1
|
Yan J, Yu J, Bu C, Yang L, Chen J, Ding X, Yuan P. Antibiotic-Augmented Chemodynamic Therapy for Treatment of Helicobacter pylori Infection in the Dynamic Stomach Environment. NANO LETTERS 2024. [PMID: 39541155 DOI: 10.1021/acs.nanolett.4c03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Helicobacter pylori (H. pylori) is one of the main causes of peptic ulcer disease and gastric cancer. The overuse of antibiotics leads to bacterial drug resistance and disruption to the gut microbiome. Herein, a nanoparticle (TA-FeHMSN@Amox) was developed, comprising amoxicillin (Amox)-loaded iron-engineered hollow mesoporous silica as the core and a metal-polyphenol shell formed by tannic acid (TA) and Fe3+. In acidic stomach conditions, TA-FeHMSN@Amox generates bactericidal ·OH through Fenton/Fenton-like reactions of the degraded product Fe2+ and hydrogen peroxide (H2O2) at the infection site, achieving chemodynamic therapy (CDT). Moreover, released amoxicillin enhances therapeutic efficacy by impeding the self-repair of the bacterial cell wall damaged by CDT, overcoming the limitations of ineffective CDT under conditions lacking sufficient acidity and H2O2. The acidity-responsive CDT combined with reduced antibiotic usage ensures superior in vivo therapeutic efficacy and biocompatibility with intestinal flora, providing a highly potent strategy for treating H. pylori infections in the dynamic stomach environment.
Collapse
Affiliation(s)
- Jiachang Yan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiayin Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Changxin Bu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiaoyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xin Ding
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
2
|
Shleeva MO, Demina GR, Savitsky AP. A systematic overview of strategies for photosensitizer and light delivery in antibacterial photodynamic therapy for lung infections. Adv Drug Deliv Rev 2024; 215:115472. [PMID: 39549920 DOI: 10.1016/j.addr.2024.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) emerges as a viable treatment strategy for infections resistant to conventional antibiotics. A complex interplay of factors, including intracellular photosensitizer (PS) accumulation, photochemical reaction type, and oxygen levels, determines the efficacy of aPDT. Recent progress includes the development of modified PSs with enhanced lipophilicity and target-specific strategies to improve bacterial cell wall penetration and targeting. Nanotechnology-based approaches, such as using nanomaterials for targeted PS delivery, have shown promise in enhancing aPDT efficacy. Advancements in light delivery methods for aPDT, such as transillumination of large lesions and local light delivery using fiber optic techniques, are also being explored to optimize treatment efficacy in clinical settings. The limited number of animal models and clinical trials specifically designed to assess the efficacy of aPDT for lung infections highlights the need for further research in this critical area. The potential prospects of aPDT for lung tissue infections originating from antibiotic-resistant bacterial infections are also discussed in this review.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Galina R Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Yu Z, Fu X, Lucas T, Zhao H, Chen C, Dubail I, Chen Y, Patriarche G, Gateau J, Gazeau F, Jamet A, Lepoitevin M, Serre C. MOF-Enhanced Phototherapeutic Wound Dressings Against Drug-Resistant Bacteria. Adv Healthc Mater 2024:e2402418. [PMID: 39460484 DOI: 10.1002/adhm.202402418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/07/2024] [Indexed: 10/28/2024]
Abstract
Phototherapy is a low-risk alternative to traditional antibiotics against drug-resistant bacterial infections. However, optimizing phototherapy agents, refining treatment conditions, and addressing misuse of agents, remain a formidable challenge. This study introduces a novel concept leveraging the unique customizability of metal-organic frameworks (MOFs) to house size-matched dye molecules in "single rooms". The mesoporous iron(III) carboxylate nanoMOF, MIL-100(Fe), and the hydrophobic heptamethine cyanine photothermal dye (Cy7), IR775, are selected as model systems. Their combination is predicted to minimize dye-dye interactions, leading to exceptional photostability and efficient light-to-heat conversion. Furthermore, MIL-100(Fe) preserves the antimicrobial nature of hydrophobic IR775, enabling it to disrupt bacterial cell envelopes. Through electrospinning, MIL-100(Fe)@IR775 nanoparticles are shaped into a gelatin-based film dressing for the treatment of skin wounds infected by Methicillin-resistant Staphylococcus aureus (MRSA). Activation of the dressing requires only a portable near-infrared light-emitting diode (NIR LED) and induces both low-dose photodynamic therapy (LPDT) and mild-temperature photothermal therapy (MPTT). Combined with the antimicrobial properties of IR775 and ferroptosis-like lipid peroxidation induced by MIL-100(Fe), the photoactive dressing eradicates MRSA and the healing is as quick as the uninfected wounds. This safe, cost-effective, and multifunctional therapeutic wound dressing offers a promising solution to overcome the current bottleneck in phototherapy.
Collapse
Affiliation(s)
- Zhihao Yu
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| | - Xiali Fu
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team « Pathogenesis of systemic infections », Université Paris Cité, Paris, F-75015, France
| | - Theotim Lucas
- Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité, Paris, 75006, France
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, Paris, F-75006, France
| | - Heng Zhao
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| | - Changchong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Iharilalao Dubail
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team « Pathogenesis of systemic infections », Université Paris Cité, Paris, F-75015, France
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Gilles Patriarche
- CNRS, Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, Palaiseau, 91120, France
| | - Jérôme Gateau
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, Paris, F-75006, France
| | - Florence Gazeau
- Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité, Paris, 75006, France
| | - Anne Jamet
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team « Pathogenesis of systemic infections », Université Paris Cité, Paris, F-75015, France
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| |
Collapse
|
4
|
Huang HY, Xue RY, Xiao SX, Huang LT, Liao XW, Wang JT, Duan XM, Yu RJ, Xiong YS. AIE-based ruthenium complexes as photosensitizers for specifically photo-inactivate gram-positive bacteria. J Inorg Biochem 2024; 262:112755. [PMID: 39388808 DOI: 10.1016/j.jinorgbio.2024.112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The emergence of multidrug-resistant bacterial have caused severe burden for public health. Particularly, Staphylococcus aureus as one of ESKAPE pathogens have induced various infectious diseases and resulted in increasing deaths. Developing new antibacterial agents is still urgent and challenging. Fortunately, in this study, based on aggregation-induced emission (AIE) ruthenium complexes were designed and synthesized, which realized the high efficiency of reactive oxygen species generation and remarkably killed S. aureus unlike conventional antibiotics action. Significantly, owing to good singlet oxygen production ability, Ru1 at only 4 μg/mL of concentration displayed good antibacterial photodynamic therapy effect upon white light irradiation and could deplete essential coenzyme NADH to disrupt intracellular redox balance. Also, the electrostatic interaction between Ru1 and bacteria enhanced the possibility of antibacterial. Under light irradiation, Ru1 could efficiently inhibit the biofilm growth and avoid the development of drug-resistant. Furthermore, Ru1 possessed excellent biocompatibility and displayed remarkable therapy effect in treating mice-wound infections in vivo. These findings indicated that AIE-based ruthenium complexes as new antibacterial agent had great potential in photodynamic therapy of bacteria and addressing the drug-resistance crisis.
Collapse
Affiliation(s)
- Hai-Yan Huang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Run-Yu Xue
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Su-Xin Xiao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Li-Ting Huang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Xiang-Wen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Jin-Tao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Xue-Min Duan
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Ru-Jian Yu
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China.
| |
Collapse
|
5
|
Chen S, Huang B, Tian J, Zhang W. Advancements of Porphyrin-Derived Nanomaterials for Antibacterial Photodynamic Therapy and Biofilm Eradication. Adv Healthc Mater 2024; 13:e2401211. [PMID: 39073000 DOI: 10.1002/adhm.202401211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Indexed: 07/30/2024]
Abstract
The threat posed by antibiotic-resistant bacteria and the challenge of biofilm formation has highlighted the inadequacies of conventional antibacterial therapies, leading to increased interest in antibacterial photodynamic therapy (aPDT) in recent years. This approach offers advantages such as minimal invasiveness, low systemic toxicity, and notable effectiveness against drug-resistant bacterial strains. Porphyrins and their derivatives, known for their high molar extinction coefficients and singlet oxygen quantum yields, have emerged as crucial photosensitizers in aPDT. However, their practical application is hindered by challenges such as poor water solubility and aggregation-induced quenching. To address these limitations, extensive research has focused on the development of porphyrin-based nanomaterials for aPDT, enhancing the efficacy of photodynamic sterilization and broadening the range of antimicrobial activity. This review provides an overview of various porphyrin-based nanomaterials utilized in aPDT and biofilm eradication in recent years, including porphyrin-loaded inorganic nanoparticles, porphyrin-based polymer assemblies, supramolecular assemblies, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). Additionally, insights into the prospects of aPDT is offered, highlighting its potential for practical implementation.
Collapse
Affiliation(s)
- Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
6
|
Ji Y, Li J, Chen C, Piao C, Zhou X, Yoon J. Wash-Free Bacterial Gram-Typing and Photodynamic Inactivation with Long-Chain-Tailed BODIPY Derivatives. Biomater Res 2024; 28:0069. [PMID: 39228999 PMCID: PMC11370751 DOI: 10.34133/bmr.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
The rapid identification of bacterial Gram types and their viability, as well as efficient bacterial elimination are crucial for managing bacterial infections yet present important challenges. In this research, we utilized long-chain-tailed BODIPY derivatives to address these hurdles. Our data indicated that these derivatives can distinguish bacteria types and their viability in aqueous solutions through a concise turn-on fluorescent response. Among them, B-8 stained both live and dead bacteria, and B-14 offered a wash-free staining. B-18 demonstrated the highest affinity to selectively fluorescent label viable gram-positive bacteria with a 53.2-fold fluorescent enhancement. Confocal imaging confirmed that B-18 can serve as an effective membrane-specific probe for facilitating the typing between gram-negative and gram-positive bacteria in a wash-free manner. Additionally, B-18 displayed selective photodynamic inactivation at 1 μM toward gram-positive bacteria. In vivo studies variformed the ideal photodynamic therapeutic efficacy of B-18 against methicillin-resistant Staphylococcus aureus in mice wound infections.
