1
|
Kulsha AV, Ivashkevich OA, Lyakhov DA, Michels D. Strong Bases Design: Key Techniques and Stability Issues. Int J Mol Sci 2024; 25:8716. [PMID: 39201404 PMCID: PMC11354936 DOI: 10.3390/ijms25168716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Theoretical design of molecular superbases has been attracting researchers for more than twenty years. General approaches were developed to make the bases potentially stronger, but less attention was paid to the stability of the predicted structures. Hence, only a small fraction of the theoretical research has led to positive experimental results. Possible stability issues of extremely strong bases are extensively studied in this work using quantum chemical calculations on a high level of theory. Several step-by-step design examples are discussed in detail, and general recommendations are given to avoid the most common stability problems. New potentially stable structures are theoretically studied to demonstrate the future prospects of molecular superbases design.
Collapse
Affiliation(s)
- Andrey V. Kulsha
- Chemical Department, Belarusian State University, 14 Leningradskaya Str., 220006 Minsk, Belarus;
| | - Oleg A. Ivashkevich
- Research Institute for Physical Chemical Problems, Belarusian State University, 14 Leningradskaya Str., 220006 Minsk, Belarus
| | - Dmitry A. Lyakhov
- Computer, Electrical and Mathematical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; (D.A.L.); (D.M.)
| | - Dominik Michels
- Computer, Electrical and Mathematical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; (D.A.L.); (D.M.)
| |
Collapse
|
2
|
Culvyhouse J, Unruh DK, Lischka H, Aquino AJA, Krempner C. Facile Access to Organostibines via Selective Organic Superbase Catalyzed Antimony-Carbon Protonolysis. Angew Chem Int Ed Engl 2024; 63:e202407822. [PMID: 38763897 DOI: 10.1002/anie.202407822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The selective formation of antimony-carbon bonds via organic superbase catalysis under metal- and salt-free conditions is reported. This novel approach utilizes electron-deficient stibine, Sb(C6F5)3, to give upon base-catalyzed reactions with weakly acidic aromatic and heteroaromatic hydrocarbons access to a range of new aromatic and heteroaromatic stibines, respectively, with loss of C6HF5. Also, the significantly less electron-deficient stibines, Ph2SbC6F5 and PhSb(C6F5)2 smoothly underwent base-catalyzed exchange reactions with a range of terminal alkynes to generate the stibines of formulae PhSb(C≡CPh)2, and Ph2SbC≡CR [R=C6H5, C6H4-NO2, COOEt, CH2Cl, CH2NEt2, CH2OSiMe3, Sb(C6H5)2], respectively. These formal substitution reactions proceed with high selectivity as only the C6F5 groups serve as a leaving group to be liberated as C6HF5 upon formal proton transfer from the alkyne. Kinetic studies of the base-catalyzed reaction of Ph2SbC6F5 with phenyl acetylene to form Ph2SbC≡CPh and C6HF5 suggested the empirical rate law to exhibit a first-order dependence with respect to the base catalyst, alkyne and stibine. DFT calculations support a pathway proceeding via a concerted σ-bond metathesis transition state, where the base catalyst activates the Sb-C6F5 bond sequence through secondary bond interactions.
Collapse
Affiliation(s)
- Jacob Culvyhouse
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| | - Daniel K Unruh
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| | - Hans Lischka
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| | - Adelia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, 79409-1021, United States
| | - Clemens Krempner
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| |
Collapse
|
3
|
Kondoh A, Kato T, Chen H, Terada M. Asymmetric Auto-Tandem Catalysis with Chiral Organosuperbases: Intramolecular Cyclization/Enantioselective Direct Mannich-Type Addition Sequence. Org Lett 2024; 26:6523-6528. [PMID: 39028997 DOI: 10.1021/acs.orglett.4c02532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
An enantioselective addition reaction of alkynyl esters with imines was developed under asymmetric autotandem catalysis with a chiral Brønsted base. A chiral bis(guanidino)iminophosphorane organosuperbase, which has much higher basicity than that of conventional chiral organic bases, efficiently promoted both the intramolecular cyclization for the construction of a benzofuran ring or a benzothiophene ring and the sequential enantioselective direct Mannich-type reaction of diarylmethane derivatives, affording enantio-enriched diarylalkane derivatives that are otherwise difficult to access.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takuro Kato
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hao Chen
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
4
|
Sujansky SJ, Hoteling GA, Bandar JS. A strategy for the controllable generation of organic superbases from benchtop-stable salts. Chem Sci 2024; 15:10018-10026. [PMID: 38966380 PMCID: PMC11220602 DOI: 10.1039/d4sc02524e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 07/06/2024] Open
Abstract
Organic superbases are a distinct class of strong base that enable numerous modern reaction applications. Despite their great synthetic potential, widespread use and study of superbases are limited by their air sensitivity and difficult preparation. To address this, we report air-stable carboxylate salts of BTPP and P2-t-Bu phosphazene superbases that, when added to solution with an epoxide, spontaneously generate freebase. These systems function as effective precatalysts and stoichiometric prereagents for superbase-promoted addition, substitution and polymerization reactions. In addition to improving the synthesis, shelf stability, handling and recycling of phosphazenes, this approach enables precise regulation of the rate of base generation in situ. The activation strategy effectively mimics manual slow addition techniques, allowing for control over a reaction's rate or induction period and improvement of reactions that require strong base but are also sensitive to its presence, such as Pd-catalyzed coupling reactions.
