Transient Directing Group. Org Lett 2021; 23:6237-6241. [PMID: 34339206 DOI: 10.1021/acs.orglett.1c01933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct Pd-catalyzed β-C-H arylation of aldehydes and ketones was developed by using 2-amino-N,N'-diisopropylsuccinamide as a novel transient directing group (TDG). The TDG showed good versatility in functionalizing unactivated β-C-H bonds of aldehydes and ketones. It was effective not only for aliphatic aldehydes and ketones but also for aromatic aldehydes and ketones. Besides, it was applicable to o-methylbenzaldehydes.
Collapse
Affiliation(s)
- Liang-Fei Wu
- School of Chemical Science and Technology, Yunnan University. 2 Cuihu North Road, Kunming, 650091, P. R. China
| | - Jian-Wei Yao
- School of Chemical Science and Technology, Yunnan University. 2 Cuihu North Road, Kunming, 650091, P. R. China
| | - Xin Zhang
- School of Chemical Science and Technology, Yunnan University. 2 Cuihu North Road, Kunming, 650091, P. R. China
| | - Si-Yuan Liu
- School of Chemical Science and Technology, Yunnan University. 2 Cuihu North Road, Kunming, 650091, P. R. China
| | - Ze-Nian Zhuang
- School of Chemical Science and Technology, Yunnan University. 2 Cuihu North Road, Kunming, 650091, P. R. China
| | - Kun Wei
- School of Chemical Science and Technology, Yunnan University. 2 Cuihu North Road, Kunming, 650091, P. R. China
| |
Collapse
|
33
|
Li J, Jiang C. Palladium-Catalyzed C-H Silylation of Aliphatic Ketones Using an Aminooxyamide Auxiliary. Org Lett 2021; 23:5359-5362. [PMID: 34184896 DOI: 10.1021/acs.orglett.1c01678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed β-C(sp3)-H silylation of aliphatic ketones with disilanes to afford β-silyl ketones is reported. The aminooxyamide auxiliary is critical for the C-H activation and silylation. The reaction tolerates a number of functional groups and shows good selectivity in silylating β-C(sp3)-H bonds in the company of C(sp2)-H bonds and acidic α-C(sp3)-H bonds. The reaction is scalable, and the aminooxyamide auxiliary is readily removed to give β-silyl ketones, which could serve as useful building blocks for organic synthesis. Late-stage diversification using this protocol is demonstrated in the silylation of santonin with good yield.
Collapse
Affiliation(s)
- Jianhua Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
34
|
Potopnyk MA, Volyniuk D, Luboradzki R, Lazauskas A, Grazulevicius JV. Aggregation‐Induced Emission‐Active Carbazolyl‐Modified Benzo[4,5]thiazolo[3,2‐
c
]oxadiazaborinines as Mechanochromic Fluorescent Materials. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mykhaylo A. Potopnyk
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Department of Polymer Chemistry and Technology Kaunas University of Technology Barsausko 59 LT-51423 Kaunas Lithuania
| | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology Kaunas University of Technology Barsausko 59 LT-51423 Kaunas Lithuania
| | - Roman Luboradzki
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Algirdas Lazauskas
- Institute of Material Science Kaunas University of Technology Barsausko 59 51423 Kaunas Lithuania
| | - Juozas Vidas Grazulevicius
- Department of Polymer Chemistry and Technology Kaunas University of Technology Barsausko 59 LT-51423 Kaunas Lithuania
| |
Collapse
|
35
|
|
36
|
Meng Y, Zhu W, Song Y, Bu G, Zhang L, Xu F. Rhodium(III)‐Catalyzed Oxidative Annulation of Amidines with Alkynes
via
Sequential C−H Bond Activation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yan‐Yu Meng
- Department of College of Science Henan Agricultural University Zhengzhou 450002 P. R. China
| | - Wen‐Jing Zhu
- Department of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Yuan‐Yuan Song
- Department of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Gang‐Gang Bu
- Department of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Li‐Juan Zhang
- Department of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Fen Xu
- Department of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| |
Collapse
|
37
|
Provencher PA, Bay KL, Hoskin JF, Houk KN, Yu JQ, Sorensen EJ. Cyclization by C(sp 3)–H Arylation with a Transient Directing Group for the Diastereoselective Preparation of Indanes. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Philip A. Provencher
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Katherine L. Bay
- Department of Chemistry and Biochemistry, University of Chemistry, Los Angeles, California 90095, United States
| | - John F. Hoskin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of Chemistry, Los Angeles, California 90095, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Erik J. Sorensen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
38
|
Saini G, Kapur M. Palladium-catalyzed functionalizations of acidic and non-acidic C(sp 3)-H bonds - recent advances. Chem Commun (Camb) 2021; 57:1693-1714. [PMID: 33492315 DOI: 10.1039/d0cc06892f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tremendous upsurge has been seen in the recent decade for the proximal and remote functionalization of activated and unactivated substrates via palladium redox pathways. This feature article discusses some of the recent reports on direct as well as indirect C(sp3)-H functionalization via cross-coupling reactions under palladium catalysis. Activated substrates (possessing acidic C(sp3)-H) including enones, ketones, aldehydes, silylenol ethers, esters, silyl ketene acetals, amides, cyano, α-amino esters, and O-carbamates, capable of undergoing cross-coupling reactions at the α-, β-, γ-, δ- and ε-positions, will be discussed. To overcome the challenging task of achieving regioselectivity, a variety of innovative modifications have been reported. The reports of C-H activations based on directing group, and as native functionality have been illustrated at the β-, γ- and δ-positions. Substrates such as α-amino esters, carbonyls, carboxylic acids and their derivatives, afford site-selective C(sp3)-H functionalization via varied-sized reactive metallacycles and are a unique class of substrates whose C(sp3)-H functionalizations were earlier considered as very difficult.