Collapse
Affiliation(s)
- Yuefeng Ji
- College of Agriculture,
Yanbian University, Yanji, 133002, China
| | - Jigai Li
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao, 266071, China
| | - Chunping Chen
- College of Agriculture,
Yanbian University, Yanji, 133002, China
| | - Chunxiang Piao
- College of Agriculture,
Yanbian University, Yanji, 133002, China
| | - Xin Zhou
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao, 266071, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science,
Ewha Womans University, Seoul, 120-750, Korea
| |
Collapse
|
7
|
Guo L, Tian Y, Zhou L, Kang S, Zhang C, Liu W, Diao H, Feng L. Tailored Phototherapy Agent by Infection Site In Situ Activated Against Methicillin-Resistant S. aureus. Adv Healthc Mater 2024; 13:e2400593. [PMID: 38728574 DOI: 10.1002/adhm.202400593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a promising treatment approach for multidrug resistant infections. PDT/PTT combination therapy can more efficiently eliminate pathogens without drug resistance. The key to improve the efficacy of photochemotherapy is the utilization efficiency of non-radiation energy of phototherapy agents. Herein, a facile phototherapy molecule (SCy-Le) with the enhancement of non-radiative energy transfer is designed by an acid stimulation under a single laser. Introduction of the protonated receptor into SCy-Le results in a distorted intramolecular charge in the infected acidic microenvironment, pH ≈ 5.5, which in turn, enhances light capture, reduces the singlet-triplet transition energies (ΔES1-T1), promotes electron system crossing, enhances capacity of reactive oxygen species generation, and causes a significant increase in temperature by improving vibrational relaxation. SCy-Le shows more than 99% bacterial killing rate against both methicillin-resistant Staphylococcus aureus and its biofilms in vitro and causes bacteria-induced wound healing in mice. This work will provide a new perspective for the design of phototherapy agents, and the emerging photochemotherapy will be a promising approach to combat the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Lixia Guo
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Yafei Tian
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Liang Zhou
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Shiyue Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Wen Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Haipeng Diao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan, 030012, China
| |
Collapse
|
8
|
Pramanik A, Rai S, Gates K, Kolawole OP, Kundu S, Kasani-Akula P, Singh J, Dasary J, Zhang H, Han FX, Ray PC. Sunlight-Driven Photothermally Boosted Photocatalytic Eradication of Superbugs Using a Plasmonic Gold Nanoparticle-Decorated WO 3 Nanowire-Based Heterojunction. ACS OMEGA 2024; 9:32256-32267. [PMID: 39072127 PMCID: PMC11270714 DOI: 10.1021/acsomega.4c05327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
Superbug infections are currently one of the biggest global health problems in our society. Herein, we report the design of a plasmonic gold nanoparticle (GNP)-decorated WO3 nanowire-based heterojunction for the proficient usage of sunlight-based renewable energy to inactivate 100% superbugs via photothermally boosted photocatalytic action. Additionally, a synergistic photothermal and photocatalytic approach has been used for sunlight-driven complete eradication of carbapenem-resistant Enterobacteriaceae Escherichia coli (CRE E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) superbugs. Interestingly, photocatalytic activity of methylene blue (MB) dye degradation in the presence of 670 nm near-infrared light shows that photothermally boosted photocatalytic performance is much superior to that of only a photocatalytic or photothermal process. The observed higher photocatalytic performance for the heterojunction is because the plasmonic GNP enhanced the absorption capability at 670 nm and increased the temperature of the photocatalyst surface, which reduces the activation energy of the degradation reaction. Similarly, sunlight-driven photocatalytic experiments show 100% degradation of MB after 60 min of sunlight irradiation. Moreover, sunlight-based photocatalytic inactivation of MRSA and CRE E. coli experiments show 100% inactivation after 60 min of light irradiation.
Collapse
Affiliation(s)
- Avijit Pramanik
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Shivangee Rai
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Kaelin Gates
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Olorunsola Praise Kolawole
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Sanchita Kundu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Pragathi Kasani-Akula
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Jagriti Singh
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Jerusha Dasary
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Huimin Zhang
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Fengxiang X. Han
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Paresh Chandra Ray
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
9
|
Chen Y, Xu Z, Wang X, Sun X, Xu X, Li X, Cheng G. Highly Efficient Photodynamic Hydrogel with AIE-Active Photosensitizers toward Methicillin-Resistant Staphylococcus aureus Ultrafast Imaging and Killing. ACS Biomater Sci Eng 2024; 10:3401-3411. [PMID: 38624061 DOI: 10.1021/acsbiomaterials.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes great health hazards to society because most antibiotics are ineffective. Photodynamic treatment (PDT) has been proposed to combat MRSA due to the advantage of imaging-guided no-drug resistance therapy. However, the traditional photosensitizers for PDT are limited by aggregation-caused quenching for imaging and low photodynamic antibacterial efficiency. In this work, we synthesize a new aggregation-induced emission (AIE) photosensitizer (APNO), which can ultrafast distinguish between Gram-positive and Gram-negative bacteria within 3 s by AIE-active photosensitizer imaging. Meanwhile, APNO can generate antibacterial reactive oxygen species under light irradiation, which holds potential for antibacterial PDT. Then, APNO is loaded by PHEAA hydrogel to obtain a highly efficient photodynamic hydrogel (APNO@gel). In vitro results show complete inhibition of MRSA by APNO@gel under lower-power light irradiation. Transcriptome analysis is performed to investigate antibacterial mechanism of APNO@gel. Most importantly, APNO@gel also exhibits significant inhibition and killing ability of MRSA in the MRSA wound infection model, which will further promote rapid wound healing. Therefore, the photodynamic hydrogel provides a promising strategy toward MRSA ultrafast imaging and killing.
Collapse
Affiliation(s)
- Ying Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Ziqiang Xu
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Xin Wang
- Department of Molecular Diagnostics, Roche Diagnostics(Shanghai) Limited Company, Shanghai 200131, P. R. China
| | - Xuexue Sun
- Key Laboratory for Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Xinhui Xu
- Key Laboratory for Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Xiao Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Guohui Cheng
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China
| |
Collapse
|
10
|
Zheng C, Wu X, Liu M, Lan Y, Liu Q, Cai E, Liao Z, Shen J. Photothermal-enhanced in situ supramolecular hydrogel promotes bacteria-infected wound healing in diabetes. SMART MEDICINE 2024; 3:e20230047. [PMID: 39188513 PMCID: PMC11236056 DOI: 10.1002/smmd.20230047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 08/28/2024]
Abstract
Bacterial infection can impede the healing of chronic wounds, particularly diabetic wounds. The high-sugar environment of diabetic wounds creates a favorable condition for bacterial growth, posing a challenge to wound healing. In clinical treatment, the irregular shape of the wound and the poor mechanical properties of traditional gel adjuvants make them susceptible to mechanical shear and compression, leading to morphological changes and fractures, and difficult to adapt to irregular wounds. Traditional gel adjuvants are prepared in advance, while in situ gel is formed at the site of administration after drug delivery in a liquid state, which can better fit the shape of the wound. Therefore, this study developed an in situ HA/GCA/Fe2+-GOx gel using a photothermal-enhanced Fenton reaction to promote the generation of hydroxyl radicals (·OH). The generation of ·OH has an antibacterial effect while promoting the formation of the gel, achieving a dual effect. The addition of double-bonded adamantane (Ada) interacts with the host-guest effect of graphene oxide and the double-bond polymerization of HAMA gel, making the entire gel system more complete. At the same time, the storage modulus (G') of the gel increased from 130 to 330 Pa, enhancing the mechanical properties of the gel. This enables the gel to have better injectability and self-healing effects. The addition of GOx can consume glucose at the wound site, providing a good microenvironment for the repair of diabetic wounds. The gel has good biocompatibility and in a diabetic rat wound model infected with S. aureus, it can effectively kill bacteria at the wound site and promote wound repair. Meanwhile, the inflammation of wounds treated with HA/GCA/Fe2+-GOx + NIR was lighter compared to untreated wounds. Therefore, this study provides a promising strategy for treating bacterial-infected diabetic wounds.
Collapse
Affiliation(s)
- Chen Zheng
- College of Life and Environmental ScienceWenzhou UniversityWenzhouZhejiangChina
| | - Xuan Wu
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Ming Liu
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yulong Lan
- College of Life and Environmental ScienceWenzhou UniversityWenzhouZhejiangChina
| | - Qian Liu
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Erya Cai
- School & Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhiyong Liao
- College of Life and Environmental ScienceWenzhou UniversityWenzhouZhejiangChina
| | - Jianliang Shen
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
11
|
Zhang M, Cheng J, Shen Z, He K, Zheng B. Red light-triggered release of ROS and carbon monoxide for combinational antibacterial application. J Mater Chem B 2024; 12:1077-1086. [PMID: 38168810 DOI: 10.1039/d3tb01829f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The abuse of antibiotics has led to the emergence of a wide range of drug-resistant bacteria. To address the challenge of drug-resistant bacterial infections and related infectious diseases, several effective antibacterial strategies have been developed. To achieve enhanced therapeutic effects, combinational treatment approaches should be employed. With this in mind, a metal-organic framework (MOF) based nanoreactor with integrated photodynamic therapy (PDT) and gas therapy which can release reactive oxygen species (ROS) and carbon monoxide (CO) under red light irradiation has been developed. The release of ROS and CO under red light irradiation exerts a preferential antibacterial effect on Gram-positive/Gram-negative bacteria. The bactericidal effects of ROS and CO on Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) are better than ROS only, showing a combinational antibacterial effect. Furthermore, the fluorescence emission properties of porphyrin moieties can be leveraged for real-time tracking and imaging of the nanoreactors. The simple preparation procedures of this material further enhance its potential as a versatile and effective antibacterial candidate, thereby presenting a new strategy for PDT and gas combinational treatment.
Collapse
Affiliation(s)
- Mengdan Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Cheng
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiqiang Shen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China.
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China.
| |
Collapse
|
12
|
Deng S, Huang Y, Hu E, Ning LJ, Xie R, Yu K, Lu F, Lan G, Lu B. Chitosan/silk fibroin nanofibers-based hierarchical sponges accelerate infected diabetic wound healing via a HClO self-producing cascade catalytic reaction. Carbohydr Polym 2023; 321:121340. [PMID: 37739514 DOI: 10.1016/j.carbpol.2023.121340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/27/2023] [Indexed: 09/24/2023]
Abstract
The diabetic chronic wound healing is extremely restricted by issues such as hyperglycemia, excessive exudate and reactive oxygen species (ROS), and bacterial infection, causing significant disability and fatality rate. Herein, the chitosan/silk fibroin nanofibers-based hierarchical 3D sponge (CSSF-P/AuGCs) with effective exudate transfer and wound microenvironment modulation are produced by integrating cascade reactor (AuGC) into sponge substrates with parallel-arranged microchannels. When applied to diabetic wounds, the uniformly parallel-arranged microchannels endow CSSF-P/AuGCs with exceptional exudate absorption capacity, keeping the wound clean and moist; additionally, AuGCs efficiently depletes glucose in wounds to generate H2O2, which is then converted into HClO via cascade catalytic reaction to eliminate bacterial infection and reduce inflammation. Experiments in vitro demonstrated that the antibacterial activity of CSSF-P/AuGCs against S. aureus and E. coli was 92.7 and 94.27 %, respectively. Experiments on animals indicated that CSSF-P/AuGC could cure wounds in 11 days, displaying superior wound-healing abilities when compared to the commercial medication Tegaderm™. This versatile CSSF-P/AuGCs dressing may be an attractive choice for expediting diabetic wound healing with little cytotoxicity, providing a novel therapeutic method for establishing a favorable pathological microenvironment for tissue repair.