Collapse
Affiliation(s)
- Stephen J Sujansky
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Garrett A Hoteling
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
5
|
Capocasa G, Frateloreto F, Valentini M, Di Stefano S. Molecular entanglement can strongly increase basicity. Commun Chem 2024; 7:116. [PMID: 38806668 PMCID: PMC11133330 DOI: 10.1038/s42004-024-01205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Brønsted basicity is a fundamental chemical property featured by several kinds of inorganic and organic compounds. In this Review, we treat a particularly high basicity resulting from the mechanical entanglement involving two or more molecular subunits in catenanes and rotaxanes. Such entanglement allows a number of basic sites to be in close proximity with each other, highly increasing the proton affinity in comparison with the corresponding, non-entangled counterparts up to obtain superbases, properly defined as mechanically interlocked superbases. In the following pages, the development of this kind of superbases will be described with a historical perusal, starting from the initial, serendipitous findings up to the most recent reports where the strong basic property of entangled molecular units is the object of a rational design.
Collapse
Affiliation(s)
- Giorgio Capocasa
- Department of Chemistry Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione P.le A. Moro 5, I-00185, Roma, Italy
| | - Federico Frateloreto
- Department of Chemistry Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione P.le A. Moro 5, I-00185, Roma, Italy
| | - Matteo Valentini
- Department of Chemistry Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione P.le A. Moro 5, I-00185, Roma, Italy
| | - Stefano Di Stefano
- Department of Chemistry Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione P.le A. Moro 5, I-00185, Roma, Italy.
| |
Collapse
|
6
|
Odoh AS, Keeler C, Kim B. SuFEx-Enabled Direct Deoxy-Diversification of Alcohols. Org Lett 2024; 26:4013-4017. [PMID: 38691850 DOI: 10.1021/acs.orglett.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
We introduce a new use of sulfonyl fluoride as a bifunctional reagent that facilitates the one-step deoxy-diversification of complex alcohol libraries. Our reaction design features a Sulfur(VI) Fluoride Exchange (SuFEx) mediated activation of alcohols and fluoride-induced activation of silicon-bound nucleophiles. This method enables the direct conversion of alcoholic C-O bonds in complex molecules into diverse analogues via C-C, C-N, C-Cl, and C-Br bond formation while suppressing any elimination side-products.
Collapse
Affiliation(s)
- Amaechi Shedrack Odoh
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Courtney Keeler
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
7
|
Kondoh A, Ojima R, Ishikawa S, Terada M. Construction of 1,3-Nonadjacent Stereogenic Centers Through Enantioselective Addition of α-Thioacetamides to α-Substituted Vinyl Sulfones Catalyzed by Chiral Strong Brønsted Base. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308020. [PMID: 38126668 PMCID: PMC10916638 DOI: 10.1002/advs.202308020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Indexed: 12/23/2023]
Abstract
An enantioselective addition reaction for the construction of 1,3-nonadjacent stereogenic centers is developed by means of a chiral strong Brønsted base catalyst. The chiral sodium ureate catalyst efficiently promoted the reaction of α-thioacetamides as less acidic pronucleophiles with vinyl sulfones having a variety of α-substituents including aryl, alkyl and halo groups, and α-phenylacrylates, accomplishing the construction of various 1,3-nonadjacent stereogenic centers in highly diastereo- and enantioselective manners. This is a rare example of the construction of 1,3-nonadjacent stereogenic centers with less acidic pronucleophiles. In addition, the application of Michael acceptors having various types of α-substituents in a single catalyst system is achieved for the first time, demonstrating the utility of the present catalyst system for the construction of 1,3-nonadjacent stereogenic centers.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant MoleculesGraduate School of ScienceTohoku UniversityAramaki, Aoba‐kuSendai980–8578Japan
| | - Rihaku Ojima
- Department of ChemistryGraduate School of ScienceTohoku UniversityAramaki, Aoba‐kuSendai980–8578Japan
| | - Sho Ishikawa
- Department of ChemistryGraduate School of ScienceTohoku UniversityAramaki, Aoba‐kuSendai980–8578Japan
| | - Masahiro Terada
- Department of ChemistryGraduate School of ScienceTohoku UniversityAramaki, Aoba‐kuSendai980–8578Japan
| |
Collapse
|
8
|
Lee H, Nam H, Lee SY. Enantio- and Diastereoselective Variations on α-Iminonitriles: Harnessing Chiral Cyclopropenimine-Thiourea Organocatalysts. J Am Chem Soc 2024; 146:3065-3074. [PMID: 38281151 DOI: 10.1021/jacs.3c09911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Chiral 1-pyrrolines containing a nitrile motif serve as crucial structural scaffolds in biologically active molecules and exhibit diversity as building blocks owing to their valuable functional groups; however, the asymmetric synthesis of such compounds remains largely unexplored. Herein, we present an enantio- and diastereoselective method for the synthesis of α-chiral nitrile-containing 1-pyrroline derivatives bearing vicinal stereocenters through the design and introduction of chiral cyclopropenimine-based bifunctional catalysts featuring a thiourea moiety. This synthesis entails a highly stereoselective conjugate addition of α-iminonitriles to a wide array of enones, followed by cyclocondensation, thereby affording a series of cyanopyrroline derivatives, some of which contain all-carbon quaternary centers. Moreover, we demonstrate the synthetic utility of this strategy by performing a gram-scale reaction with 1% catalyst loading, along with a variety of chemoselective transformations of the product, including the synthesis of a vildagliptin analogue. Finally, we showcase the selective synthesis of all four stereoisomers of the cyanopyrroline products through trans-to-cis isomerization, highlighting the versatility of our approach.
