1
|
Xie H, Gao X, Dong B, Wang H, Spokoyny AM, Mu X. Electrochemical deconstruction of alkyl substituted boron clusters to produce alkyl boronate esters. Chem Commun (Camb) 2024; 60:11548-11551. [PMID: 39311548 DOI: 10.1039/d4cc04232h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Closo-Hexaborate (closo-B6H62-) can engage in nucleophilic substitution reactions with a wide variety of alkyl electrophiles. The resulting functionalized boron clusters undergo oxidative electrochemical deconstruction, selectively cleaving B-B bonds while preserving B-C bonds in these species. This approach allows the conversion of multinuclear boron clusters into single boron site organoboranes. Trapped boron-based fragments were isolated from the electrochemical cluster deconstruction process, providing further mechanistic insights into the developed reaction.
Collapse
Affiliation(s)
- Huanhuan Xie
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Xinying Gao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Beibei Dong
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Haoyang Wang
- Laboratory of Mass Spectrometry Analysis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xin Mu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| |
Collapse
|
2
|
Frey NC, Hollister KK, Müller P, Dickie DA, Webster CE, Gilliard RJ. Borafluorene-Mediated Sulfur Activation: Isolation of Boryl-Linked S 7 and S 8 Catenates and Related Chalcogenide Molecules. Inorg Chem 2024. [PMID: 39239900 DOI: 10.1021/acs.inorgchem.4c02459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Although the activation of elemental sulfur by main group compounds is well-documented in the literature, the products of such reactions are often heterocyclic in nature. However, the isolation and characterization of sulfur catenates (i.e., acyclic sulfur chains) is significantly less common. In this study, we report the activation of elemental sulfur by the 9-CAAC-9-borafluorene radical (1) and anion (2) (CAAC = (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene) to form boron-sulfur catenates (3-6). From the isolation of the octasulfide-bridged compound 3, a sulfur extrusion reaction using 1,3,4,5-tetramethylimidazol-2-ylidene (IMe4) was used to decrease the sulfide chain length from eight to seven (4). Bonding analysis of compounds 3-6 was performed using density functional theory, which elucidated the nature of the sulfur-sulfur bonding observed within these compounds. We also report the synthesis of a series of borafluorene-chalcogenide species (7-9), via diphenyl dichalcogenide activation, which portray characteristics described by an internal heavy atom effect. Compounds 7-9 each exhibit blue fluorescence, with the lowest energy emissive process (S2 → S0) at 436 nm (7 and 8) and 431 nm (9). The S1 → S0 emission is not observed experimentally due to a Laporte forbidden transition. Density functional theory was employed to investigate the frontier molecular orbitals and absorption and emission profiles of compounds 7-9.
Collapse
Affiliation(s)
- Nathan C Frey
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, Mississippi 39762, United States
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
3
|
Pattathil V, Pranckevicius C. Aromaticity transfer in an annulated 1,4,2-diazaborole: facile access to Cs symmetric 1,4,2,5-diazadiborinines. Chem Commun (Camb) 2024; 60:7705-7708. [PMID: 38975792 DOI: 10.1039/d4cc02414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A tricyclic annulated 1,4,2-diazaborole is readily accessed via reaction of a bidentate pyridyl-carbene ligand with MesBBr2 followed by reduction. Dearomatization of the flanking rings is shown to increase reactivity of this heterocycle in the form of a B-centred alkylation with MeI. Its reaction with hydrido-, fluoro-, and chloro-boranes reveal an unprecedented ring expansion reaction to form a diverse family of B2C2N2 heterocycles, reduction of which allows facile access to the first examples of Cs symmetric 1,4,2,5-diazadiborinines. DFT calculations have shed light on the electronic structures of the reduced species and provide insight into mechanistic aspects of the observed ring-expansion.
Collapse
Affiliation(s)
- Vignesh Pattathil
- Department of Chemistry, Charles E. Fipke Centre for Innovative Research, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada.
| | - Conor Pranckevicius
- Department of Chemistry, Charles E. Fipke Centre for Innovative Research, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada.
| |
Collapse
|
4
|
Li S, Shiri F, Xu G, Yiu SM, Lee HK, Ng TH, Lin Z, Lu Z. Reactivity of a Hexaaryldiboron(6) Dianion as Boryl Radical Anions. J Am Chem Soc 2024; 146:17348-17354. [PMID: 38864188 DOI: 10.1021/jacs.4c04253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Our study unveils a novel approach to accessing boryl radicals through the spontaneous homolytic cleavage of B-B bonds. We synthesized a hexaaryl-substituted diboron(6) dianion, 1, via the reductive B-B coupling of 9-borafluorene. Intriguingly, compound 1 exhibits the ability to undergo homolytic B-B bond cleavage, leading to the formation of boryl radical anions, as confirmed by EPR studies, in the presence of the 2.2.2-cryptand at room temperature. Moreover, it directly reacts with diphenylacetylene, producing an unprecedented 1,6-diborylated allene species, where the phenyl ring is dearomatized. Density functional theory computational studies suggest that homolytic B-B bond cleavage is favored in the reaction path, and the formation of the boryl radical anion is crucial for dearomatization. Additionally, it achieves the dearomative diborylation of anthracene and the activation of elemental sulfur/selenium under mild conditions. The borylation products have been successfully characterized by NMR spectra, HRMS, and X-ray single-crystal diffraction.