Collapse
Affiliation(s)
- Suya Deng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Yinggui Huang
- Southwest University (Changshu) Research Institute, Changshu, Suzhou 215500, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Liang-Ju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Bitao Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|
13
|
Ghanemi M, Salehi-Vaziri A, Pourhajibagher M, Bahador A. Physico-mechanical and antimicrobial properties of an elastomeric ligature coated with reduced nanographene oxide-nano curcumin subjected to dual-modal photodynamic and photothermal inactivation against Streptococcus mutans biofilms. Photodiagnosis Photodyn Ther 2023; 44:103866. [PMID: 37890811 DOI: 10.1016/j.pdpdt.2023.103866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND White spot lesions (WSLs) are a common side effect of fixed orthodontic treatment. Streptococcus mutans is the primary causative agent of WSLs and dental caries on the teeth during treatment. According to the unique features of reduced graphene oxide-nano curcumin (rGO-nCur), this study aimed to investigate the mechanical properties and antimicrobial potency of rGO-nCur coated orthodontic elastomeric ligatures as a novel coating composite following dual-modal photodynamic inactivation (PDI) and photothermal inactivation (PTI) against S. mutans biofilms. METHODS After confirmation of rGO-nCur synthesis and coating elastomeric ligatures with different concentration levels of 1.25, 2.5, 5, 7.5, and 10 % of rGO-nCur, tensile strength, force decay, extension to tensile strength, and contact angle of the coated elastomeric ligatures were measured using universal testing machine and sessile drop method, respectively. To investigate the mechanism through which irradiated rGO-nCur can inhibit the formation of S. mutans biofilms, intracellular reactive oxygen species (ROS) generation, and increase in temperature of rGO-nCur solutions under the 450 and 980 nm laser irradiation, respectively, were measured. The anti-biofilm activity and inhibition of water-insoluble extracellular polysaccharide (EPS) production ability of irradiated rGO-nCur coated elastomeric ligatures using a 450 nm diode laser (195 J/cm2), a 980 nm diode laser (195 J/cm2), and a combination of both (78 J/cm2 of irradiation from each one) (i.e., PDI, PTI, and dual-modal PDI/PTI, respectively) were determined. Also, the expression of virulence genes involved in biofilm formation (comDE, gtfD, and smuT) was assessed by quantitative real-time polymerase chain reaction (RT-qPCR) following the mentioned treatment. One-way ANOVA test and Tukey post-hoc test at a p-value equal to/or less than 0.05 were used to analyze the obtained data. RESULTS The synthesis of GO nano-sheets in a layered structure with a thickness of 0.76 nm was confirmed by AFM analysis. FESEM showed that the exfoliated sheet of synthesized GO had several micrometers in lateral size. DLS revealed that the mean particle size and density index of synthesized nCur were 57.47 ± 2.14 nm and 10 % respectively. In DLS analysis, rGO-nCur showed more positive surface charge (24 mV) than the nano-sheets of GO. FESEM confirmed the coating of rGO-nCur on elastomeric ligatures. ANOVA revealed that tensile strength of 1.25, 2.5, and 5 % rGO-nCur coated elastomeric ligatures were not decreased statistically significantly (P > 0.05). Mean tensile strength and recorded force of 7.5 and 10 % rGO-nCur coated elastomeric ligatures decreased significantly after 14 days' immersion in the artificial saliva (P < 0.05). On the 28th day of the study, the mean of the tensile strength of elastomeric ligatures coated with 10 % rGO-nCur (13.03 ± 0.10 N) was recorded as 55.90 % of the initial tensile strength (23.31 ± 0.41 N in uncoated elastomeric ligatures), while the mean tensile strength of elastomeric ligatures coated with 7.5 % rGO-nCur (16.01 ± 0.10 N) was measured as 68.94 % of the initial tensile strength (23.22 ± 0.09 N in uncoated elastomeric ligatures). When comparing the coated elastomeric ligatures at 7.5 % and 10 % to the original uncoated elastomeric ligatures at similar time intervals, statistically significant decreases in extension to tensile strength (0.42 to 0.71 mm or 3.02 to 5.05 %; all P < 0.05) were observed. The largest contact angle was measured in elastomeric ligatures coated by 10 % rGO-nCur followed by 7.5 and 5 % rGO-nCur (128 ± 2.19°, 117 ± 2.23°, and 99 ± 1.83°; respectively). The results revealed a rise of 6.4-fold in intracellular ROS and an 11.2 °C increase in the temperature of rGO-nCur solutions following the 450 nm and 980 nm laser irradiation, respectively. The 5 % rGO-nCur coated elastomeric ligature mediated dual-modal PDI/PTI showed the most inhibition of the biofilm formation of S. mutans by 83.62 % (P = 0.00). Significant reductions in water-insoluble EPS were detected in biofilm cultures of S. mutans on 1.25 % rGO-nCur coated elastomeric ligatures following irradiation with dual waves of the 450 nm and 980 nm diode lasers (i.e., dual-modal PDI/PTI; 96.17 %; P = 0.00). The expression levels of comDE, gtfD, and smuT virulence genes were significantly downregulated (7.52-, 13.92-, and 8.23-fold, respectively) in the biofilm cultures of S. mutans on 1.25 % rGO-nCur coated elastomeric ligatures following dual-modal PDI/PTI in comparison with biofilm cultures on non-coated elastomeric ligatures. CONCLUSION 5 % rGO-nCur coated elastomeric ligatures following irradiation with dual waves of the 450 and 980 nm diode lasers (dual-modal PDI/PTI), without adverse effects on the physico-mechanical properties of elastomeric ligatures, can be used to inhibit the formation of S. mutans biofilms on the coated elastomeric ligatures around orthodontic brackets.
Collapse
Affiliation(s)
- Marzieh Ghanemi
- Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran
| | - Abbas Salehi-Vaziri
- Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
14
|
Xing Z, Guo J, Wu Z, He C, Wang L, Bai M, Liu X, Zhu B, Guan Q, Cheng C. Nanomaterials-Enabled Physicochemical Antibacterial Therapeutics: Toward the Antibiotic-Free Disinfections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303594. [PMID: 37626465 DOI: 10.1002/smll.202303594] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Indexed: 08/27/2023]
Abstract
Bacterial infection continues to be an increasing global health problem with the most widely accepted treatment paradigms restricted to antibiotics. However, the overuse and misuse of antibiotics have triggered multidrug resistance of bacteria, frustrating therapeutic outcomes, and leading to higher mortality rates. Even worse, the tendency of bacteria to form biofilms on living and nonliving surfaces further increases the difficulty in confronting bacteria because the extracellular matrix can act as a robust barrier to prevent the penetration of antibiotics and resist environmental damage. As a result, the inability to eliminate bacteria and biofilms often leads to persistent infection, implant failure, and device damage. Therefore, it is of paramount importance to develop alternative antimicrobial agents while avoiding the generation of bacterial resistance to prevent the large-scale growth of bacterial resistance. In recent years, nano-antibacterial materials have played a vital role in the antibacterial field because of their excellent physical and chemical properties. This review focuses on new physicochemical antibacterial strategies and versatile antibacterial nanomaterials, especially the mechanism and types of 2D antibacterial nanomaterials. In addition, this advanced review provides guidance on the development direction of antibiotic-free disinfections in the antibacterial field in the future.
Collapse
Affiliation(s)
- Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiusi Guo
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liyun Wang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingru Bai
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bihui Zhu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuyue Guan
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
15
|
Du Y, Chu G, Yu R, Cui R, Wang Y, Mai Y, Guan M, Xu F, Zhou Y. Hyperbranched polyphthalocyanine micelles with dual PTT/PDT functions for bacteria eradication under an NIR window. Chem Commun (Camb) 2023; 59:14169-14172. [PMID: 37955572 DOI: 10.1039/d3cc04082h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A Zinc phthalocyanine-based (ZnPc-PA) polymeric micelle around 70 nm and with dual-modal PTT/PDT functions for non-antibiotic bacteria eradication was developed. It showed an excellent bacterial killing efficiency of 95.2% and 96.7% in vitro against Methicillin-resistant Staphylococcus aureus (MRSA) and its biofilm, respectively. Furthermore, the in vivo experiments proved its great potential for implant-associated infection (IAI).
Collapse
Affiliation(s)
- Ying Du
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Guangyu Chu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Rui Yu
- Department of Human Biology, University of Toronto Scarborough Campus Toronto, Ontario, Canada
| | - Rui Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Ming Guan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
16
|
Wang H, Xie Y, Chen Y, Zhao H, Lv X, Zhang Z, Li G, Pan J, Wang J, Liu Z. Transdermal Delivery of Photosensitizer-Catalase Conjugate by Fluorinated Polyethylenimine for Enhanced Topical Photodynamic Therapy of Bacterial Infections. Adv Healthc Mater 2023; 12:e2300848. [PMID: 37178381 DOI: 10.1002/adhm.202300848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Pathogenic bacteria induce subcutaneous infections pose serious threats to global public health. Recently, photodynamic therapy (PDT) has been proposed as a non-invasive approach for anti-microbial treatment without the risk to induce drug resistance. However, due to the hypoxic environment of most anaerobiont-infected sites, the therapeutic efficacy of oxygen consuming PDT has been limited. Herein, a transdermal delivery system is reported to allow effective delivery of photosensitizers into infected skin for PDT treatment of skin infections by bacteria. Considering the overproduction of hydrogen peroxide (H2 O2 ) in the abscess area, catalase (CAT), an enzyme that triggers H2 O2 decomposition to generate O2 , is conjugated with chlorine e6 (Ce6) to form a photosensitizer conjugate (Ce6-CAT) as an enhanced PDT agent against Staphylococcus Aureus. After screening a series of fluorinated low molecular weight polyethylenimine (F-PEI) with different fluorination degrees, the optimized F-PEI formulation is identified with the best transdermal delivery ability system. Upon mixing, the formed Ce6-CAT@F-PEI nanocomplex shows effective transdermal penetration after being applied to the skin surface. With light exposure of the infected skin, highly effective in vivo anti-bacterial PDT therapeutic effect with Ce6-CAT@F-PEI is observed. This work proposes a transdermal PDT therapeutic nanomedicine particularly promising for the anti-bacterial treatment of skin infections.