Collapse
Affiliation(s)
- Gaurav Saini
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
| |
Collapse
|
39
|
Cheng Y, Yu S, He Y, An G, Li G, Yang Z. C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles by tuning Pd catalytic modes: Pd(i)-Pd(ii) catalysis vs. Pd(ii) catalysis. Chem Sci 2021; 12:3216-3225. [PMID: 34164090 PMCID: PMC8179361 DOI: 10.1039/d0sc05409g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Efficient C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles have been developed. The former route enables C4-arylation in a highly efficient and mild manner and the latter route provides an alternative straightforward protocol for synthesis of C2/C4 disubstituted indoles. The mechanism studies imply that the different reaction pathways were tuned by the distinct acid additives, which led to either the Pd(i)-Pd(ii) pathway or Pd(ii) catalysis.
Collapse
Affiliation(s)
- Yaohang Cheng
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Shijie Yu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Yuhang He
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Zhenyu Yang
- School of Pharmaceutical and Materials Engineering, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| |
Collapse
|
40
|
Zhou J, Liu D, Bai C, Bao A, Muschin T, Baiyin M, Bao YS. Transient directing group controlled regiodivergent C(sp 3)–H and C(sp 2)–H polyfluoroalkoxylation of aromatic aldehydes. Org Chem Front 2021. [DOI: 10.1039/d1qo00895a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel method for achieving regiodivergent C(sp3)–H and C(sp2)–H polyfluoroalkoxylation in the o-methyl benzaldehyde framework by altering the transient directing group is disclosed.
Collapse
Affiliation(s)
- Jiayu Zhou
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Dan Liu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Chaolumen Bai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Agula Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Tegshi Muschin
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Menghe Baiyin
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Yong-Sheng Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| |
Collapse
|
41
|
Han Y, Zhang T, Chen X, Chen Q, Xue P. Spacer group-controlled luminescence and response of C3-symmetric triphenylamine derivatives towards force stimuli. CrystEngComm 2021. [DOI: 10.1039/d0ce01539c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spacer groups have the ability to regulate the responses of two C3-symmetric triphenylamine derivatives. Double bonds induced larger spectral shifts compared to that of single bonds.
Collapse
Affiliation(s)
- Yanning Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin
- P. R. China
| | - Tong Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin
- P. R. China
| | - Xinyu Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin
- P. R. China
| | - Qiao Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin
- P. R. China
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin
- P. R. China
| |
Collapse
|
42
|
Chang WC, Deufel F, Weyhermüller T, Farès C, Werlé C. Rhodium( i) complexes derived from tris(isopropyl)-azaphosphatrane—controlling the metal–ligand interplay. RSC Adv 2021; 11:37383-37391. [PMID: 35496436 PMCID: PMC9043836 DOI: 10.1039/d1ra07126b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/06/2021] [Indexed: 01/24/2023] Open
Abstract
Proazaphosphatranes are intriguing ligand architectures comprising a bicyclic cage of flexible nature. They can undergo structural deformations due to transannulation while displaying modular electronic and steric properties. Herein, we report the synthesis and coordination chemistry of rhodium(i) complexes bearing a tris(isopropyl)-azaphosphatrane (TiPrAP) ligand. The molecular structure of the primary complex (1) revealed the insertion of the metal center into a P–N bond of the ligand. The addition of a Lewis acid, i.e., lithium chloride, promoted the dynamic behavior of the complex in the solution, which was studied by state-of-the-art NMR spectroscopy. Substituting the cyclooctadiene ligand at the metal center with triphenylphosphine or 2-pyridyldiphenylphosphine unveiled the adaptive nature of the TiPrAP backbone capable of switching its axial nitrogen from interacting with the phosphorus atom to coordinate the rhodium center. This led the entire ligand edifice to change its binding to rhodium from a bidentate to tridentate coordination. Altogether, our study shows that introducing a TiPrAP ligand allows for unique molecular control of the immediate environment of the metal center, opening perspectives in controlled bond activation and catalysis. The synthesis and coordination chemistry of Rh(i) complexes bearing a tris(isopropyl)-azaphosphatrane (TiPrAP) ligand are reported. The adaptive nature of TiPrAP ligands allows for molecular control of the immediate environment of the metal center.![]()
Collapse
Affiliation(s)
- Wei-Chieh Chang
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34–36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Fritz Deufel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34–36, 45470 Mülheim an der Ruhr, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34–36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