Collapse
Affiliation(s)
- Hooseung Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeongwoo Nam
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
9
|
Du T, Shen B, Dai J, Zhang M, Chen X, Yu P, Liu Y. Controlled and Regioselective Ring-Opening Polymerization for Poly(disulfide)s by Anion-Binding Catalysis. J Am Chem Soc 2023; 145:27788-27799. [PMID: 37987648 DOI: 10.1021/jacs.3c10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Poly(disulfide)s are an emerging class of sulfur-containing polymers with applications in medicine, energy, and functional materials. However, the constituent dynamic covalent S-S bond is highly reactive in the presence of the sulfide (RS-) anion, imposing a persistent challenge to control the polymerization. Here, we report an anion-binding approach to arrest the high reactivity of the RS- chain end to control the synthesis of linear poly(disulfide)s, realizing a rapid, living ring-opening polymerization of 1,2-dithiolanes with narrow dispersity and high regioselectivity (Mw/Mn ∼ 1.1, Ps ∼ 0.85). Mechanistic studies support the formation of a thiourea-base-sulfide ternary complex as the catalytically active species during the chain propagation. Theoretical analyses reveal a synergistic catalytic model where the catalyst preorganizes the protonated base and anionic chain end to establish spatial confinement over the bound monomer, effecting the observed regioselectivity. The catalytic system is amenable to monomers with various functional groups, and semicrystalline polymers are also obtained from lipoic acid derivatives by enhancing the regioselectivity.
Collapse
Affiliation(s)
- Tianyi Du
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Boming Shen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jieyu Dai
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Miaomiao Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xingjian Chen
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Oiarbide M, Palomo C. Brønsted Base-Catalyzed Enantioselective α-Functionalization of Carbonyl Compounds Involving π-Extended Enolates. CHEM REC 2023; 23:e202300164. [PMID: 37350363 DOI: 10.1002/tcr.202300164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Chiral Brønsted base (BB) catalyzed asymmetric transformations constitute an important tool for synthesis. A meaningful fraction of these transformations proceeds through transiently generated enolate intermediates, which display quite versatile reactivity against a variety of electrophiles. Some years ago, our group became interested in developing BB-catalyzed asymmetric reactions of enolizable carbonyl substrates that involve π-extended enolates in which, besides control of reaction diastereo and enantioselectivity, the site-selectivity control is an additional issue in most cases. In the examples covered in this account the opportunities deployed, and the challenges posed, by these methods are illustrated, with a focus on the generation of quaternary carbon stereocenters. In the way, new bifunctional BB catalysts as well as achiral templates were developed that may find further applications.
Collapse
Affiliation(s)
- Mikel Oiarbide
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizabal 3, 20018 San Sebastián, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizabal 3, 20018 San Sebastián, Spain
| |
Collapse
|
11
|
Rozsar D, Farley AJM, McLauchlan I, Shennan BDA, Yamazaki K, Dixon DJ. Bifunctional Iminophosphorane-Catalyzed Enantioselective Nitroalkane Addition to Unactivated α,β-Unsaturated Esters. Angew Chem Int Ed Engl 2023; 62:e202303391. [PMID: 36929179 PMCID: PMC10946890 DOI: 10.1002/anie.202303391] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Herein we describe the enantioselective intermolecular conjugate addition of nitroalkanes to unactivated α,β-unsaturated esters, catalyzed by a bifunctional iminophosphorane (BIMP) superbase. The transformation provides the most direct access to pharmaceutically relevant enantioenriched γ-nitroesters, utilizing feedstock chemicals, with unprecedented selectivity. The methodology exhibits a broad substrate scope, including β-(fluoro)alkyl, aryl and heteroaryl substituted electrophiles, and was successfully applied on a gram scale with reduced catalyst loading, and, additionally, catalyst recovery was carried out. The formal synthesis of a range of drug molecules, and an enantioselective synthesis of (S)-rolipram were achieved. Additionally, computational studies revealed key reaction intermediates and transition state structures, and provided rationale for high enantioselectivities, in good agreement with experimental results.