Collapse
Affiliation(s)
- Hairong Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yi Xie
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yanling Chen
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| | - He Zhao
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xinjing Lv
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zimu Zhang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Gen Li
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jian Pan
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jian Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
17
|
Guo S, Gu D, Yang Y, Tian J, Chen X. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J Nanobiotechnology 2023; 21:348. [PMID: 37759287 PMCID: PMC10523653 DOI: 10.1186/s12951-023-02111-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Near-infrared (NIR) organic small molecule dyes (OSMDs) are effective photothermal agents for photothermal therapy (PTT) due to their advantages of low cost and toxicity, good biodegradation, and strong NIR absorption over a wide wavelength range. Nevertheless, OSMDs have limited applicability in PTT due to their low photothermal conversion efficiency and inadequate destruction of tumor regions that are nonirradiated by NIR light. However, they can also act as photosensitizers (PSs) to produce reactive oxygen species (ROS), which can be further eradicated by using ROS-related therapies to address the above limitations of PTT. In this review, the synergistic mechanism, composition, and properties of photodynamic therapy (PDT)-PTT nanoplatforms were comprehensively discussed. In addition, some specific strategies for further improving the combined PTT and PDT based on OSMDs for cancer to completely eradicate cancer cells were outlined. These strategies include performing image-guided co-therapy, enhancing tumor infiltration, increasing H2O2 or O2 in the tumor microenvironment, and loading anticancer drugs onto nanoplatforms to enable combined therapy with phototherapy and chemotherapy. Meanwhile, the intriguing prospects and challenges of this treatment modality were also summarized with a focus on the future trends of its clinical application.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
18
|
Zhao J, Xu T, Sun J, Yuan H, Hou M, Li Z, Wang J, Liang Z. Multifunctional nanozyme-reinforced copper-coordination polymer nanoparticles for drug-resistance bacteria extinction and diabetic wound healing. Biomater Res 2023; 27:88. [PMID: 37723499 PMCID: PMC10506277 DOI: 10.1186/s40824-023-00429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Drug-resistant bacterial infections in chronic wounds are a persistent issue, as they are resistant to antibiotics and can cause excessive inflammation due to generation of reactive oxygen species (ROS). An effective solution would be to not only combat bacterial infections but also scavenge ROS to relieve inflammation at the wound site. Scaffolds with antioxidant properties are attractive for their ability to scavenge ROS, and there is medical demand in developing antioxidant enzyme-mimicking nanomaterials for wound healing. METHODS In this study, we fabricated copper-coordination polymer nanoparticles (Cu-CPNs) through a self-assembly process. Furthermore, ε-polylysine (EPL), an antibacterial and cationic polymer, was integrated into the Cu-CPNs structure through a simple one-pot self-assembly process without sacrificing the glutathione peroxidase (GPx) and superoxide dismutase (SOD)-mimicking activity of Cu-CPNs. RESULTS The resulting Cu-CPNs exhibit excellent antioxidant propertiesin mimicking the activity of glutathione peroxidase and superoxide dismutase and allowing them to effectively scavenge harmful ROS produced in wound sites. The in vitro experiments showed that the resulting Cu-CPNs@EPL complex have superior antioxidant properties and antibacterial effects. Bacterial metabolic analysis revealed that the complex mainly affects the cell membrane integrity and nucleic acid synthesis that leads to bacterial death. CONCLUSIONS The Cu-CPNs@EPL complex has impressive antioxidant properties and antibacterial effects, making it a promising solution for treating drug-resistant bacterial infections in chronic wounds. The complex's ability to neutralize multiple ROS and reduce ROS-induced inflammation can help relieve inflammation at the wound site. Schematic illustration of the ROS scavenging and bacteriostatic function induced by Cu-CPNs@EPL nanozyme in the treatment of MRSA-infected wounds.
Collapse
Affiliation(s)
- Jiahui Zhao
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020 P. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632 P. R. China
| | - Tengfei Xu
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020 P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 P. R. China
| | - Jichao Sun
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020 P. R. China
| | - Haitao Yuan
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020 P. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632 P. R. China
| | - Mengyun Hou
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020 P. R. China
| | - Zhijie Li
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020 P. R. China
| | - Jigang Wang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020 P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Liang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020 P. R. China
| |
Collapse
|
19
|
Chen Y, Hao X, Lu Z, Wang D. Near-IR-Regulated Composite Hydrogel with Real-Time Infection Monitoring and a Combined Antibacterial Effect for Efficient Wound Management. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40255-40266. [PMID: 37584530 DOI: 10.1021/acsami.3c08259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Chronic wounds induced by bacterial infection have seriously affected the health of people in the world. So, it is meaningful to develop a novel strategy with real-time infection monitoring and excellent antibacterial performance for enhancing wound management. Herein, we constructed a composite hydrogel by loading the pH indicator bromothymol blue (BTB) and gold nanocages containing 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (Au NCs@AIPH) into a polyacrylamide-co-poly(acrylic anhydride-modified oxidized sodium alginate) (PAM-co-PAOSA) hydrogel. In vitro and in vivo experimental results demonstrated that the composite hydrogel could effectively detect bacteria and diagnose the infection status of a wound in real time by showing visible color changes. In addition, the composite hydrogel containing Au NCs@AIPH possessed an excellent photothermal effect under near-IR (NIR) laser irradiation. The photothermal effect further activated AIPH to generate toxic free radicals to form combined antibacterial therapy for accelerating wound healing. Moreover, the composite hydrogel showed great biocompatibility. Therefore, the multifunctional hydrogel provided a novel wound management strategy for bacterial infection diagnosis and combined therapy in an infected wound.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xiaodi Hao
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
20
|
Iannazzo D, Celesti C, Giofrè SV, Ettari R, Bitto A. Theranostic Applications of 2D Graphene-Based Materials for Solid Tumors Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2380. [PMID: 37630966 PMCID: PMC10459055 DOI: 10.3390/nano13162380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Solid tumors are a leading cause of cancer-related deaths globally, being characterized by rapid tumor growth and local and distant metastases. The failures encountered in cancer treatment are mainly related to the complicated biology of the tumor microenvironment. Nanoparticles-based (NPs) approaches have shown the potential to overcome the limitations caused by the pathophysiological features of solid cancers, enabling the development of multifunctional systems for cancer diagnosis and therapy and allowing effective inhibition of tumor growth. Among the different classes of NPs, 2D graphene-based nanomaterials (GBNs), due to their outstanding chemical and physical properties, easy surface multi-functionalization, near-infrared (NIR) light absorption and tunable biocompatibility, represent ideal nanoplatforms for the development of theranostic tools for the treatment of solid tumors. Here, we reviewed the most recent advances related to the synthesis of nano-systems based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), and graphene quantum dots (GQDs), for the development of theranostic NPs to be used for photoacoustic imaging-guided photothermal-chemotherapy, photothermal (PTT) and photodynamic therapy (PDT), applied to solid tumors destruction. The advantages in using these nano-systems are here discussed for each class of GBNs, taking into consideration the different chemical properties and possibility of multi-functionalization, as well as biodistribution and toxicity aspects that represent a key challenge for their translation into clinical use.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, 98166 Messina, Italy;
| | - Consuelo Celesti
- Department of Engineering, University of Messina, 98166 Messina, Italy;
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98165 Messina, Italy; (S.V.G.); (R.E.)
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98165 Messina, Italy; (S.V.G.); (R.E.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
21
|
Hada V, Chaturvedi K, Singhwane A, Siraj N, Gupta A, Sathish N, Chaurasia JP, Srivastava AK, Verma S. Nanoantibiotic effect of carbon-based nanocomposites: epicentric on graphene, carbon nanotubes and fullerene composites: a review. 3 Biotech 2023; 13:147. [PMID: 37124988 PMCID: PMC10140225 DOI: 10.1007/s13205-023-03552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Carbon in many different forms especially, Graphene, Carbon nanotubes (CNTs), and Fullerene is emerging as an important material in the areas of the biomedical field for various applications. This review comprehensively describes the nano antibiotic effect of carbon-based nanocomposites: epicenter on graphene, carbon nanotubes, and fullerene Composites. It summarises the studies conducted to evaluate their antimicrobial applications as they can disrupt the cell membrane of bacteria resulting in cell death. The initial section gives a glimpse of both "Gram"-positive and negative bacteria, which have been affected by Graphene, CNTs, and Fullerene-based nanocomposites. These bacteria include Staphylococcus Aureus, Bacillus Thuringiensis, Enterococcus faecalis, Enterococcus faecium, Bacillus subtilis, Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeroginosa, Pseudomonas syringae , Shigella flexneri,Candida Albicans, Mucor. Another section is dedicated to the insight of Graphene, and its types such as Graphene Oxide (GO), Reduced graphene oxide (rGO), Graphene Nanoplatelets (GNPs), Graphene Nanoribbons (GNRs), and Graphene Quantum Dots (GQDs). Insight into CNT, including both the types SWCNT and MWCNT, studied, followed by understanding fullerene is also reported. Another section is dedicated to the antibacterial mechanism of Graphene, CNT, and Fullerene-based nanocomposites. Further, an additional section is dedicated to a comprehensive review of the antibacterial characteristics of Graphene, CNT, and nanocomposites based on fullerene. Future perspectives and recommendations have also been highlighted in the last section.
Collapse
Affiliation(s)
- Vaishnavi Hada
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
| | - Kamna Chaturvedi
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Anju Singhwane
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
| | - Naved Siraj
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Ayush Gupta
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bhopal, MP 462026 India
| | - N. Sathish
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - J. P. Chaurasia
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - A. K. Srivastava
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Sarika Verma
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| |
Collapse
|
22
|
Naskar A, Kim KS. Friends against the Foe: Synergistic Photothermal and Photodynamic Therapy against Bacterial Infections. Pharmaceutics 2023; 15:pharmaceutics15041116. [PMID: 37111601 PMCID: PMC10146283 DOI: 10.3390/pharmaceutics15041116] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria are rapidly emerging, coupled with the failure of current antibiotic therapy; thus, new alternatives for effectively treating infections caused by MDR bacteria are required. Hyperthermia-mediated photothermal therapy (PTT) and reactive oxygen species (ROS)-mediated photodynamic therapy (PDT) have attracted extensive attention as antibacterial therapies owing to advantages such as low invasiveness, low toxicity, and low likelihood of causing bacterial resistance. However, both strategies have notable drawbacks, including the high temperature requirements of PTT and the weak ability of PDT-derived ROS to penetrate target cells. To overcome these limitations, a combination of PTT and PDT has been used against MDR bacteria. In this review, we discuss the unique benefits and limitations of PTT and PDT against MDR bacteria. The mechanisms underlying the synergistic effects of the PTT–PDT combination are also discussed. Furthermore, we introduced advancements in antibacterial methods using nano-based PTT and PDT agents to treat infections caused by MDR bacteria. Finally, we highlight the existing challenges and future perspectives of synergistic PTT–PDT combination therapy against infections caused by MDR bacteria. We believe that this review will encourage synergistic PTT- and PDT-based antibacterial research and can be referenced for future clinical applications.