Collapse
Affiliation(s)
- Shuchang Li
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, P. R. China
| | - Farshad Shiri
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Gan Xu
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, P. R. China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, P. R. China
| | - Hung Kay Lee
- Department of Chemistry, Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, P. R. China
| | - Tik Hong Ng
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Zhenpin Lu
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
5
|
Hollister KK, Wentz KE, Gilliard RJ. Redox- and Charge-State Dependent Trends in 5, 6, and 7-Membered Boron Heterocycles: A Neutral Ligand Coordination Chemistry Approach to Boracyclic Cations, Anions, and Radicals. Acc Chem Res 2024; 57:1510-1522. [PMID: 38708938 DOI: 10.1021/acs.accounts.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
ConspectusBoron heterocycles represent an important subset of heteroatom-incorporated rings, attracting attention from organic, inorganic, and materials chemists. The empty pz orbital at the boron center makes them stand out as quintessential Lewis acidic molecules, also serving as a means to modulate electronic structure and photophysical properties in a facile manner. As boracycles are ripe for extensive functionalization, they are used in catalysis, chemical biology, materials science, and continue to be explored as chemical synthons for conjugated materials and reagents. Neutral boron(III)-incorporated polycyclic molecules are some of the most studied types of boracycles, and understanding their redox transformations is important for applications relying on electron transfer and charge transport. While relevant redox species can often be electrochemically observed, it remains challenging to isolate and characterize boracycles where the boron center and/or polycyclic skeleton have been chemically reduced.We describe our recent work isolating 5-, 6-, and 7-membered boracyclic radicals, anions, and cations, focusing on stabilization strategies, ligand-mediated bonding situations, and reactivity. We present a versatile neutral ligand coordination chemistry approach that permits the transformation of boracycles from potent electrophiles to powerful nucleophilic heterocycles that facilitate diverse electron transfer and bond activation chemistry. Although there are a wide range of suitable stabilizing ligands, we have employed both diamino-N-heterocyclic carbenes (NHCs) and cyclic(alkyl)(amino) carbenes (CAACs), which led to boracycles with tunable electronic structures and aromaticity trends. We highlight successful isolation of borafluorene radicals and demonstrate their reversible redox behavior, undergoing oxidation to the cation or reduction to the anion. The borafluorene anion is a chemical synthon that has been used to prepare boryl main-group and transition-metal bonds, luminescent oxabora-spirocycles, borafluorenate-crown ethers, and CO-releasing molecules via carbon dioxide activation. We expanded to 6-membered boracycles and characterized neutral bis(NHC-supported 9-boraphenanthrene)s and the corresponding bis(CAAC-stabilized 9-boraphenanthrene) biradical. We detail the interconvertible multiredox states of boraphenalene, where the boraphenalenyl radical, anion, and cation mimic the charge-states of the all-hydrocarbon analogue. Reactivity studies of the boraphenalenyl anion displayed unusual nucleophilic reactivity at multiple sites on the periphery of the boraphenalenyl tricyclic scaffold. Reduced borepins, 7-membered boron containing heterocycles, have also been isolated. We used a stepwise one-pot synthesis combining the halo-borepin precursor, CAAC, and KC8 to afford the monomeric borepin radicals and anions. The π-system was extended to contain two borepin rings fused in a pentacyclic scaffold, which permitted isolation of diborepin biradicals and a diborepin containing a dibora-quinone core.Our goal is to provide a guide explaining the current structure-function trends and isolation strategies for redox-active boron-incorporated polycyclic molecules to initiate the rational design and use of these types of compounds across a vast chemical space.
Collapse
Affiliation(s)
- Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Kelsie E Wentz
- Department of Chemistry, Johns Hopkins University, Remson Hall, 3400 N Charles Street, Baltimore, Maryland 21218-2625, United States
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
6
|
Hollister KK, Molino A, Jones N, Le VV, Dickie DA, Cafiso DS, Wilson DJD, Gilliard RJ. Unlocking Biradical Character in Diborepins. J Am Chem Soc 2024; 146:6506-6515. [PMID: 38420913 DOI: 10.1021/jacs.3c08297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Systems that possess open- and closed-shell behavior attract significant attention from researchers due to their inherent redox and charge transport properties. Herein, we report the synthesis of the first diborepin biradicals. They display tunable biradical character based on the steric and electronic profile of the stabilizing ligand and the resulting geometric deviation of the diborepin core from planarity. While there are numerous all-carbon-based biradical systems, boron-based biradical compounds are comparatively rare, particularly ones in which the radical sites are disjointed. Calculations using density functional theory (DFT) and multireference methods demonstrate that the fused diborepin scaffold exhibits high biradical character, up to 95%. Use of a nonsterically demanding diaminocarbene promotes the planarization of the pentacyclic framework, resulting in the synthetic realization of a diborepin containing a dibora-quinoidal core, which possesses a closed-shell ground state and thermally accessible triplet state. The biradicals were structurally authenticated and characterized by both solution and solid-state electron paramagnetic resonance (EPR) spectroscopy. Half-field transitions were observed at low temperatures (about 170 K), confirming the presence of the triplet state. Initial reactivity studies of the biradicals led to the isolation and structural characterization of bis(borepin hydride) and bis(borepin dianion).
Collapse
Affiliation(s)
- Kimberly K Hollister
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Nula Jones
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - VuongVy V Le
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
7
|
Lamprecht A, Arrowsmith M, Dietz M, Fuchs S, Rempel A, Härterich M, Braunschweig H. Synthesis, reduction and C-H activation chemistry of azaborinines with redox-active organoboryl substituents. Dalton Trans 2024; 53:1004-1013. [PMID: 38088750 DOI: 10.1039/d3dt03826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The 2,3,4,5,6-pentaphenyl-1,2-azaborinin-1-yl (PPAB) potassium complex 1 undergoes facile salt metathesis with 9,10-dibromo-9,10-dihydroboraanthracene (DBABr2), 5-bromodibenzo[b,d]borole (DBBBr), 1-chlorotetraphenylborole (TPBCl) and dibromo(phenyl)borane (BBr2Ph) to yield the corresponding N-borylated azaborinines N-DBABr-PPAB (2, which hydrolyses and dimerises to the oxo-bridged N,N'-O(DBA)2-(PPAB)2, 3), N,N'-DBA-(PPAB)2 (4), N-DBB-PPAB (5), N-PPB-PPAB (7) and N-BBrPh-PPBA (9). Stepwise reduction of 4 yields the corresponding stable radical anion 4˙- and dianion 42-. One-electron reduction of 5 with KC8 yields the purple radical anion 5˙-, which forms a highly insoluble coordination polymer. 5˙- undergoes very slow radical intramolecular ortho-C-H activation at the C4-phenyl substituent of the PPAB moiety, yielding a BN-analogue of the 5,5'-spiro-bi[dibenzoborole] anion, [6]K. Compound 7 cannot be isolated and undergoes spontaneous and diastereoselective 2,5-anti-addition of the ortho-C-H bond of the PPAB C4-phenyl substituent to yield a novel BNB-analogue of the triply fused dihydrocyclopenta[l]phenanthrene cation, compound 8. Finally the one-electron reduction of 9 results in the ortho-C-H activation of the PPAB C4-phenyl substituent at an in situ-generated dicoordinate boryl anion (10), resulting in the formation of a BNB-analogue of 9H-fluorene, the borate 11-. DFT calculations provide a rationale for the diverse C-H activations observed in these reactions.