Collapse
Affiliation(s)
- Daniel Rozsar
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| | - Alistair J. M. Farley
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| | - Iain McLauchlan
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| | | | - Ken Yamazaki
- Division of Applied ChemistryOkayama University700-8530TsushimanakaOkayamaJapan
| | - Darren J. Dixon
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| |
Collapse
|
12
|
Formica M, Rogova T, Shi H, Sahara N, Ferko B, Farley AJM, Christensen KE, Duarte F, Yamazaki K, Dixon DJ. Catalytic enantioselective nucleophilic desymmetrization of phosphonate esters. Nat Chem 2023; 15:714-721. [PMID: 37127757 PMCID: PMC10159838 DOI: 10.1038/s41557-023-01165-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/20/2023] [Indexed: 05/03/2023]
Abstract
Molecules that contain a stereogenic phosphorus atom are crucial to medicine, agrochemistry and catalysis. While methods are available for the selective construction of various chiral organophosphorus compounds, catalytic enantioselective approaches for their synthesis are far less common. Given the vastness of possible substituent combinations around a phosphorus atom, protocols for their preparation should also be divergent, providing facile access not only to one but to many classes of phosphorus compounds. Here we introduce a catalytic and enantioselective strategy for the preparation of an enantioenriched phosphorus(V) centre that can be diversified enantiospecifically to a wide range of biologically relevant phosphorus(V) compounds. The process, which involves an enantioselective nucleophilic substitution catalysed by a superbasic bifunctional iminophosphorane catalyst, can accommodate a wide range of carbon substituents at phosphorus. The resulting stable, yet versatile, synthetic intermediates can be combined with a multitude of medicinally relevant O-, N- and S-based nucleophiles.
Collapse
Affiliation(s)
- Michele Formica
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Tatiana Rogova
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Heyao Shi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Naoto Sahara
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Branislav Ferko
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Alistair J M Farley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Kirsten E Christensen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Ken Yamazaki
- Division of Applied Chemistry, Okayama University, Okayama, Japan.
| | - Darren J Dixon
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Affiliation(s)
- Son H. Doan
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Nhan N. H. Ton
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, Pennsylvania, United States
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| |
Collapse
|
14
|
Tanaka K, Riu MLY, Valladares B, Cummins CC. Introducing N-Heterocyclic Iminophosphoranes (NHIPs): Synthesis by [3 + 2] Cycloaddition of Azophosphines with Alkynes and Reactivity Studies. Inorg Chem 2022; 61:13662-13666. [PMID: 35905506 DOI: 10.1021/acs.inorgchem.2c01844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azophosphines (Ar-N═N-PR2) were prepared from N-aryl-N'-(trimethylsilyl)diazenes (Ar-N═N-SiMe3) and R2PCl by Me3SiCl elimination or oxidation of phosphinohydrazines (Ar-NH-NH-PR2) by 2,5-dialkyl-1,4-benzoquinones. Azophosphines underwent 1,3-dipolar cycloaddition with cyclooctyne and dimethylacetylene dicarboxylate to give N-heterocyclic iminophosphoranes (NHIPs), which are structurally similar to cyclic (alkyl)(amino)carbenes. The cycloaddition reaction is compatible with various phosphorus atom substituents including phenyl (NHIP-1,4,6), isopropyl (NHIP-2), cyclohexyl (NHIP-3), and dimethylamino (NHIP-5) groups. The pKBH+ values of the NHIPs in acetonitrile range from 13.13 to 23.14. On the basis of the Huynh electronic parameter, NHIP-1 and NHIP-2 have σ-donor strengths comparable with that of 1,8-diazabicyclo[5.4.0]undec-7-ene. NHIP-1 underwent facile 1,2-addition with pentafluoropyridine to form a rare fluorophosphorane. The treatment of NHIP-1 with triphenylsilane resulted in P-N bond cleavage, accompanied by the reduction of phosphorus(V) to phosphorus(III). A homoleptic, cationic CuI-NHIP-1 complex was also prepared. The potential utility of π-donating NHIPs was demonstrated by the stabilization of a reactive iminoborane (Cl-B≡N-SiMe3). The facile scalable synthesis, tunability of steric demands, and basicity of NHIPs suggest that this new heterocycle class may find a wide range of applications in synthetic chemistry.