Collapse
Affiliation(s)
- Atanu Naskar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
23
|
Wu Q, Lei Q, Zhong HC, Ren TB, Sun Y, Zhang XB, Yuan L. Fluorophore-based host-guest assembly complexes for imaging and therapy. Chem Commun (Camb) 2023; 59:3024-3039. [PMID: 36785939 DOI: 10.1039/d2cc06286k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, supramolecular chemistry with its unique properties has received considerable attention in many fields. Supramolecular fluorescent systems constructed on the basis of macrocyclic hosts are not only effective in overcoming the limitations of imaging and diagnostic reagents, but also in enhancing their performances. This paper summarizes the recent advances in supramolecular fluorescent systems based on host-guest interactions and their application in bioimaging and therapy as well as the challenges and prospects in developing novel supramolecular fluorescent systems.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Qian Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hai-Chen Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
24
|
Wen H, Wu Q, Liu L, Li Y, Sun T, Xie Z. Structural optimization of BODIPY photosensitizers for enhanced photodynamic antibacterial activities. Biomater Sci 2023; 11:2870-2876. [PMID: 36876488 DOI: 10.1039/d3bm00073g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Enhancing the interactions between photosensitizers and bacteria is key to developing effective photodynamic antibacterial agents. However, the influence of different structures on the therapeutic effects has not been systematically investigated. Herein, 4 BODIPYs with distinct functional groups, including the phenylboronic acid (PBA) group and pyridine (Py) cations, were designed to explore their photodynamic antibacterial activities. The BODIPY with the PBA group (IBDPPe-PBA) exhibits potent activity against planktonic Staphylococcus aureus (S. aureus) upon illumination, while the BODIPY with Py cations (IBDPPy-Ph) or both the PBA group and Py cations (IBDPPy-PBA) can significantly minimize the growth of both S. aureus and Escherichia coli (E. coli). In particular, IBDPPy-Ph can not only eliminate the mature S. aureus biofilm and E. coli biofilm in vitro, but also promote the healing of the infected wound. Our work provides an alternative for reasonable design of photodynamic antibacterial materials.
Collapse
Affiliation(s)
- Hui Wen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qihang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Liqian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yite Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
25
|
Pramanik A, Dhar JA, Banerjee R, Davis M, Gates K, Nie J, Davis D, Han FX, Ray PC. WO 3 Nanowire-Attached Reduced Graphene Oxide-Based 1D-2D Heterostructures for Near-Infrared Light-Driven Synergistic Photocatalytic and Photothermal Inactivation of Multidrug-Resistant Superbugs. ACS APPLIED BIO MATERIALS 2023; 6:919-931. [PMID: 36746648 DOI: 10.1021/acsabm.3c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The rapid emergence of superbugs which are resistant to existing antibiotics is becoming a huge global threat to public health, which demands the discovery of next-generation antibacterial agents for combating superbugs. Herein, we report the design of a two-dimensional (2D) reduced graphene oxide (r-GO) and one-dimensional (1D) WO3 nanowire-based photothermal-photocatalytic heterostructure for combating multiantibiotic-resistant Salmonella DT104, carbapenem-resistant Enterobacteriaceae Escherichia coli, and methicillin-resistant Staphylococcus aureus superbugs. In the presence of near-infrared (NIR) light, due to the generation of electrons and holes, the WO3-based heterostructure generates reactive oxygen species by photocatalytic reaction from water and oxygen, which kills superbugs. To enhance the photocatalytic superbug killing efficiency, r-GO has been used for suppressing the recombination of the photoinduced electron-hole pairs. Reported data show that NIR light-driven synergistic photocatalytic-photothermal processes can be used for 100% degradation of methylene blue using a heterostructure-based catalyst, and the photodegradation rate for the heterostructure is much better than the literature data for different types of WO3/GO-based nanocomposites. Experimentally, time-dependent antibacterial efficiency data reveals that the heterostructure can destroy 100% superbugs within 30 min of light exposure via a synergistic photothermal and photocatalytic mechanism, whereas the WO3 nanowire can kill around 35% superbugs only via photocatalytic action only and r-GO can kill 25% superbugs via photothermal action even after 30 min of exposure to light. Systematic time-dependent microscopy and spectroscopy studies reveal that the excellent antisuperbug activities for heterostructures are due to membrane damage, ATP, and DNA/RNA breakage. For possible real-life applications, sun light-based superbug inactivation shows 100% inactivation possible within 250 min of light exposure using 12 mg/mL heterostructures. The reported sun light-driven killing of superbugs provides a simple and versatile platform to combat drug-resistant superbugs.
Collapse
Affiliation(s)
- Avijit Pramanik
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Jonmejoy A Dhar
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Rithik Banerjee
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Megan Davis
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Kaelin Gates
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Jing Nie
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Dalephine Davis
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Fengxiang X Han
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Paresh Chandra Ray
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
26
|
Han J, Zeng S, Chen Y, Li H, Yoon J. Prospects of coupled iron-based nanostructures in preclinical antibacterial therapy. Adv Drug Deliv Rev 2023; 193:114672. [PMID: 36592895 DOI: 10.1016/j.addr.2022.114672] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/13/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
Bacterial infections can threaten human health. Drug-resistant bacteria have become a challenge because of the excessive use of drugs. We summarize the current metallic antibacterial materials, especially Fe-based materials, for efficiently killing bacteria. The possible antibacterial mechanisms of metallic antibacterial agents are classified into interactions with bacterial proteins, iron metabolism, catalytic activity, and combinations of magnetic, photodynamic, and photothermal effects. This review will inspire the development of novel Fe-based antibacterial agents for clinical settings.
Collapse
Affiliation(s)
- Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760 Republic of Korea; Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Shuang Zeng
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024 China
| | - Yahui Chen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760 Republic of Korea; New and Renewable Energy Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024 China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760 Republic of Korea.
| |
Collapse
|
27
|
Xie M, Gao M, Yun Y, Malmsten M, Rotello VM, Zboril R, Akhavan O, Kraskouski A, Amalraj J, Cai X, Lu J, Zheng H, Li R. Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angew Chem Int Ed Engl 2023; 62:e202217345. [PMID: 36718001 DOI: 10.1002/anie.202217345] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to the environment and health. AMR rapidly invalidates conventional antibiotics, and antimicrobial nanomaterials have been increasingly explored as alternatives. Interestingly, several antimicrobial nanomaterials show AMR-independent antimicrobial effects without detectable new resistance and have therefore been suggested to prevent AMR evolution. In contrast, some are found to trigger the evolution of AMR. Given these seemingly conflicting findings, a timely discussion of the two faces of antimicrobial nanomaterials is urgently needed. This review systematically compares the killing mechanisms and structure-activity relationships of antibiotics and antimicrobial nanomaterials. We then focus on nano-microbe interactions to elucidate the impacts of molecular initiating events on AMR evolution. Finally, we provide an outlook on future antimicrobial nanomaterials and propose design principles for the prevention of AMR evolution.
Collapse
Affiliation(s)
- Maomao Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yang Yun
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.,Department of Physical Chemistry 1, University of Lund, 22100, Lund, Sweden
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.,Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Omid Akhavan
- Condensed Matter National Laboratory, P.O. Box 1956838861, Tehran, Iran
| | - Aliaksandr Kraskouski
- Department of Physicochemistry of Thin Film Materials, Institute of Chemistry of New Materials of NAS of Belarus, 36 F. Skaryna Str., 220084, Minsk, Belarus
| | - John Amalraj
- Laboratory of Materials Science, Instituto de Química de Recursos Naturales, Universidad de Talca, P.O. Box 747, Talca, Chile
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, National Center for International Research on Intelligent Nano-Materials and Detection Technology in Environmental Protection, Soochow University, Suzhou, 215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
28
|
Shang Y, Zhang S, Gan HQ, Yan KC, Xu F, Mai Y, Chen D, Hu XL, Zou L, James TD, He XP. Targeted photothermal release of antibiotics by a graphene nanoribbon-based supramolecular glycomaterial. Chem Commun (Camb) 2023; 59:1094-1097. [PMID: 36625183 DOI: 10.1039/d2cc05879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Here, we report the simple construction of a supramolecular glycomaterial for the targeted delivery of antibiotics to P. aeruginosa in a photothermally-controlled manner. A galactose-pyrene conjugate (Gal-pyr) was developed to self-assemble with graphene nanoribbon-based nanowires via π-π stacking to produce a supramolecular glycomaterial, which exhibits a 1250-fold enhanced binding avidity toward a galactose-selective lectin when compared to Gal-pyr. The as-prepared glycomaterial when loaded with an antibiotic that acts as an inhibitor of the bacterial folic acid biosynthetic pathway eradicated P. aeruginosa-derived biofilms under near-infrared light irradiation due to the strong photothermal effect of the nanowires accelerating antibiotic release.
Collapse
Affiliation(s)
- Ying Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Sheng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Lei Zou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China. .,National Center for Liver Cancer, the International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| |
Collapse
|
29
|
Xie G, Du S, Huang Q, Hu Q, Bi D, Peng B, Tao J, Zhang L, Zhu J. When Iodine Meets Starch: On-Demand Generation of Photothermal Hydrogels for Mild-Temperature Photothermal-Chemo Disinfection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1914-1924. [PMID: 36583973 DOI: 10.1021/acsami.2c19667] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As an emerging antibacterial strategy, photothermal disinfection attracts increasing attention due to its advantages of high efficacy, wide pertinence, and non-drug resistance. However, the unavoidable shielding of observation by photothermal components and the possible damage to normal tissue caused by hyperthermia restrict its applications. Herein, we propose a composite hydrogel with the ability of on-demand generation of photothermal components and mild-temperature photothermal disinfection by elegantly tuning the binding and release of iodine and starch. The composite hydrogel is obtained by blending iodine-adsorbed pH-responsive ZIF-8 nanoparticles (NPs) with a starch-based hydrogel matrix. Through a convenient pH response, the composite hydrogel leverages the triple functions of iodine, which serves as a disinfectant and reacts with starch to generate a photothermal agent and color indicator, allowing photothermal-chemotherapy combined disinfection on demand. In vitro antibacterial experiments show that the composite hydrogel can respond to the acidification of the microenvironment caused by bacterial metabolism and produce corresponding color changes, realizing naked-eye observation. Meanwhile, under the combined treatment of heating/I2/Zn2+, the composite hydrogel can completely kill Escherichia coli and Staphylococcus aureus at a mild temperature of ∼41 °C. This study represents a breakthrough in on-demand generation of photothermal hydrogels for mild-temperature photothermal disinfection.