Collapse
Affiliation(s)
- Anna Lamprecht
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sonja Fuchs
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Anna Rempel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcel Härterich
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
8
|
Gilmer J, Bolte M, Virovets A, Lerner HW, Fantuzzi F, Wagner M. A Hydride-Substituted Homoleptic Silylborate: How Similar is it to its Diborane(6)-Dianion Isostere? Chemistry 2023; 29:e202203119. [PMID: 36210643 PMCID: PMC10100083 DOI: 10.1002/chem.202203119] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/05/2022]
Abstract
The B-nucleophilic 9H-9-borafluorene dianion reacts with 9-chloro-9-silafluorene to afford air- and moisture-stable silylborate salts M[Ar2 (H)B-Si(H)Ar2 ] (M[HBSiH], M=Li, Na). Li[HBSiH] and Me3 SiCl give the B-pyridine adduct Ar2 (py)B-Si(H)Ar2 ((py)BSiH) or the chlorosilane Li[Ar2 (H)B-Si(Cl)Ar2 ] (Li[HBSiCl]) in C6 H6 -pyridine or THF. In both cases, the first step is H- abstraction at the B center. The resulting free borane subsequently binds a py or thf ligand. While the py adduct is stable at room temperature, the thf adduct undergoes a 1,2-H shift via the cyclic B(μ-H)Si intermediate BHSi, which is afterwards attacked at the Si atom by a Cl- ion to give Li[HBSiCl]. DFT calculations were employed to support the proposed reaction mechanism and to characterize the electronic structure of BHSi. Treatment of Li[HBSiCl] with the N-heterocyclic carbene IMe introduces the neutral donor at the Si atom and leads to Ar2 (H)B-Si(IMe)Ar2 (HBSi(IMe)), a donor-acceptor-stabilized silylene.
Collapse
Affiliation(s)
- Jannik Gilmer
- Institut für Anorganische und Analytische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt (Main), Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt (Main), Germany
| | - Alexander Virovets
- Institut für Anorganische und Analytische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt (Main), Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt (Main), Germany
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, UK
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt (Main), Germany
| |
Collapse
|
9
|
Bennaamane S, Rialland B, Khrouz L, Fustier‐Boutignon M, Bucher C, Clot E, Mézailles N. Ammonia Synthesis at Room Temperature and Atmospheric Pressure from N 2 : A Boron-Radical Approach. Angew Chem Int Ed Engl 2023; 62:e202209102. [PMID: 36301016 PMCID: PMC10107438 DOI: 10.1002/anie.202209102] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Ammonia, NH3 , is an essential molecule, being part of fertilizers. It is currently synthesized via the Haber-Bosch process, from the very stable dinitrogen molecule, N2 and dihydrogen, H2 . This process requires high temperatures and pressures, thereby generating ca 1.6 % of the global CO2 emissions. Alternative strategies are needed to realize the functionalization of N2 to NH3 under mild conditions. Here, we show that boron-centered radicals provide a means of activating N2 at room temperature and atmospheric pressure whilst allowing a radical process to occur, leading to the production of borylamines. Subsequent hydrolysis released NH4 + , the acidic form of NH3 . EPR spectroscopy supported the intermediacy of radicals in the process, corroborated by DFT calculations, which rationalized the mechanism of the N2 functionalization by R2 B radicals.
Collapse
Affiliation(s)
- Soukaina Bennaamane
- Laboratoire Hétérochimie Fondamentale et AppliquéeUniversité Paul SabatierCNRS118 Route de Narbonne31062ToulouseFrance
| | - Barbara Rialland
- Laboratoire Hétérochimie Fondamentale et AppliquéeUniversité Paul SabatierCNRS118 Route de Narbonne31062ToulouseFrance
| | - Lhoussain Khrouz
- Univ LyonENS LyonCNRSUniversite Lyon 1Laboratoire de ChimieUMR 518246 allée d'Italie69364LyonFrance
| | - Marie Fustier‐Boutignon
- Laboratoire Hétérochimie Fondamentale et AppliquéeUniversité Paul SabatierCNRS118 Route de Narbonne31062ToulouseFrance
| | - Christophe Bucher
- Univ LyonENS LyonCNRSUniversite Lyon 1Laboratoire de ChimieUMR 518246 allée d'Italie69364LyonFrance
| | - Eric Clot
- ICGMUniv. MontpellierCNRSENSCM34000MontpellierFrance
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et AppliquéeUniversité Paul SabatierCNRS118 Route de Narbonne31062ToulouseFrance
| |
Collapse
|
10
|
Jin T, Bolte M, Lerner H, Mewes J, Wagner M. Charge-Transfer Transitions Govern the Reactivity and Photophysics of Vicinally Diphosphanyl-Substituted Diborapentacenes. Chemistry 2022; 28:e202202234. [PMID: 36094675 PMCID: PMC9826252 DOI: 10.1002/chem.202202234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 01/11/2023]
Abstract
2,3-Difluoro-5,14-dihydro-5,14-diborapentacene (DBP) was endowed with two vicinal Ph2 P groups by an SN Ar reaction at both CF sites using Ph2 PSiMe3 . Computations reveal the ambipolar product P to undergo P-to-B charge transfer under ambient light irradiation. Consequently, P is prone to photooxidation by air, yielding the Ph2 P(O) species PO. With S8 or [Me3 O][BF4 ], P furnishes the Ph2 P(S) or Ph2 P(Me)+ derivatives PS or [PMe][BF4 ]2 . Along the series P, PO, PS, and [PMe][BF4 ]2 , the redox potentials shift anodically from E1/2 =-1.89 V to -1.02 V (CH2 Cl2 ). Thus, derivatization of the Ph2 P group allows late-stage modulation of the LUMO-energy level of the DBP. Derivatization also influences the emission properties of the compounds, as PO shows green (521 nm) and [PMe][BF4 ]2 red (622 nm) fluorescence in C6 H6 , while P and PS are dark. With CuBr and AgBr, P forms dimeric [M(μ-Br)]2 complexes [PCu]2 and [PAg]2 , which show pronounced metal-to-ligand charge transfer (MLCT), making P a promising ligand for photocatalysts.