Collapse
Affiliation(s)
- Keita Tanaka
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin-Louis Y Riu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Brian Valladares
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Kondoh A, Hirozane T, Terada M. Formal Umpolung Addition of Phosphites to 2‐Azaaryl Ketones under Chiral Brønsted Base Catalysis: Enantioselective Protonation Utilizing [1,2]‐Phospha‐Brook Rearrangement. Chemistry 2022; 28:e202201240. [DOI: 10.1002/chem.202201240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Takayuki Hirozane
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
16
|
Umeno T, Seto R, Matsumoto S, Fujihara M, Karasawa S. Basic Fluorescent Protonation-Type pH Probe Sensitive to Small Δp Ka of Methanol and Ethanol. Anal Chem 2022; 94:10400-10407. [PMID: 35829731 DOI: 10.1021/acs.analchem.2c01415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An optical pH probe is a simple and effective tool for determining an accurate pH value in its localized area. However, basic pH probes with pKBH+ values above 8 have rarely been reported, although many components with high pKa such as arginine play important roles in vivo. Herein, we introduce novel colorimetric and fluorescent basic probes 1-5, which are designed using push-pull-type aminoquinoline and aminobenzoquinoline fluorophores, with pKBH+ values ranging from 8.4 to 9.9. After the basicity of the remarkably sensitive basic probe 4 was tuned, it was able to successfully distinguish between the pKa values of MeOH (15.5) and EtOH (15.9), thus displaying selective protonation and fluorescence enhancement in MeOH over EtOH. Our pH probes can be used to detect MeOH poisoning in commercial EtOH products such as hand sanitizers, providing an effective solution to this problem observed during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tomohiro Umeno
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Remi Seto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Shota Matsumoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Moeka Fujihara
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida 194-8543, Japan
| |
Collapse
|
17
|
Bai YJ, Cheng ML, Zheng XH, Zhang SY, Wang PA. Chiral Cyclopropenimine-catalyzed Asymmetric Michael Addition of Bulky Glycine Imine to α,β-Unsaturated Isoxazoles. Chem Asian J 2022; 17:e202200131. [PMID: 35415949 DOI: 10.1002/asia.202200131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/26/2022] [Indexed: 11/11/2022]
Abstract
A highly efficient asymmetric Michael addition of bulky glycine imine to α,β-unsaturated isoxazoles has been achieved by using 5 mol% of chiral cyclopropenimine as a chiral organo-superbase catalyst under mild conditions. Michael adducts were obtained in excellent yields (up to 97%) and stereoselectivities (up to>99 : 1 dr and 98% ee). A significant solvent effect was found in these chiral organosuperbase catalyzed asymmetric Michael reactions. Gram-scale preparation of Michael adducts and their transformations are realized to provide corresponding products without loss of stereoselectivities. The configurations of Michael adduct was determined by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Yu-Jun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China) E-mails.,Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Mei-Ling Cheng
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xiao-Hui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China) E-mails
| | - Sheng-Yong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China) E-mails.,Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ping-An Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
18
|
Rozsar D, Formica M, Yamazaki K, Hamlin TA, Dixon DJ. Bifunctional Iminophosphorane-Catalyzed Enantioselective Sulfa-Michael Addition to Unactivated α,β-Unsaturated Amides. J Am Chem Soc 2022; 144:1006-1015. [PMID: 34990142 PMCID: PMC8793149 DOI: 10.1021/jacs.1c11898] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The
first metal-free catalytic intermolecular enantioselective
Michael addition to unactivated α,β-unsaturated amides
is described. Consistently high enantiomeric excesses and yields were
obtained over a wide range of alkyl thiol pronucleophiles and electrophiles
under mild reaction conditions, enabled by a novel squaramide-based
bifunctional iminophosphorane catalyst. Low catalyst loadings (2.0
mol %) were achieved on a decagram scale, demonstrating the scalability
of the reaction. Computational analysis revealed the origin of the
high enantiofacial selectivity via analysis of relevant transition
structures and provided substantial support for specific noncovalent
activation of the carbonyl group of the α,β-unsaturated
amide by the catalyst.
Collapse
Affiliation(s)
- Daniel Rozsar
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Michele Formica
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.,Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| |
Collapse
|
19
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
20
|
Chassillan L, Yamashita Y, Yoo WJ, Toffano M, Guillot R, Kobayashi S, Vo-Thanh G. Enantioselective hydrophosphonylation of N-Boc imines using chiral guanidine-thiourea catalysts. Org Biomol Chem 2021; 19:10560-10564. [PMID: 34870670 DOI: 10.1039/d1ob01953h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enantioselective hydrophosphonylation of N-Boc imines was investigated using a new family of pseudo-symmetric guanidine-thiourea catalysts, providing α-amino phosphonates in moderate to high yields with good enantioselectivity. The catalyst was heterogenized by polymerization with styrene and the resulting catalyst was applied to reactions under continuous-flow conditions.
Collapse
Affiliation(s)
- Louis Chassillan
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France. .,Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Woo-Jin Yoo
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Martial Toffano
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France.
| | - Régis Guillot
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France.