43
|
Zhang X, Wang D, Shen H, Wang S, Zhou Y, Lei Y, Gao W, Liu M, Huang X, Wu H. 3,6-Diamino-7,8-dihydroisoquinoline-4-carbonitrile derivatives: unexpected facile synthesis, full-color-tunable solid-state emissions and mechanofluorochromic activities. Org Chem Front 2021. [DOI: 10.1039/d0qo01527j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A facile synthesis of novel 3,6-diamino-7,8-dihydroisoquinoline-4-carbonitrile derivatives and their solid-state emissions are presented.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Dan Wang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Hao Shen
- Bureau Veritas Consummer Products Services Shenou (Wenzhou) Co. Ltd
- Wenzhou
- 325035
- P. R. China
| | - Shuxian Wang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Yunbing Zhou
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Yunxiang Lei
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Huayue Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| |
Collapse
|
44
|
Mingo MM, Rodríguez N, Arrayás RG, Carretero JC. Remote C(sp 3)–H functionalization via catalytic cyclometallation: beyond five-membered ring metallacycle intermediates. Org Chem Front 2021. [DOI: 10.1039/d1qo00389e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite impressive recent momentum gained in C(sp3)–H activation, achieving high regioselectivity in molecules containing different C–H bonds with similar high energy without abusing tailored substitution remains as one of the biggest challenges.
Collapse
Affiliation(s)
- Mario Martínez Mingo
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
| | - Nuria Rodríguez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Spain
| | - Juan C. Carretero
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Spain
| |
Collapse
|
45
|
Zhang Q, Shi BF. Site-selective functionalization of remote aliphatic C-H bonds via C-H metallation. Chem Sci 2020; 12:841-852. [PMID: 34163851 PMCID: PMC8179183 DOI: 10.1039/d0sc05944g] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Directing group assistance provided a paradigm for controlling site-selectivity in transition metal-catalyzed C-H functionalization reactions. However, the kinetically and thermodynamically favored formation of 5-membered metallacycles has greatly hampered the selective activation of remote C(sp3)-H bonds via larger-membered metallacycles. Recent development to achieve remote C(sp3)-H functionalization via the C-H metallation process largely relies on employing specific substrates without accessible proximal C-H bonds. Encouragingly, recent advances in this field have enabled the selective functionalization of remote aliphatic C-H bonds in the presence of equally accessible proximal ones by taking advantage of the switch of the regiodetermining step, ring strain of metallacycles, multiple non-covalent interactions, and favourable reductive elimination from larger-membered metallacycles. In this review, we summarize these advancements according to the strategies used, hoping to facilitate further efforts to achieve site- and even enantioselective functionalization of remote C(sp3)-H bonds.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
- College of Chemistry and Molecular Engineering, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
46
|
Xiao F, Wang M, Lei Y, Xie Y, Liu M, Zhou Y, Gao W, Huang X, Wu H. An Unexpected 4,5-Diphenyl-2,7-naphthyridine Derivative with Aggregation-Induced Emission and Mechanofluorochromic Properties Obtained from a 3,5-Diphenyl-4H-pyran Derivative. Chem Asian J 2020; 15:3437-3443. [PMID: 32896079 DOI: 10.1002/asia.202000884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Indexed: 11/07/2022]
Abstract
For a specific fluorescent molecule, the increase of molecular conformation distortion is beneficial to endow it with aggregation-induced emission (AIE) and mechanofluorochromic (MFC) properties. Herein, 3,5-diphenyl-4H-pyran derivative 5 and 4,5-diphenyl-2,7-naphthidine derivative 7 with highly twisted conformations were synthesized. For compound 5, although the introduction of phenyl rings with large steric hindrance at 3 and 5 positions of the 4H-pyran skeleton realized the transformation from aggregation-induced quenching (ACQ)-active molecule to AIE-active molecule, it only showed a low-contrast MFC activity. Compound 7 was accidentally obtained from compound 5 and n-butylamine via a ring-opening and subsequent intramolecular ring-closing mechanism. Compound 7 was confirmed to have a highly twisted molecular conformation by the crystal structural analysis and exhibited AIE activity originated from the restriction of intramolecular rotation. Furthermore, compound 7 exhibited reversible high-contrast MFC activity. Upon grinding, the change of solid-state fluorescence color from orange to yellow was confirmed to be due to the partial destruction of crystal structure. This work provides new ideas for the design and synthesis of novel AIE-active and MFC-active fluorescent molecules based on ACQ-active parent molecules.