Collapse
Affiliation(s)
- Tao Jin
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Michael Bolte
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Jan‐Michael Mewes
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische ChemieUniversität BonnBeringstraße 453115BonnGermany
| | - Matthias Wagner
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| |
Collapse
|
11
|
Wentz KE, Molino A, Freeman LA, Dickie DA, Wilson DJD, Gilliard RJ. Systematic Electronic and Structural Studies of 9-Carbene-9-Borafluorene Monoanions and Transformations into Luminescent Boron Spirocycles. Inorg Chem 2022; 61:17049-17058. [PMID: 36259945 DOI: 10.1021/acs.inorgchem.2c01945] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The impact of the exact spatial arrangement of the alkali metal on the electronic properties of 9-carbene-9-borafluorene monoanions is assessed, and a series of [K][9-CAAC-9-borafluorene] complexes (1-4) have been isolated (CAAC = cyclic(alkyl)(amino) carbene, (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene). Compound 1, which contains [B]-K(THF)3 interactions, is compared to charge-separated 2-4, which were prepared by capturing the potassium cations with 18-crown-6, 2.2.2-cryptand, or 1,10-phenanthroline. Notably, the 11B NMR spectra of charge-separated borafluorene monoanions 2-4 show distinct low-field signatures compared to 1. Theoretical calculations indicate that charge separation may be exploited to influence the nucleophilic and electron transfer properties of 9-carbene-9-borafluorene monoanions. When [K(2.2.2-cryptand)][9-CAAC-9-borafluorene] (3) is reacted with 9,10-phenanthrenequinone and 1,10-phenanthroline-5,6-dione, the carbene ligand is displaced, and new air-stable R2BO2 spirocycles are formed (5 and 6, respectively). Remarkably, compounds 5 and 6 display fluorescence under UV light in both the solid and solution phases with quantum yields of up to 20%. In addition, a drastic red-shift in the emission color is observed in 6 because of the presence of the nitrogen atoms on the phenanthroline moiety. Mechanistic insights into the formation of these spirocycles are also described based on density functional theory calculations.
Collapse
Affiliation(s)
- Kelsie E Wentz
- Department of Chemistry, University of Virginia, Charlottesville 22904, Virginia, United States
| | - Andrew Molino
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Lucas A Freeman
- Department of Chemistry, University of Virginia, Charlottesville 22904, Virginia, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville 22904, Virginia, United States
| | - David J D Wilson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, Charlottesville 22904, Virginia, United States
| |
Collapse
|
12
|
Wentz KE, Molino A, Freeman LA, Dickie DA, Wilson DJD, Gilliard RJ. Activation of Carbon Dioxide by 9-Carbene-9-borafluorene Monoanion: Carbon Monoxide Releasing Transformation of Trioxaborinanone to Luminescent Dioxaborinanone. J Am Chem Soc 2022; 144:16276-16281. [PMID: 36037435 DOI: 10.1021/jacs.2c06845] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The first structurally characterized example of a trioxaborinanone (2) is produced by the reaction of a 9-carbene-9-borafluorene monoanion and carbon dioxide. When compound 2 is heated or irradiated with UV light, carbon monoxide (CO) is released, and a luminescent dioxaborinanone (3) is formed. Notably, carbon monoxide releasing molecules (CORMs) are of interest for their ability to deliver a specific amount of CO. Due to the turn-on fluorescence observed as a result of the conversion to 3, CORM 2 serves as a means to optically observe CO loss "by eye" under thermal or photochemical conditions.
Collapse
Affiliation(s)
- Kelsie E Wentz
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Lucas A Freeman
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| |
Collapse
|
13
|
Hollister KK, Yang W, Mondol R, Wentz KE, Molino A, Kaur A, Dickie DA, Frenking G, Pan S, Wilson DJD, Gilliard RJ. Isolation of Stable Borepin Radicals and Anions. Angew Chem Int Ed Engl 2022; 61:e202202516. [PMID: 35289046 PMCID: PMC9324096 DOI: 10.1002/anie.202202516] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 12/31/2022]
Abstract
Borepin, a 7-membered boron-containing heterocycle, has become an emerging molecular platform for the development of new materials and optoelectronics. While electron-deficient borepins are well-established, reduced electron-rich species have remained elusive. Herein we report the first isolable, crystalline borepin radical (2 a, 2 b) and anion (3 a, 3 b) complexes, which have been synthesized by potassium graphite (KC8 ) reduction of cyclic(alkyl)(amino) carbene-dibenzo[b,d]borepin precursors. Borepin radicals and anions have been characterized by EPR or NMR, elemental analysis, X-ray crystallography, and cyclic voltammetry. In addition, the bonding features have been investigated computationally using density functional theory.