Collapse
Affiliation(s)
- Ge Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Shuo Du
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Qiuyi Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan430022, China
| | - Qiao Hu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Duohang Bi
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Bolun Peng
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan430022, China
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| |
Collapse
|
30
|
Chen C, Chu G, He W, Liu Y, Dai K, Valdez J, Moores A, Huang P, Wang Z, Jin J, Guan M, Jiang W, Mai Y, Ma D, Wang Y, Zhou Y. A Janus Au-Polymersome Heterostructure with Near-Field Enhancement Effect for Implant-Associated Infection Phototherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207950. [PMID: 36300600 DOI: 10.1002/adma.202207950] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Polymer-inorganic hybrid Janus nanoparticles (PI-JNPs) have attracted extensive attention due to their special structures and functions. However, achieving the synergistic enhancement of photochemical activity between polymer and inorganic moieties in PI-JNPs remains challenging. Herein, the construction of a novel Janus Au-porphyrin polymersome (J-AuPPS) heterostructure by a facile one-step photocatalytic synthesis is reported. The near-field enhancement (NFE) effect between porphyrin polymersome (PPS) and Au nanoparticles in J-AuPPS is achieved to enhance its near-infrared (NIR) light absorption and electric/thermal field intensity at their interface, which improves the energy transfer and energetic charge-carrier generation. Therefore, J-AuPPS shows a higher NIR-activated photothermal conversion efficiency (48.4%) and generates more singlet oxygen compared with non-Janus core-particle Au-PPS nanostructure (28.4%). As a result, J-AuPPS exhibits excellent dual-mode (photothermal/photodynamic) antibacterial and anti-biofilm performance, thereby significantly enhancing the in vivo therapeutic effect in an implant-associated-infection rat model. This work is believed to motivate the rational design of advanced hybrid JNPs with desirable NFE effect and further extend their biological applications.
Collapse
Affiliation(s)
- Chuanshuang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guangyu Chu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wanting He
- Énergie Materiaux et Telécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Yannan Liu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany
| | - Kai Dai
- Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Jesus Valdez
- Facility for Electron Microscopy Research (FEMR), McGill University, Montréal, QC, H3A 037, Canada
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada
| | - Audrey Moores
- Facility for Electron Microscopy Research (FEMR), McGill University, Montréal, QC, H3A 037, Canada
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada
| | - Pei Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhaohong Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiale Jin
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ming Guan
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dongling Ma
- Énergie Materiaux et Telécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
31
|
Qiao Y, Ma Y, Tong Y, Liu W, Wang S, Zheng Y, Men C, Yu J, Pan J, Wan D, Yin Y, Zhao X, Xi R, Meng M. Phototherapy and Mechanism Exploration of Biofilm and Multidrug-Resistant Helicobacter pylori by Bacteria-Targeted NIR Photosensitizer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205248. [PMID: 36417577 DOI: 10.1002/smll.202205248] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Helicobacter pylori (H. pylori) infection has been the leading cause of gastric cancer development. In recent years, the resistance of H. pylori against antibiotic treatment has been a great challenge for most countries worldwide. Since biofilm formation is one of the reasons for the antibiotic resistance of H. pylori, and phototherapy has emerged as a promisingly alternative antibacterial treatment, herein the bacteria-targeted near-infrared (NIR) photosensitizer (T780T-Gu) by combining positively-charged guanidinium (Gu) with an efficient phototherapeutic agent T780T is developed. The proposed molecule T780T-Gu exhibits synergistic photothermal therapy/photodynamic therapy effect against both H. pylori biofilms and multidrug-resistant (MDR) clinical strains. More importantly, the phototherapy mechanism of T780T-Gu acquired by the RNA-seq analysis indicates that structural deficiency as well as a decrease in metabolism and defense activity are the possible reasons for the efficient H. pylori phototherapy.
Collapse
Affiliation(s)
- Yanqi Qiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin, 300350, China
| | - Yan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin, 300350, China
| | - Yue Tong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin, 300350, China
| | - Wenting Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin, 300350, China
| | - Shuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin, 300350, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Changjun Men
- Tianjin First Central Hospital, Tianjin, 300192, China
| | - Jie Yu
- State Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Yunnan Province, Kunming, 650500, China
| | - Jie Pan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Dong Wan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin, 300350, China
| | - Xiujie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin, 300350, China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin, 300350, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin, 300350, China
| |
Collapse
|
32
|
Su L, Xian J, Fu S, Zhu Y, Cao H, Feng Z, Tian Y, Tian X. Nanoscopic evaluation on mitochondrial ultrastructures by regulating reactive oxygen species productivity within terpyridyl Zn(II) complexes with different alkyl chain lengths. NANOSCALE 2022; 15:350-355. [PMID: 36504372 DOI: 10.1039/d2nr04088c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mitochondria targeting complexes are widely utilized as photosensitizers in photodynamic therapy. However, the mechanisms by which they regulate reactive oxygen species (ROS) production at the molecular level and their influence on intracellular mitochondrial signaling and ultrastructures remain rarely studied. Herein, we present two terpyridyl Zn(II) complexes with different side alkyl chain lengths (Zn-2C and Zn-6C) that lead to low and high ROS productivities in vitro, respectively. Both complexes could enter live cells effectively with minimal dark toxicity and accumulate preferably in the mitochondria. We also demonstrated that Zn-6C, with more efficient ROS productivity, could significantly downregulate the caspase signaling pathway but showed no evident influence on mitochondrial membrane proteins. We also highlighted and compared the mitochondrial ultrastructural variations during such a process by stimulated emission depletion (STED) super-resolution nanoscopy.
Collapse
Affiliation(s)
- Liping Su
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Centre (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Jinghong Xian
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiqin Fu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Centre (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Yuhan Zhu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei 230039, China
| | - Hongzhi Cao
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei 230039, China
| | - Zhihui Feng
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei 230039, China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei 230039, China
| | - Xiaohe Tian
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Centre (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei 230039, China
| |
Collapse
|
33
|
Kim H, Yang M, Kwon N, Cho M, Han J, Wang R, Qi S, Li H, Nguyen V, Li X, Cheng H, Yoon J. Recent progress on photodynamic therapy and photothermal therapy. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Heejeong Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Mengyao Yang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Moonyeon Cho
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Jingjing Han
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Rui Wang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Sujie Qi
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Haidong Li
- School of Bioengineering Dalian University of Technology Dalian China
| | - Van‐Nghia Nguyen
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis for Energy and the Environment, Fujian Provincial Key Laboratory for Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou China
| | - Hong‐Bo Cheng
- State Key Laboratory of Organic−Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering Beijing University of Chemical Technology Beijing P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| |
Collapse
|
34
|
Wang Y, Ren M, Li Y, Liu F, Wang Y, Wang Z, Feng L. Bioactive AIEgens Tailored for Specific and Sensitive Theranostics of Gram-Positive Bacterial Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46340-46350. [PMID: 36194189 DOI: 10.1021/acsami.2c14550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Diseases caused by bacterial infections are increasingly threatening human health. As a major part of the microbial family, Gram-positive bacteria induce severe infections in hospitals and communities. Therefore, developing antibacterial materials that can recognize bacteria and specifically kill them is significant to cope with fatal bacterial infection. To this end, we designed and prepared a series of positively charged photosensitizers with an aggregation-induced emission feature and a type I reactive oxygen species (ROS) generation ability. Based on a molecular engineering strategy, the PS abbreviated to MTTTPy that owns a superior ROS generation ability and red emission in aggregation is obtained by adjusting bridging groups. Due to the unique molecular structure, MTTTPy can sensitively and specifically recognize and light up Gram-positive bacteria through electrostatic adsorption and void permeability. In addition, it can kill 95% of the recognized bacteria at a low concentration of 0.5 μM by generating oxygen-independent ROS under white light irradiation. Both in vitro and in vivo studies verify the sensitive and specific recognition and killing effect of MTTTPy toward Gram-positive bacteria. This work provides superior material-integrated diagnosis and treatment for Gram-positive bacteria-caused infectious diseases and shows potential for addressing bacterial resistance.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Min Ren
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Ying Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, P.R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| |
Collapse
|
35
|
Zhao YQ, Xiu Z, Wu R, Zhang L, Ding X, Zhao N, Duan S, Xu FJ. A Near‐Infrared‐Responsive Quaternary Ammonium/Gold Nanorod Hybrid Coating with Enhanced Antibacterial Properties. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zongpeng Xiu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ruonan Wu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Lujiao Zhang
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
36
|
Zhong CJ, Hu XL, Yang XL, Gan HQ, Yan KC, Shu FT, Wei P, Gong T, Luo PF, James TD, Chen ZH, Zheng YJ, He XP, Xia ZF. Metabolically Specific In Situ Fluorescent Visualization of Bacterial Infection on Wound Tissues. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39808-39818. [PMID: 36005548 DOI: 10.1021/acsami.2c10115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to effectively detect bacterial infection in human tissues is important for the timely treatment of the infection. However, traditional techniques fail to visualize bacterial species adhered to host cells in situ in a target-specific manner. Dihydropteroate synthase (DHPS) exclusively exists in bacterial species and metabolically converts p-aminobenzoic acid (PABA) to folic acid (FA). By targeting this bacterium-specific metabolism, we have developed a fluorescent imaging probe, PABA-DCM, based on the conjugation of PABA with a long-wavelength fluorophore, dicyanomethylene 4H-pyran (DCM). We confirmed that the probe can be used in the synthetic pathway of a broad spectrum of Gram-positive and negative bacteria, resulting in a significantly extended retention time in bacterial over mammalian cells. We validated that DHPS catalytically introduces a dihydropteridine group to the amino end of the PABA motif of PABA-DCM, and the resulting adduct leads to an increase in the FA levels of bacteria. We also constructed a hydrogel dressing containing PABA-DCM and graphene oxide (GO), termed PABA-DCM@GO, that achieves target-specific fluorescence visualization of bacterial infection on the wounded tissues of mice. Our research paves the way for the development of fluorescent imaging agents that target species-conserved metabolic pathways of microorganisms for the in situ monitoring of infections in human tissues.