Collapse
Affiliation(s)
- Fuming Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Mengzhu Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Yunxiang Lei
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Yufeng Xie
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Yunbing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| |
Collapse
|
47
|
Mandal N, Datta A. Harnessing the Efficacy of 2-Pyridone Ligands for Pd-Catalyzed (β/γ)-C(sp 3)-H Activations. J Org Chem 2020; 85:13228-13238. [PMID: 32975420 DOI: 10.1021/acs.joc.0c02210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanisms of palladium-aminooxyacetic acid and 2-pyridone-enabled cooperative catalysis for the β- and γ-C(sp3)-H functionalizations of ketones are investigated with density functional theory. 2-Pyridone-assisted dissociation of the trimeric palladium acetate [Pd3(OAc)6] is found to be crucial for these catalytic pathways. The evolution of the [6,6]-membered palladacycles (Int-4) are elucidated and are active complexes in Pd(II/IV) catalytic cycles. Nevertheless, 2-pyridone acts as an external ligand, which accelerates β-C(sp3)-H activation. Computational investigations suggest that the C(sp3)-H bond activation is the rate-limiting step for both the catalytic processes. To overcome the kinetic inertness, an unsubstituted aminooxyacetic acid auxiliary is used for the β-C(sp3)-H activation pathway to favor the formation of the [5,6]-membered palladacycle intermediate, Int-IV. Among the several modeled ligands, 3-nitro-5-((trifluoromethyl)sulfonyl)pyridine-2(1H)-one (L8) is found to be highly valuable for both the (β/γ)-C(sp3)-H functionalization catalytic cycles. A favorable free energy pathway of late-stage functionalization of (R)-muscone paves the path to design other bioactive molecules.
Collapse
Affiliation(s)
- Nilangshu Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mallick Road, Kolkata 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mallick Road, Kolkata 700032, India
| |
Collapse
|
48
|
Li XC, Xue Y, Song W, Yan Y, Min J, Liu F, Liu X, Lai WY, Huang W. Highly Regioselective Direct C-H Arylation: Facile Construction of Symmetrical Dithienophthalimide-Based π-Conjugated Molecules for Optoelectronics. RESEARCH 2020; 2020:9075697. [PMID: 33015637 PMCID: PMC7510346 DOI: 10.34133/2020/9075697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/26/2020] [Indexed: 11/20/2022]
Abstract
Controllable direct C-H arylation with high regioselectivity is highly desirable yet remains a formidable challenge. Herein, a facile regioselective direct C-H arylation is developed for efficient construction of a variety of symmetrical dithienophthalimide-based π-conjugated molecules. The resulting methodology is applicable to a wide range of substrates, from electron-rich units to electron-deficient units with large steric end groups. Aryl halides have been confirmed to be able to couple with dithienophthalimide (DTI) via direct C-H arylation, showing high regioselectivity. Varying the functional end groups onto the DTI core has been demonstrated to fine tune the emission colors to cover most of the visible spectra. The results suggest a facile strategy towards highly selective direct C-H arylation, opening the prospects towards efficient construction of π-conjugated molecules for various potential optoelectronic applications.
Collapse
Affiliation(s)
- Xiang-Chun Li
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yibo Xue
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wan Song
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yu Yan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Min
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Fang Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xu Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
49
|
Li B, Ali AI, Ge H. Recent Advances in Using Transition-Metal-Catalyzed C–H Functionalization to Build Fluorescent Materials. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
50
|
Higham JI, Bull JA. Transient imine directing groups for the C-H functionalisation of aldehydes, ketones and amines: an update 2018-2020. Org Biomol Chem 2020; 18:7291-7315. [PMID: 32926032 DOI: 10.1039/d0ob01587c] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The use of pre-installed directing groups has become a popular and powerful strategy to control site selectivity in transition metal catalysed C-H functionalisation reactions. However, the necessity for directing group installation and removal reduces the efficiency of a directed C-H functionalisation method. To overcome this limitation, taking inspiration from organocatalytic methodologies, the use of transient directing groups has arisen. These methods allow for a transient ligand to be used, potentially in catalytic quantities, without the need for discrete installation or removal steps, enabling the discovery of more efficient, and mechanistically intriguing, dual catalytic methods. This review summarises recent developments in this fast moving field covering >70 new methodologies, highlighting new directing group designs and advances in mechanistic understanding. It covers progress since 2018, providing an update to our previous review of the field.
Collapse
Affiliation(s)
- Joe I Higham
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | - James A Bull
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|