Collapse
Affiliation(s)
- Kimberly K. Hollister
- Department of ChemistryUniversity of Virginia409 McCormick Rd./PO Box 400319CharlottesvilleVA 22904USA
| | - Wenlong Yang
- Department of ChemistryUniversity of Virginia409 McCormick Rd./PO Box 400319CharlottesvilleVA 22904USA
| | - Ranajit Mondol
- Department of ChemistryUniversity of Virginia409 McCormick Rd./PO Box 400319CharlottesvilleVA 22904USA
| | - Kelsie E. Wentz
- Department of ChemistryUniversity of Virginia409 McCormick Rd./PO Box 400319CharlottesvilleVA 22904USA
| | - Andrew Molino
- Department of Chemistry and PhysicsLa Trobe Institute for Molecular ScienceLatrobe UniversityMelbourne3086, VictoriaAustralia
| | - Aishvaryadeep Kaur
- Department of Chemistry and PhysicsLa Trobe Institute for Molecular ScienceLatrobe UniversityMelbourne3086, VictoriaAustralia
| | - Diane A. Dickie
- Department of ChemistryUniversity of Virginia409 McCormick Rd./PO Box 400319CharlottesvilleVA 22904USA
| | - Gernot Frenking
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435043MarburgGermany
| | - Sudip Pan
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435043MarburgGermany
| | - David J. D. Wilson
- Department of Chemistry and PhysicsLa Trobe Institute for Molecular ScienceLatrobe UniversityMelbourne3086, VictoriaAustralia
| | - Robert J. Gilliard
- Department of ChemistryUniversity of Virginia409 McCormick Rd./PO Box 400319CharlottesvilleVA 22904USA
| |
Collapse
|
14
|
Hollister KK, Yang W, Mondol R, Wentz KE, Molino A, Kaur A, Dickie DA, Frenking G, Pan S, Wilson DJD, Gilliard RJ. Isolation of Stable Borepin Radicals and Anions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kimberly K. Hollister
- Department of Chemistry University of Virginia 409 McCormick Rd./PO Box 400319 Charlottesville VA 22904 USA
| | - Wenlong Yang
- Department of Chemistry University of Virginia 409 McCormick Rd./PO Box 400319 Charlottesville VA 22904 USA
| | - Ranajit Mondol
- Department of Chemistry University of Virginia 409 McCormick Rd./PO Box 400319 Charlottesville VA 22904 USA
| | - Kelsie E. Wentz
- Department of Chemistry University of Virginia 409 McCormick Rd./PO Box 400319 Charlottesville VA 22904 USA
| | - Andrew Molino
- Department of Chemistry and Physics La Trobe Institute for Molecular Science Latrobe University Melbourne 3086, Victoria Australia
| | - Aishvaryadeep Kaur
- Department of Chemistry and Physics La Trobe Institute for Molecular Science Latrobe University Melbourne 3086, Victoria Australia
| | - Diane A. Dickie
- Department of Chemistry University of Virginia 409 McCormick Rd./PO Box 400319 Charlottesville VA 22904 USA
| | - Gernot Frenking
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Sudip Pan
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - David J. D. Wilson
- Department of Chemistry and Physics La Trobe Institute for Molecular Science Latrobe University Melbourne 3086, Victoria Australia
| | - Robert J. Gilliard
- Department of Chemistry University of Virginia 409 McCormick Rd./PO Box 400319 Charlottesville VA 22904 USA
| |
Collapse
|
15
|
Mao X, Zhang J, Lu Z, Xie Z. A (μ-hydrido)diborane(4) anion and its coordination chemistry with coinage metals. Chem Sci 2022; 13:3009-3013. [PMID: 35382458 PMCID: PMC8905795 DOI: 10.1039/d2sc00318j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
A tetra(o-tolyl) (μ-hydrido)diborane(4) anion 1, an analogue of [B2H5]- species, was facilely prepared through the reaction of tetra(o-tolyl)diborane(4) with sodium hydride. Unlike common sp2-sp3 diborane species, 1 exhibited a σ-B-B bond nucleophilicity towards NHC-coordinated transition-metal (Cu, Ag, and Au) halides, resulting in the formation of η2-B-B bonded complexes 2 as confirmed by single-crystal X-ray analyses. Compared with 1, the structural data of 2 imply significant elongations of B-B bonds, following the order Au > Cu > Ag. DFT studies show that the diboron ligand interacts with the coinage metal through a three-center-two-electron B-M-B bonding mode. The fact that the B-B bond of the gold complex is much prolonged than the related Cu and Ag compounds might be ascribed to the superior electrophilicity of the gold atom.
Collapse
Affiliation(s)
- Xiaofeng Mao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Jie Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Zhenpin Lu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Zuowei Xie
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| |
Collapse
|
16
|
Wang J, Yan R, Hu Y, Du G, Liao G, Yang H, Luo Y, Zheng X, Chen Y, Wang S, Li X. Density‐Dependent Emission Colors from a Conformation‐Switching Chromophore in Polyurethanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Junwei Wang
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials Key Laboratory of High Energy Density Materials Ministry of Education, Beijing Institute of Technology Beijing 100081 China
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Rui Yan
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials Key Laboratory of High Energy Density Materials Ministry of Education, Beijing Institute of Technology Beijing 100081 China
| | - Yaofang Hu
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials Key Laboratory of High Energy Density Materials Ministry of Education, Beijing Institute of Technology Beijing 100081 China
| | - Guoshuai Du
- School of Aerospace Engineering Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China
| | - Guanming Liao
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Huanzhi Yang
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials Key Laboratory of High Energy Density Materials Ministry of Education, Beijing Institute of Technology Beijing 100081 China
| | - Yunjun Luo
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials Key Laboratory of High Energy Density Materials Ministry of Education, Beijing Institute of Technology Beijing 100081 China
| | - Xiaoyan Zheng
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Yabin Chen
- School of Aerospace Engineering Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China
| | - Suning Wang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials Key Laboratory of High Energy Density Materials Ministry of Education, Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
17
|
Budy H, Prey SE, Buch CD, Bolte M, Lerner HW, Wagner M. Nucleophilic borylation of fluorobenzenes with reduced arylboranes. Chem Commun (Camb) 2021; 58:254-257. [PMID: 34881754 DOI: 10.1039/d1cc06225e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two challenging but rewarding topics in chemical synthesis are C-F-bond activation and the development of B-centered nucleophiles. We have now tackled both subjects simultaneously by forming aryl-B bonds via SNAr-type reactions on fluorobenzenes under mild conditions using Na2[FluBBFlu], Li2[HBFlu], and Li2[Me2DBA] (BFlu = 9-borafluorenyl, Me2DBA = 9,10-dimethyl-9,10-dihydro-9,10-diboraanthracene).