Collapse
Affiliation(s)
- Chen-Jian Zhong
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xiao-Lan Yang
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
- Department of Burn Surgery and Wound Repair, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362001, Fujian, China
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Fu-Ting Shu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| | - Pei Wei
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
| | - Teng Gong
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
| | - Peng-Fei Luo
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA27AY, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Zhao-Hong Chen
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
| | - Yong-Jun Zheng
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
- National Center for Liver Cancer, Shanghai 200438, China
| | - Zhao-Fan Xia
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| |
Collapse
|
37
|
Ponzio RA, Ibarra LE, Achilli EE, Odella E, Chesta CA, Martínez SR, Palacios RE. Sweet light o' mine: Photothermal and photodynamic inactivation of tenacious pathogens using conjugated polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112510. [PMID: 36049287 DOI: 10.1016/j.jphotobiol.2022.112510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Each year a rising number of infections can not be successfully treated owing to the increasing pandemic of antibiotic resistant pathogens. The global shortage of innovative antibiotics fuels the emergence and spread of drug resistant microbes. Basic research, development, and applications of alternative therapies are urgently needed. Since the 90´s, light-mediated therapies have promised to be the next frontier combating multidrug-resistance microbes. These platforms have demonstrated to be a reliable, rapid, and efficient alternative to eliminate tenacious pathogens while avoiding the emergence of resistance mechanisms. Among the materials showing antimicrobial activity triggered by light, conjugated polymers (CPs) have risen as the most promising option to tackle this complex situation. These materials present outstanding characteristics such as high absorption coefficients, great photostability, easy processability, low cytotoxicity, among others, turning them into a powerful class of photosensitizer (PS)/photothermal agent (PTA) materials. Herein, we summarize and discuss the advances in the field of CPs with applications in photodynamic inactivation and photothermal therapy towards bacteria elimination. Additionally, a section of current challenges and needs in terms of well-defined benchmark experiments and conditions to evaluate the efficiency of phototherapies is presented.
Collapse
Affiliation(s)
- Rodrigo A Ponzio
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Física, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC y CONICET, Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Estefanía E Achilli
- Laboratorio de Materiales Biotecnológicos (LaMaBio), Universidad Nacional de Quilmes-IMBICE (CONICET), Bernal B1876BXD, Argentina
| | - Emmanuel Odella
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
38
|
A Ratiometric Organic Fluorescent Nanogel Thermometer for Highly Sensitive Temperature Sensing. BIOSENSORS 2022; 12:bios12090702. [PMID: 36140087 PMCID: PMC9496083 DOI: 10.3390/bios12090702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
Sensing temperature in biological systems is of great importance, as it is constructive to understanding various physiological and pathological processes. However, the realization of highly sensitive temperature sensing with organic fluorescent nanothermometers remains challenging. In this study, we report a ratiometric fluorescent nanogel thermometer and study its application in the determination of bactericidal temperature. The nanogel is composed of a polarity-sensitive aggregation-induced emission luminogen with dual emissions, a thermoresponsive polymer with a phase transition function, and an ionic surface with net positive charges. During temperature-induced phase transition, the nanogel exhibits a reversible and sensitive spectral change between a red-emissive state and a blue-emissive state by responding to the hydrophilic-to-hydrophobic change in the local environment. The correlation between the emission intensity ratio of the two states and the external temperature is delicately established, and the maximum relative thermal sensitivities of the optimal nanogel are determined to be 128.42 and 68.39% °C−1 in water and a simulated physiological environment, respectively. The nanogel is further applied to indicate the bactericidal temperature in both visual and ratiometric ways, holding great promise in the rapid prediction of photothermal antibacterial effects and other temperature-related biological events.
Collapse
|
39
|
Wu Q, Xia R, Wen H, Sun T, Xie Z. Nanoscale porphyrin assemblies based on charge-transfer strategy with enhanced red-shifted absorption. J Colloid Interface Sci 2022; 627:554-561. [PMID: 35870407 DOI: 10.1016/j.jcis.2022.07.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 07/13/2022] [Indexed: 01/10/2023]
Abstract
Charge-transfer assemblies (CTAs) represent a new class of functional material due to their excellent optical properties, and show great promise in the biomedical field. Porphyrins are widely used photosensitizers, but the short absorption wavelengths may restrict their practical applications. To obtain porphyrin phototherapeutic agents with red-shifted absorption, charge-transfer nanoscale assemblies (TAPP-TCNQ NPs) of 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) and 7,7,8,8‑tetracyanoquinodimethane (TCNQ) were prepared via optimizing the stoichiometric ratios of donor-acceptor. The as-prepared TAPP-TCNQ NPs exhibit red-shifted absorption to the near-infrared (NIR) region and enhanced absorbance because of the charge-transfer interactions. In especial, TAPP-TCNQ NPs possess the capacity of both photodynamic and photothermal therapy, thus effectively killing the bacteria upon 808 nm laser irradiation. This modular assembly method provides an alternative strategy to enhance the application of the phototherapeutic agents.
Collapse
Affiliation(s)
- Qihang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Rui Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Hui Wen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
40
|
Chen L, Chen Y, Zhang R, Yu Q, Liu Y, Liu Y. Glucose-Activated Nanoconfinement Supramolecular Cascade Reaction in Situ for Diabetic Wound Healing. ACS NANO 2022; 16:9929-9937. [PMID: 35695717 DOI: 10.1021/acsnano.2c04566] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supramolecular nanofunctional materials have attracted increasing attention from scientific researchers due to their advantages in biomedicine. Herein, we construct a nanosupramolecular cascade reactor through the cooperative interaction of multiple noncovalent bonds, which include chitosan, sulfobutylether-β-cyclodextrin, ferrous ions, and glucose oxidase. Under the activation of glucose, hydroxyl radicals generated from the nanoconfinement supramolecular cascade reaction process are able to initiate the radical polymerization process of vinyl monomers to form hydrogel network structures while inhibiting resistant bacterial infection. The results of the diabetic wound experiment confirmed the capacity of the glucose-activated nanoconfinement supramolecular cascade reaction in situ for potent antimicrobial efficacy and wound protection. This strategy of "two birds with one stone" provides a convenient method for the application of supramolecular nanomaterial in the field of biomedicine.
Collapse
Affiliation(s)
- Lei Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Longwan District, Wenzhou 325001, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Rong Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yong Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Longwan District, Wenzhou 325001, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
41
|
Zhou J, Wang W, Zhang Q, Zhang Z, Guo J, Yan F. Oxygen-supplied mesoporous carbon nanoparticles for enhanced photothermal/photodynamic synergetic therapy against antibiotic-resistant bacterial infections. Chem Sci 2022; 13:6967-6981. [PMID: 35774158 PMCID: PMC9200222 DOI: 10.1039/d2sc01740g] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Pandemic and epidemic spread of antibiotic-resistant bacterial infections would result in a huge number of fatalities globally. To combat antibiotic-resistant pathogens, new antimicrobial strategies should be explored and developed to confront bacteria without acquiring or increasing drug-resistance. Here, oxygen saturated perfluorohexane (PFH)-loaded mesoporous carbon nanoparticles (CIL@ICG/PFH@O2) with photothermal therapy (PTT) and enhanced photodynamic therapy (PDT) utility are developed for antibacterial applications. Ionic liquid groups are grafted onto the surface of mesoporous carbon nanoparticles, followed by anion-exchange with the anionic photosensitizer indocyanine green (ICG) and loading oxygen saturated PFH to prepare CIL@ICG/PFH@O2. These CIL@ICG/PFH@O2 nanoparticles exhibit effective PTT and enhanced PDT properties simultaneously upon 808 nm light irradiation. In vitro assays demonstrate that CIL@ICG/PFH@O2 shows a synergistic antibacterial action against antibiotic-resistant pathogens (methicillin-resistant Staphylococcus aureus and kanamycin-resistant Escherichia coli). Moreover, CIL@ICG/PFH@O2 could effectively kill drug-resistant bacteria in vivo to relieve inflammation and eliminate methicillin-resistant Staphylococcus aureus-wound infection under NIR irradiation, and the released oxygen can increase collagen deposition, epithelial tissue formation and blood vessel formation to promote wound healing while enhancing the PDT effect. This study proposes a platform with enhanced PTT/PDT effects for effective, controlled, and precise treatment of topical drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jiamei Zhou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Wenjie Wang
- Hematology Center, Cyrus Tang Medical Institute, Soochow University Suzhou 215123 China
| | - Qiuyang Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zijun Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
42
|
Hu H, Wang H, Yang Y, Xu JF, Zhang X. A Bacteria-Responsive Porphyrin for Adaptable Photodynamic/Photothermal Therapy. Angew Chem Int Ed Engl 2022; 61:e202200799. [PMID: 35332634 DOI: 10.1002/anie.202200799] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 12/17/2022]
Abstract
We report a cationic porphyrin 5,10,15,20-tetrakis-(4-N-methylpyridyl)-porphyrin (TMPyP) that can respond to specific bacteria, followed by adaptable photodynamic/photothermal therapy processes. TMPyP could be reduced to phlorin by facultative anaerobes with a strong reducing ability such as E. coli and S. typhimurium in hypoxic environments, possessing strong NIR absorption and remarkable photothermal conversion capacity, thus demonstrating excellent antimicrobial activity (>99 %) by photothermal therapy. While in an aerobic environment with aerobic bacteria, TMPyP functioned as a typical photosensitizer that killed bacteria effectively (>99.9 %) by photodynamic therapy. By forming a host-guest complex with cucurbit[7]uril, the biocompatibility of TMPyP significantly improved. This kind of bacteria-responsive porphyrin shows specificity and adaptivity in antimicrobial treatment and holds potential in non-invasive treatments of bacterial infections.
Collapse
Affiliation(s)
- Hao Hu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hua Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
43
|
Yang M, Özdemir Z, Kim H, Nah S, Andris E, Li X, Wimmer Z, Yoon J. Acid-Responsive Nanoporphyrin Evolution for Near-Infrared Fluorescence-Guided Photo-Ablation of Biofilm. Adv Healthc Mater 2022; 11:e2200529. [PMID: 35536751 DOI: 10.1002/adhm.202200529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Indexed: 01/20/2023]
Abstract
Combating biofilm infections remains a challenge due to the shield and acidic conditions. Herein, an acid-responsive nanoporphyrin (PN3-NP) based on the self-assembly of a water-soluble porphyrin derivative (PN3) is constructed. Additional kinetic control sites formed by the conjugation of the spermine molecules to a porphyrin macrocycle make PN3 self-assemble into stable nanoparticles (PN3-NP) in the physiological environment. Noteworthily, near-infrared (NIR) fluorescence monitoring and synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) effects of PN3-NP can be triggered by the acidity in biofilms, accompanied by intelligent transformation into dot-like nanospheres. Thus, damage to normal tissue is effectively avoided and accurate diagnosis and treatment of biofilms is achieved successfully. The good results of fluorescence imaging-guided photo-ablation of antibiotic-resistant strains methicillin-resistant Staphylococcus aureus (MRSA) biofilms verify that PN3-NP is a promising alternative to antibiotics. Meanwhile, this strategy also opens new horizons to engineer smart nano-photosensitizer for accurate diagnosis and treatment of biofilms.