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Giang Vo-Thanh
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France.
| |
Collapse
|
21
|
DBU-catalyzed Michael addition of bulky glycine imine to α,β-unsaturated isoxazoles and pyrazolamides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Leonardi C, Brandolese A, Preti L, Bortolini O, Polo E, Dambruoso P, Ragno D, Di Carmine G, Massi A. Expanding the Toolbox of Heterogeneous Asymmetric Organocatalysts: Bifunctional Cyclopropenimine Superbases for Enantioselective Catalysis in Batch and Continuous Flow. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Costanza Leonardi
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Arianna Brandolese
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Lorenzo Preti
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Olga Bortolini
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Eleonora Polo
- Istituto per la Sintesi Organica e la Fotoreattività Consiglio Nazionale delle Ricerche Via P. Gobetti, 101 40129 Bologna Italy
| | - Paolo Dambruoso
- Istituto per la Sintesi Organica e la Fotoreattività Consiglio Nazionale delle Ricerche Via P. Gobetti, 101 40129 Bologna Italy
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Graziano Di Carmine
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Alessandro Massi
- Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| |
Collapse
|
23
|
Weitkamp RF, Neumann B, Stammler H, Hoge B. Phosphorus-Containing Superbases: Recent Progress in the Chemistry of Electron-Abundant Phosphines and Phosphazenes. Chemistry 2021; 27:10807-10825. [PMID: 34032319 PMCID: PMC8362139 DOI: 10.1002/chem.202101065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 01/11/2023]
Abstract
The renaissance of Brønsted superbases is primarily based on their pronounced capacity for a large variety of chemical transformations under mild reaction conditions. Four major set screws are available for the selective tuning of the basicity: the nature of the basic center (N, P, …), the degree of electron donation by substituents to the central atom, the possibility of charge delocalization, and the energy gain by hydrogen bonding. Within the past decades, a plethora of neutral electron-rich phosphine and phosphazene bases have appeared in the literature. Their outstanding properties and advantages over inorganic or charged bases have now made them indispensable as auxiliary bases in deprotonation processes. Herein, an update of the chemistry of basic phosphines and phosphazenes is given. In addition, due to widespread interest, their use in catalysis or as ligands in coordination chemistry is highlighted.
Collapse
Affiliation(s)
- Robin F. Weitkamp
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Beate Neumann
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Berthold Hoge
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
24
|
Antenucci A, Dughera S, Renzi P. Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. CHEMSUSCHEM 2021; 14:2785-2853. [PMID: 33984187 PMCID: PMC8362219 DOI: 10.1002/cssc.202100573] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Indexed: 05/30/2023]
Abstract
Can green chemistry be the right reading key to let organocatalyst design take a step forward towards sustainable catalysis? What if the intriguing chemistry promoted by more engineered organocatalysts was carried on by using renewable and naturally occurring molecular scaffolds, or at least synthetic catalysts more respectful towards the principles of green chemistry? Within the frame of these questions, this Review will tackle the most commonly occurring organic chiral catalysts from the perspective of their synthesis rather than their employment in chemical methodologies or processes. A classification of the catalyst scaffolds based on their E factor will be provided, and the global E factor (EG factor) will be proposed as a new green chemistry metric to consider, also, the synthetic route to the catalyst within a given organocatalytic process.
Collapse
Affiliation(s)
- Achille Antenucci
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
- NIS Interdeprtmental CentreINSTM Reference CentreUniversity of TurinVia Gioacchino Quarello 15/A10135TurinItaly
| | - Stefano Dughera
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| | - Polyssena Renzi
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| |
Collapse
|
25
|
Guo F, Chen J, Huang Y. A Bifunctional N-Heterocyclic Carbene as a Noncovalent Organocatalyst for Enantioselective Aza-Michael Addition Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01908] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fangfang Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Jiean Chen
- Shenzhen Bay Laboratory, Shenzhen 518055, People’s Republic of China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
26
|
Xie C, Smaligo AJ, Song XR, Kwon O. Phosphorus-Based Catalysis. ACS CENTRAL SCIENCE 2021; 7:536-558. [PMID: 34056085 PMCID: PMC8155461 DOI: 10.1021/acscentsci.0c01493] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 05/08/2023]
Abstract
Phosphorus-based organocatalysis encompasses several subfields that have undergone rapid growth in recent years. This Outlook gives an overview of its various aspects. In particular, we highlight key advances in three topics: nucleophilic phosphine catalysis, organophosphorus catalysis to bypass phosphine oxide waste, and organophosphorus compound-mediated single electron transfer processes. We briefly summarize five additional topics: chiral phosphoric acid catalysis, phosphine oxide Lewis base catalysis, iminophosphorane super base catalysis, phosphonium salt phase transfer catalysis, and frustrated Lewis pair catalysis. Although it is not catalytic in nature, we also discuss novel discoveries that are emerging in phosphorus(V) ligand coupling. We conclude with some ideas about the future of organophosphorus catalysis.