Collapse
Affiliation(s)
- Hendrik Budy
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, Frankfurt (Main) D-60438, Germany.
| | - Sven E Prey
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, Frankfurt (Main) D-60438, Germany.
| | - Christoph D Buch
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, Frankfurt (Main) D-60438, Germany.
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, Frankfurt (Main) D-60438, Germany.
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, Frankfurt (Main) D-60438, Germany.
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, Frankfurt (Main) D-60438, Germany.
| |
Collapse
|
18
|
Pearce KG, Canham EPF, Nixon JF, Crossley IR. A Benzodiphosphaborolediide. Chemistry 2021; 27:16342-16346. [PMID: 34586681 DOI: 10.1002/chem.202103427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 01/06/2023]
Abstract
The first example of a diphosphaborolediide, the benzo-fused [C6 H4 P2 BPh]2- (12- ), is prepared from ortho-bis(phosphino)benzene (C6 H4 {PH2 }) and dichlorophenylborane, via a sequential lithiation approach. The dilithio-salt can be obtained as an oligomeric THF solvate or discrete TMEDA adduct, both of which are fully characterized, including by X-ray diffraction. Alongside NICS calculations, data strongly suggest some aromaticity within 12- , which is further supported by preliminary coordination studies that demonstrate η5 -coordination to a zerovalent molybdenum center, as observed crystallographically for the oligomeric [{Mo(CO)3 (η5 -1)}{μ-η1 -Mo(CO)3 (TMEDA)}2 ] ⋅ [μ-Li(THF)][μ-Li(TMEDA)].
Collapse
Affiliation(s)
- Kyle G Pearce
- Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Elinor P F Canham
- Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - John F Nixon
- Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Ian R Crossley
- Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| |
Collapse
|
19
|
Wang J, Yan R, Hu Y, Du G, Liao G, Yang H, Luo Y, Zheng X, Chen Y, Wang S, Li X. Density-Dependent Emission Colors from a Conformation-Switching Chromophore in Polyurethanes. Angew Chem Int Ed Engl 2021; 61:e202112290. [PMID: 34734465 DOI: 10.1002/anie.202112290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Indexed: 01/11/2023]
Abstract
Achieving full-color emission from a single chromophore is not only highly desirable from practical considerations, but also greatly challenging for fundamental research. Herein, we demonstrated the density-dependent emission colors from a single boron-containing chromophore, from which multi-color fluorescent polyurethanes were prepared as well. Originating from its switchable molecular conformations, the emission color of the chromophore was found to be governed by the packing density and strongly influenced by hydrogen bonding interactions. The chromophore was incorporated into polyurethanes to achieve full-color emitting materials; the emission color was only dependent on the chromophore density and could be tuned via synthetic approach by controlling the compositions. The emission colors could also be modulated by physical approaches, including by swelling/deswelling process, compression under high pressure, and even blending the fluorescent polyurethane with non-emitting ones.
Collapse
Affiliation(s)
- Junwei Wang
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China.,School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Rui Yan
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China
| | - Yaofang Hu
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China
| | - Guoshuai Du
- School of Aerospace Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Guanming Liao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Huanzhi Yang
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China
| | - Yunjun Luo
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyan Zheng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yabin Chen
- School of Aerospace Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Suning Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
20
|
Wentz KE, Molino A, Freeman LA, Dickie DA, Wilson DJD, Gilliard RJ. Reactions of 9-Carbene-9-Borafluorene Monoanion and Selenium: Synthesis of Boryl-Substituted Selenides and Diselenides. Inorg Chem 2021; 60:13941-13949. [PMID: 34472333 DOI: 10.1021/acs.inorgchem.1c02124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions of 9-carbene-9-borafluorene monoanion (1) with elemental selenium and selenium-containing reagents are reported. When compound 1 is reacted with grey selenium in THF, various boryl-substituted selenides and diselenides are produced (2-6), including molecules resulting from migration of the carbene ligand Dipp group (Dipp = 2,6-diisopropylphenyl). However, when a similar reaction between 1 and grey selenium is performed in toluene in the presence of 18-crown-6, boryl-substituted selenide 7 is obtained as the sole boron-containing product. As compound 7 is the monomeric variant of organoselenide 3, 18-crown-6 promotes both product selectivity and solubility in a nonpolar solvent. Diselenide 5, which features a trans-bent B-Se-Se-B core, was directly isolated via reaction of 1 with Se2Cl2 in THF. Computational modeling suggests that the formation of 5 proceeds via a radical mechanism. This was supported by an experiment demonstrating that the CAAC-borafluorene radical also reacts with SeCl2 to yield 5 [CAAC = (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene]. Energy decomposition analysis of 5 indicates a covalent borafluorene-diselenide bond (ΔEint, -168.9 kcal mol-1). All of the new compounds were fully characterized via single-crystal X-ray diffraction and multinuclear nuclear magnetic resonance (1H, 13C, 11B, and 77Se).
Collapse
Affiliation(s)
- Kelsie E Wentz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Lucas A Freeman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
21
|
Budy H, Kaese T, Bolte M, Lerner H, Wagner M. A Chemiluminescent Tetraaryl Diborane(4) Tetraanion. Angew Chem Int Ed Engl 2021; 60:19397-19405. [PMID: 34161639 PMCID: PMC8456833 DOI: 10.1002/anie.202106980] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Two subvalent, redox-active diborane(4) anions, [3]4- and [3]2- , carrying exceptionally high negative charge densities are reported: Reduction of 9-methoxy-9-borafluorene with Li granules without stirring leads to the crystallization of the B(sp3 )-B(sp2 ) diborane(5) anion salt Li[5]. [5]- contains a 2,2'-biphenyldiyl-bridged B-B core, a chelating 2,2'-biphenyldiyl moiety, and a MeO substituent. Reduction of Li[5] with Na metal gives the Na+ salt of the tetraanion [3]4- in which two doubly reduced 9-borafluorenyl fragments are linked via a B-B single bond. Comproportionation of Li[5] and Na4 [3] quantitatively furnishes the diborane(4) dianion salt Na2 [3], the doubly boron-doped congener of 9,9'-bis(fluorenylidene). Under acid catalysis, Na2 [3] undergoes a formal Stone-Wales rearrangement to yield a dibenzo[g,p]chrysene derivative with B=B core. Na2 [3] shows boron-centered nucleophilicity toward n-butyl chloride. Na4 [3] produces bright blue chemiluminescence when exposed to air.