Collapse
Affiliation(s)
- Mengyao Yang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Republic of Korea
| | - Zulal Özdemir
- Department of Chemistry of Natural Compounds University of Chemistry and Technology Prague Technická 5 Prague 6 16628 Czech Republic
- Isotope laboratory Institute of Experimental Botany of the Czech Academy of Sciences Videnska 1083 Prague 4 14220 Czech Republic
| | - Heejeong Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Republic of Korea
| | - Sanghee Nah
- Seoul Center Korea Basic Science Institute Seoul 02841 Republic of Korea
| | - Erik Andris
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 Prague 6 16610 Czech Republic
| | - Xingshu Li
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou 350108 China
| | - Zdeněk Wimmer
- Department of Chemistry of Natural Compounds University of Chemistry and Technology Prague Technická 5 Prague 6 16628 Czech Republic
- Isotope laboratory Institute of Experimental Botany of the Czech Academy of Sciences Videnska 1083 Prague 4 14220 Czech Republic
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
44
|
Wu X, Yang M, Kim JS, Wang R, Kim G, Ha J, Kim H, Cho Y, Nam KT, Yoon J. Reactivity Differences Enable ROS for Selective Ablation of Bacteria. Angew Chem Int Ed Engl 2022; 61:e202200808. [PMID: 35174598 DOI: 10.1002/anie.202200808] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/11/2022]
Abstract
An effective strategy to engineer selective photodynamic agents to surmount bacterial-infected diseases, especially Gram-positive bacteria remains a great challenge. Herein, we developed two examples of compounds for a proof-of-concept study where reactive differences in reactive oxygen species (ROS) can induce selective ablation of Gram-positive bacteria. Sulfur-replaced phenoxazinium (NBS-N) mainly generates a superoxide anion radical capable of selectively killing Gram-positive bacteria, while selenium-substituted phenoxazinium (NBSe-N) has a higher generation of singlet oxygen that can kill both Gram-positive and Gram-negative bacteria. This difference was further evidenced by bacterial fluorescence imaging and morphological changes. Moreover, NBS-N can also successfully heal the Gram-positive bacteria-infected wounds in mice. We believe that such reactive differences may pave a general way to design selective photodynamic agents for ablating Gram-positive bacteria-infected diseases.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Mengyao Yang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Ji Seon Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, 03760, Republic of Korea
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Jeongsun Ha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, 03760, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, 03760, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| |
Collapse
|
45
|
Hu H, Wang H, Yang Y, Xu J, Zhang X. A Bacteria‐Responsive Porphyrin for Adaptable Photodynamic/Photothermal Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Hu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hua Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiang‐Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
46
|
Chen J, Jing Q, Xu Y, Lin Y, Mai Y, Chen L, Wang G, Chen Z, Deng L, Chen J, Yuan C, Jiang L, Xu P, Huang M. Functionalized zinc oxide microparticles for improving the antimicrobial effects of skin-care products and wound-care medicines. BIOMATERIALS ADVANCES 2022; 135:212728. [PMID: 35929206 DOI: 10.1016/j.bioadv.2022.212728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 06/15/2023]
Abstract
ZnO is an important component in skin-protection products and wound-care medicines. However, ZnO's antibacterial activity is moderate. We developed two types of ZnO microparticles loading with phthalocyanine-type photosensitizers (ZnO/PSs) introducing the photodynamic effects. These photosensitive ZnO microparticles exhibited long-term while moderate antimicrobial effects by continuously releasing Zn2+ ions. The antimicrobial efficacies were remarkably enhanced by triggering the photodynamic antimicrobial effects. Compared to the sole ZnO which showed non-measurable antimicrobial activity at a concentration of 10 mg/L, both ZnO/PSs demonstrated antimicrobial rates ranged 99%-99.99% against Escherichia coli, normal and drug-resistant Staphylococcus aureus. In a dorsal wound infection mouse model, treatment with ZnO/PSs significantly accelerated the wound recovery rates. ZnO/PSs promoted wound healing by a dual effect: 1) the release of Zn2+ ions from ZnO facilitating tissue remodeling; 2) the photodynamic effect efficiently eliminates pathogens avoiding infection. Notably, ZnO/PSs inherited the high biosafety of ZnO without causing noticeable toxicity against erythrocyte and endothelial cells. This study not only provides a highly safe and efficient antimicrobial ZnO material for skin cares and wound modulations, but also proposes a strategy to functionalize ZnO materials.
Collapse
Affiliation(s)
- Jingyi Chen
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Qian Jing
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Yuanjie Xu
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Yuxin Lin
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Yuhan Mai
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Liyun Chen
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Guodong Wang
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Zheng Chen
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Lina Deng
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian 350116, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
47
|
Zhang C, Huang L, Sun DW, Pu H. Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127824. [PMID: 34838354 DOI: 10.1016/j.jhazmat.2021.127824] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Gold nanorods (GNRs) outstand in photothermal disinfection but are faced with severe surface chemistry and dose relevant biotoxicity. Herein, a naturally green building block, metal-phenolic networks (MPNs), was employed to functionalize GNRs via coordination reaction, yielding a tunable and biocompatible core-shell photothermal nano-bactericide (GNRs@MPNs). The bioactive GNRs@MPNs built with iron and polyphenols (tannic acid, epigallocatechin gallate, and procyanidins) exhibited superior light-to-heat conversion efficiencies with η = 29.29-44.00%, remarkably preceding that of GNRs (η = 12.24%), which could rapidly ablate 99.8% of Escherichia coli O157: H7 and 98.6% of Staphylococcus aureus bacteria in relatively low efficacy doses (10 ppm of Au). Moreover, local heat triggered by GNRs@MPNs accelerated the healing of the cutaneous wound of a mice model infected by methicillin-resistant S. aureus. The facile synthesis, photothermal synergy, polyphenolic bioactivity, and significantly low efficacy dose of GNRs@MPNs empower them satisfactory efficiency and biosafety in the future broad-spectrum photothermal sterilization applications.
Collapse
Affiliation(s)
- Cuiyun Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
48
|
Wu X, Yang M, Kim JS, Wang R, Kim G, Ha J, Kim H, Cho Y, Nam KT, Yoon J. Reactivity Differences Enable ROS for Selective Ablation of Bacteria. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| | - Mengyao Yang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| | - Ji Seon Kim
- Severance Biomedical Science Institute Brain Korea 21 PLUS Project for Medical Science, College of Medicine Yonsei University Seoul 03760 Republic of Korea
| | - Rui Wang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| | - Jeongsun Ha
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute Brain Korea 21 PLUS Project for Medical Science, College of Medicine Yonsei University Seoul 03760 Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute Brain Korea 21 PLUS Project for Medical Science, College of Medicine Yonsei University Seoul 03760 Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| |
Collapse
|
49
|
Su R, Yan H, Jiang X, Zhang Y, Li P, Su W. Orange-red to NIR emissive carbon dots for antimicrobial, bioimaging and bacteria diagnosis. J Mater Chem B 2022; 10:1250-1264. [PMID: 35128551 DOI: 10.1039/d1tb02457d] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a popular technology for the treatment of bacterial infections. The development of antimicrobial agents combining diagnosis and treatment remains a major challenge. Herein, curcumin carbon quantum dots (Cur-NRCQDs) with antibacterial and imaging effects were synthesized using a hydrothermal method. The fluorescence absorption range of the Cur-NRCQDs in aqueous solution was 555 to 850 nm, showing orange-red to near infrared (NIR) fluorescence, and its maximum emission wavelength was 635 nm. At the same time, Cur-NRCQDs improved the efficiency of Cur as the photosensitizer (PS), showed good storage and light stability, and enhanced the efficiency of reactive oxygen (ROS) generation and antibacterial activity. Under the irradiation of a xenon lamp, Cur-NRCQDs inactivated 100% Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) at concentrations of 10 and 15 μM, respectively. The possible reason for this was that under PDT, the ROS produced by the Cur-NRCQDs destroyed the integrity of the cell membrane, resulting in leakage of the contents. In addition, the Cur-NRCQDs showed good cell compatibility, as they can also enter bacteria and cells for imaging, so they can be employed for the detection of bacteria and cell tissues. Therefore, Cur-NRCQDs are an ideal candidate material for aPDT treatment and fluorescent bioimaging.
Collapse
Affiliation(s)
- Rixiang Su
- College of Pharmacy, Guangxi Key Laborary of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China.
| | - Hongjun Yan
- College of Pharmacy, Guangxi Key Laborary of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China.
| | - Xiantao Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Ying Zhang
- College of Pharmacy, Guangxi Key Laborary of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China.
| | - Peiyuan Li
- College of Pharmacy, Guangxi Key Laborary of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China.
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| |
Collapse
|
50
|
Wang R, Kim D, Yang M, Li X, Yoon J. Phthalocyanine-Assembled "One-For-Two" Nanoparticles for Combined Photodynamic-Photothermal Therapy of Multidrug-Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7609-7616. [PMID: 35112836 DOI: 10.1021/acsami.1c21891] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The treatment of diseases caused by drug-resistant bacterial infections urgently requires new types of broad-spectrum antimicrobial materials. Herein, we introduce a supramolecular self-assembly, NanoPcN, which realizes the combination of type I photodynamic activity and photothermal effects by modifying zinc(II) phthalocyanine with a 3-(dimethylamino) phenoxy group. Antibacterial experiments demonstrate that this "one-for-two" property endows NanoPcN with excellent antimicrobial efficacy, not only against Gram-positive and Gram-negative bacteria but also against multidrug-resistant bacteria. An ultralow concentration of NanoPcN (50 nM) almost completely inhibited the growth of methicillin-resistant Staphylococcus aureus upon 655 nm laser irradiation (0.5 W/cm2) for 2 min, and the antibacterial effect was significantly stronger than that of the known photosensitizers methylene blue and tetraphenylporphyrin tetrasulfonic acid. Thus, the construction of "one-for-two" materials through a simple molecular structure modification paves a feasible way for the development of effective broad-spectrum antibacterial agents.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dayeh Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Mengyao Yang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|