Collapse
Affiliation(s)
- Changmin Xie
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Andrew J. Smaligo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | | | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
27
|
Eitzinger A, Otevrel J, Haider V, Macchia A, Massa A, Faust K, Spingler B, Berkessel A, Waser M. Enantioselective Bifunctional Ammonium Salt-Catalyzed Syntheses of 3-CF 3S-, 3-RS-, and 3-F-Substituted Isoindolinones. Adv Synth Catal 2021; 363:1955-1962. [PMID: 33897314 PMCID: PMC8050839 DOI: 10.1002/adsc.202100029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Indexed: 01/12/2023]
Abstract
We herein report the ammonium salt-catalyzed synthesis of chiral 3,3-disubstituted isoindolinones bearing a heteroatom functionality in the 3-position. A broad variety of differently substituted CF3S- and RS-derivatives were obtained with often high enantioselectivities when using Maruoka's bifunctional chiral ammonium salt catalyst. In addition, a first proof-of-concept for the racemic synthesis of the analogous F-containing products was obtained as well, giving access to one of the rare examples of a fairly stable α-F-α-amino acid derivative.
Collapse
Affiliation(s)
- Andreas Eitzinger
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Jan Otevrel
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
- Department of Chemical DrugsFaculty of PharmacyMasaryk UniversityPalackeho 1946/1612 00BrnoCzechia
| | - Victoria Haider
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Antonio Macchia
- Dipartimento di Chimica e BiologiaUniversità di SalernoVia Giovanni Paolo II, 13284084FiscianoSAItaly
| | - Antonio Massa
- Dipartimento di Chimica e BiologiaUniversità di SalernoVia Giovanni Paolo II, 13284084FiscianoSAItaly
| | - Kirill Faust
- Institute of CatalysisJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Bernhard Spingler
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Albrecht Berkessel
- Department of ChemistryCologne UniversityGreinstrasse 450939CologneGermany
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|
28
|
Meninno S, Carratù M, Overgaard J, Lattanzi A. Diastereoselective Synthesis of Functionalized 5-Amino-3,4-Dihydro-2H-Pyrrole-2-Carboxylic Acid Esters: One-Pot Approach Using Commercially Available Compounds and Benign Solvents. Chemistry 2021; 27:4573-4577. [PMID: 33464645 DOI: 10.1002/chem.202005262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/18/2021] [Indexed: 11/08/2022]
Abstract
A novel three-step four-transformation approach to highly functionalized 5-amino-3,4-dihydro-2H-pyrrole-2-carboxylic acid esters, starting from commercially available phenylsulfonylacetonitrile, aldehydes, and N-(diphenylmethylene)glycine tert-butyl ester, was developed. The one-pot strategy delivered this class of amidines bearing, for the first time, three contiguous stereocenters, in good to high yield and diastereoselectivity. The entire sequence was carried out using diethyl carbonate and 2-methyl tetrahydrofuran as benign solvents, operating under metal-free conditions. The process could be conveniently scaled-up, and the synthetic utility of the products was demonstrated.
Collapse
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Mario Carratù
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Jacob Overgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| |
Collapse
|
29
|
Yu SJ, Zhu YN, Ye JL, Huang PQ. A versatile approach to functionalized cyclic ketones bearing quaternary carbon stereocenters via organocatalytic asymmetric conjugate addition of nitroalkanes to cyclic β-substituted α,β-Enones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Das S, Hu Q, Kondoh A, Terada M. Enantioselective Protonation: Hydrophosphinylation of 1,1-Vinyl Azaheterocycle N-Oxides Catalyzed by Chiral Bis(guanidino)iminophosphorane Organosuperbase. Angew Chem Int Ed Engl 2021; 60:1417-1422. [PMID: 33030798 DOI: 10.1002/anie.202012492] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/30/2022]
Abstract
Enantioselective protonation by hydrophosphinylation of diarylphosphine oxides with 2-vinyl azaheterocycle N-oxide derivatives was demonstrated using chiral bis(guanidino)iminophosphorane as the higher-order organosuperbase catalyst. It was confirmed by several control experiments that a chiral weak conjugate acid of the chiral bis(guanidino)iminophosphorane, instead of achiral diarylphosphine oxides, directly functioned as the proton source to afford the corresponding product in a highly enantioselective manner in most cases. Enantioselective protonation by a weak conjugate acid generated from the higher-order organosuperbase would broaden the scope of enantioselective reaction systems because of utilization of a range of less acidic pronucleophiles. This method is highlighted by the valuable synthesis of a series of chiral P,N-ligands for chiral metal complexes through the reduction of phosphine oxide and N-oxide units of the corresponding product without loss of enantiomeric purity.