Collapse
Affiliation(s)
- Hendrik Budy
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Thomas Kaese
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Michael Bolte
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Matthias Wagner
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| |
Collapse
|
22
|
Budy H, Kaese T, Bolte M, Lerner H, Wagner M. A Chemiluminescent Tetraaryl Diborane(4) Tetraanion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hendrik Budy
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Thomas Kaese
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
23
|
Ando N, Yamada T, Narita H, Oehlmann NN, Wagner M, Yamaguchi S. Boron-Doped Polycyclic π-Electron Systems with an Antiaromatic Borole Substructure That Forms Photoresponsive B–P Lewis Adducts. J Am Chem Soc 2021; 143:9944-9951. [DOI: 10.1021/jacs.1c04251] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naoki Ando
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Takuya Yamada
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Hiroki Narita
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Niels N. Oehlmann
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt (Main), Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt (Main), Germany
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
24
|
Trageser T, Bebej D, Bolte M, Lerner HW, Wagner M. B-B vs. B-H Bond Activation in a (μ-Hydrido)diborane(4) Anion upon Cycloaddition with CO 2 , Isocyanates, or Carbodiimides. Angew Chem Int Ed Engl 2021; 60:13500-13506. [PMID: 33740318 PMCID: PMC8252796 DOI: 10.1002/anie.202103427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 11/11/2022]
Abstract
The intriguing (μ‐hydrido)diboranes(4) with their prominent pristine representative [B2H5]− have mainly been studied theoretically. We now describe the behavior of the planarized tetraaryl (μ‐hydrido)diborane(4) anion [1H]− in cycloaddition reactions with the homologous series of heterocumulenes CO2, iPrNCO, and iPrNCNiPr. We show that a C=O bond of CO2 selectively activates the B−B bond of [1H]−, while the μ‐H ligand is left untouched ([2H]−). The carbodiimide iPrNCNiPr, in contrast, neglects the B−B bond and rather adds the B‐bonded H− ion to its central C atom to generate a formamidinate bridge across the B2 pair ([3]−). As a hybrid, the isocyanate iPrNCO combines the reactivity patterns of both its congeners and gives two products: one of them ([4H]−) is related to [2H]−, the other ([5]−) is an analog of [3]−. We finally propose a mechanistic scenario that rationalizes the individual reaction outcomes and combines them to a coherent picture of B–B vs. B–H bond activation.
Collapse
Affiliation(s)
- Timo Trageser
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt (Main), Germany
| | - Dariusz Bebej
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt (Main), Germany
| | - Michael Bolte
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt (Main), Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt (Main), Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt (Main), Germany
| |
Collapse
|
25
|
Trageser T, Bebej D, Bolte M, Lerner H, Wagner M. B–B vs. B–H Bond Activation in a (μ‐Hydrido)diborane(4) Anion upon Cycloaddition with CO
2
, Isocyanates, or Carbodiimides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Timo Trageser
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Dariusz Bebej
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
26
|
Wentz KE, Molino A, Weisflog SL, Kaur A, Dickie DA, Wilson DJD, Gilliard RJ. Stabilization of the Elusive 9-Carbene-9-Borafluorene Monoanion. Angew Chem Int Ed Engl 2021; 60:13065-13072. [PMID: 33780572 DOI: 10.1002/anie.202103628] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 01/09/2023]
Abstract
Two-electron reduction of carbene-supported 9-bromo-9-borafluorenes with excess KC8 , Na, or Li-naphthalenide affords six N-heterocyclic carbene (NHC)- or cyclic(alkyl)(amino) carbene (CAAC)-stabilized borafluorene anions (3-8)-the first isolated and structurally authenticated examples of the elusive 9-carbene-9-borafluorene monoanion. The electronic structure, bonding, and aromaticity of the boracyclic anions were comprehensively investigated via computational studies. Compounds 5 and 8 react with metal halides via salt elimination to give new B-E (E=Au, Se, Ge)-containing materials (9-12). Upon reaction with diketones, the carbene ligand cleanly dissociates from 5 or 8 to yield new B-O containing spirocycles (13-14) that cannot be easily obtained using "normal" valent borafluorene compounds. Collectively, these results support the notion that carbene-stabilized monoanionic borafluorenes may serve as a new platform for the one-step construction of higher-value boracyclic materials.
Collapse
Affiliation(s)
- Kelsie E Wentz
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, Latrobe University, Melbourne, 3086, Victoria, Australia
| | - Sarah L Weisflog
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| | - Aishvaryadeep Kaur
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, Latrobe University, Melbourne, 3086, Victoria, Australia
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, Latrobe University, Melbourne, 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| |
Collapse
|
27
|
Wentz KE, Molino A, Weisflog SL, Kaur A, Dickie DA, Wilson DJD, Gilliard RJ. Stabilization of the Elusive 9‐Carbene‐9‐Borafluorene Monoanion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kelsie E. Wentz
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Andrew Molino
- Department of Chemistry and Physics La Trobe Institute for Molecular Science Latrobe University Melbourne 3086 Victoria Australia
| | - Sarah L. Weisflog
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Aishvaryadeep Kaur
- Department of Chemistry and Physics La Trobe Institute for Molecular Science Latrobe University Melbourne 3086 Victoria Australia
| | - Diane A. Dickie
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - David J. D. Wilson
- Department of Chemistry and Physics La Trobe Institute for Molecular Science Latrobe University Melbourne 3086 Victoria Australia
| | - Robert J. Gilliard
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| |
Collapse
|
28
|
Maiti A, Zhang F, Krummenacher I, Bhattacharyya M, Mehta S, Moos M, Lambert C, Engels B, Mondal A, Braunschweig H, Ravat P, Jana A. Anionic Boron- and Carbon-Based Hetero-Diradicaloids Spanned by a p-Phenylene Bridge. J Am Chem Soc 2021; 143:3687-3692. [PMID: 33651600 DOI: 10.1021/jacs.0c12624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the synthesis and characterization of anionic boron- and carbon-based Kekulé diradicaloids spanned by a p-phenylene bridge. In contrast to Thiele's hydrocarbon, a closed-shell singlet system, they show an appreciable population of the triplet state at room temperature, as evidenced by both NMR and EPR spectroscopy. Moreover, en route to these anionic boron- and carbon-based hetero-diradicaloids, the formation of an isolable diamino(4-diarylboryl-phenyl)methyl radical was observed.