Collapse
Affiliation(s)
- Saikat Das
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Qiupeng Hu
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
31
|
Kondoh A, Terada M. Development of Molecular Transformations on the Basis of Catalytic Generation of Anionic Species by Organosuperbase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
32
|
Puleo TR, Sujansky SJ, Wright SE, Bandar JS. Organic Superbases in Recent Synthetic Methodology Research. Chemistry 2021; 27:4216-4229. [DOI: 10.1002/chem.202003580] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas R. Puleo
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Stephen J. Sujansky
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Shawn E. Wright
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Jeffrey S. Bandar
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
33
|
Yoshida Y, Kukita M, Omori K, Mino T, Sakamoto M. Iminophosphorane-mediated regioselective umpolung alkylation reaction of α-iminoesters. Org Biomol Chem 2021; 19:4551-4564. [DOI: 10.1039/d1ob00596k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first regioselective umpolung alkylation of α-iminoesters with alkyl halides mediated by iminophosphorane has developed (up to 82% yield).
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Mayu Kukita
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Kazuki Omori
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Takashi Mino
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Masami Sakamoto
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| |
Collapse
|
34
|
Xie L, Li Y, Dong S, Feng X, Liu X. Catalytic asymmetric formal [3+2] cycloaddition of isatogens with azlactones to construct indolin-3-one derivatives. Chem Commun (Camb) 2021; 57:239-242. [DOI: 10.1039/d0cc06418a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A number of enantioenriched indolin-3-one derivatives were readily obtained by chiral guanidine-catalyzed [3+2] cycloaddition of isatogens with azlactones.
Collapse
Affiliation(s)
- Lihua Xie
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Yi Li
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| |
Collapse
|
35
|
Hu J, Sun C, Li S, Yuan Y, Zhang Y. Heterotellurium-containing macrocycles towards degradable tellurium-functionalized polymers. Polym Chem 2021. [DOI: 10.1039/d1py00703c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We first disclose a facile strategy to synthesize a heterotellurium-containing macrocycle series, and then well-defined degradable poly(telluride-carbonate)s were obtained by ring-opening polymerization.
Collapse
Affiliation(s)
- Jieni Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Chuanhao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Siqi Li
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yuan Yuan
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
36
|
Das S, Hu Q, Kondoh A, Terada M. Enantioselective Protonation: Hydrophosphinylation of 1,1‐Vinyl Azaheterocycle
N
‐Oxides Catalyzed by Chiral Bis(guanidino)iminophosphorane Organosuperbase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Saikat Das
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Qiupeng Hu
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Azusa Kondoh
- Research and Analytical Center for Giant Molecules Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
37
|
Golec JC, Carter EM, Ward JW, Whittingham WG, Simón L, Paton RS, Dixon DJ. BIMP-Catalyzed 1,3-Prototropic Shift for the Highly Enantioselective Synthesis of Conjugated Cyclohexenones. Angew Chem Int Ed Engl 2020; 59:17417-17422. [PMID: 32558981 PMCID: PMC7540019 DOI: 10.1002/anie.202006202] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Indexed: 12/18/2022]
Abstract
A bifunctional iminophosphorane (BIMP)-catalysed enantioselective synthesis of α,β-unsaturated cyclohexenones through a facially selective 1,3-prototropic shift of β,γ-unsaturated prochiral isomers, under mild reaction conditions and in short reaction times, on a range of structurally diverse substrates, is reported. α,β-Unsaturated cyclohexenone products primed for downstream derivatisation were obtained in high yields (up to 99 %) and consistently high enantioselectivity (up to 99 % ee). Computational studies into the reaction mechanism and origins of enantioselectivity, including multivariate linear regression of TS energy, were carried out and the obtained data were found to be in good agreement with experimental findings.
Collapse
Affiliation(s)
- Jonathan C. Golec
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Eve M. Carter
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - John W. Ward
- Leverhulme Research Centre for Functional Materials DesignThe Materials Innovation FactoryDepartment of ChemistryUniversity of LiverpoolLiverpoolL7 3NYUK
| | | | - Luis Simón
- Facultad de Ciencias QuímicasUniversidad de SalamancaPlaza de los Caídos 1–537008SalamancaSpain
| | - Robert S. Paton
- Department of ChemistryColorado State University1301 Center AveFt. CollinsCO80523-1872USA
| | - Darren J. Dixon
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
38
|
Golec JC, Carter EM, Ward JW, Whittingham WG, Simón L, Paton RS, Dixon DJ. BIMP‐Catalyzed 1,3‐Prototropic Shift for the Highly Enantioselective Synthesis of Conjugated Cyclohexenones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jonathan C. Golec
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Eve M. Carter
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - John W. Ward
- Leverhulme Research Centre for Functional Materials Design The Materials Innovation Factory Department of Chemistry University of Liverpool Liverpool L7 3NY UK
| | | | - Luis Simón
- Facultad de Ciencias Químicas Universidad de Salamanca Plaza de los Caídos 1–5 37008 Salamanca Spain
| | - Robert S. Paton
- Department of Chemistry Colorado State University 1301 Center Ave Ft. Collins CO 80523-1872 USA
| | - Darren J. Dixon
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|