Collapse
Affiliation(s)
- Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| | - Fangyuan Zhang
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Moulika Bhattacharyya
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Michael Moos
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Prince Ravat
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| |
Collapse
|
29
|
Su X, Bartholome TA, Tidwell JR, Pujol A, Yruegas S, Martinez JJ, Martin CD. 9-Borafluorenes: Synthesis, Properties, and Reactivity. Chem Rev 2021; 121:4147-4192. [DOI: 10.1021/acs.chemrev.0c01068] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaojun Su
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Tyler A. Bartholome
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - John R. Tidwell
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Alba Pujol
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Sam Yruegas
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Jesse J. Martinez
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Caleb D. Martin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
30
|
|
31
|
Prey SE, Wagner M. Threat to the Throne: Can Two Cooperating Boron Atoms Rival Transition Metals in Chemical Bond Activation and Catalysis? Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001356] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sven E. Prey
- Institut für Anorganische Chemie Goethe-Universität Frankfurt am Main Max-von-Laue-Str. 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt am Main Max-von-Laue-Str. 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
32
|
He J, Rauch F, Finze M, Marder TB. (Hetero)arene-fused boroles: a broad spectrum of applications. Chem Sci 2020; 12:128-147. [PMID: 34163585 PMCID: PMC8178973 DOI: 10.1039/d0sc05676f] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
(Hetero)arene-fused boroles are a class of compounds containing a 5-membered boron diene-ring. Based on their molecular framework, the (hetero)arene-fused boroles can be considered as boron-doped polycyclic antiaromatic hydrocarbons and are thus of great interest. Due to the vacant pz orbital on the 3-coordinate boron atom, the antiaromaticity and strain of the 5-membered borole ring, (hetero)arene-fused boroles possess strong electron accepting abilities and Lewis acidity. By functionalization, they can be tuned to optimize different properties for specific applications. Herein, we summarize synthetic methodologies, different strategies for their functionalization, and applications of (hetero)arene-fused boroles. (Hetero)arene-fused boroles, ‘antiaromatic’ 2n-electron π-systems, more stable and more functionalizable than boroles, offer greater potential for a variety of applications.![]()
Collapse
Affiliation(s)
- Jiang He
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Florian Rauch
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Maik Finze
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
33
|
Budy H, Gilmer J, Trageser T, Wagner M. Anionic Organoboranes: Delicate Flowers Worth Caring for. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000786] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hendrik Budy
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Str. 7 60438 Frankfurt (Main) Germany
| | - Jannik Gilmer
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Str. 7 60438 Frankfurt (Main) Germany
| | - Timo Trageser
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Str. 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Str. 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
34
|
Trageser T, Bolte M, Lerner HW, Wagner M. B-B Bond Nucleophilicity in a Tetraaryl μ-Hydridodiborane(4) Anion. Angew Chem Int Ed Engl 2020; 59:7726-7731. [PMID: 32058652 PMCID: PMC7317828 DOI: 10.1002/anie.202000292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Indexed: 11/15/2022]
Abstract
The tetraaryl μ‐hydridodiborane(4) anion [2H]− possesses nucleophilic B−B and B−H bonds. Treatment of K[2H] with the electrophilic 9‐H‐9‐borafluorene (HBFlu) furnishes the B3 cluster K[3], with a triangular boron core linked through two BHB two‐electron, three‐center bonds and one electron‐precise B−B bond, reminiscent of the prominent [B3H8]− anion. Upon heating or prolonged stirring at room temperature, K[3] rearranges to a slightly more stable isomer K[3 a]. The reaction of M[2H] (M+=Li+, K+) with MeI or Me3SiCl leads to equimolar amounts of 9‐R‐9‐borafluorene and HBFlu (R=Me or Me3Si). Thus, [2H]− behaves as a masked [:BFlu]− nucleophile. The HBFlu by‐product was used in situ to establish a tandem substitution‐hydroboration reaction: a 1:1 mixture of M[2H] and allyl bromide gave the 1,3‐propylene‐linked ditopic 9‐borafluorene 5 as sole product. M[2H] also participates in unprecedented [4+1] cycloadditions with dienes to furnish dialkyl diaryl spiroborates, M[R2BFlu].
Collapse
Affiliation(s)
- Timo Trageser
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt (Main), Germany
| | - Michael Bolte
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt (Main), Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt (Main), Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt (Main), Germany
| |
Collapse
|
35
|
Gilmer J, Budy H, Kaese T, Bolte M, Lerner H, Wagner M. The 9H-9-Borafluorene Dianion: A Surrogate for Elusive Diarylboryl Anion Nucleophiles. Angew Chem Int Ed Engl 2020; 59:5621-5625. [PMID: 31834978 PMCID: PMC7155136 DOI: 10.1002/anie.201914219] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 11/13/2022]
Abstract
Double reduction of the THF adduct of 9H-9-borafluorene (1⋅THF) with excess alkali metal affords the dianion salts M2 [1] in essentially quantitative yields (M=Li-K). Even though the added charge is stabilized through π delocalization, [1]2- acts as a formal boron nucleophile toward organoboron (1⋅THF) and tetrel halide electrophiles (MeCl, Et3 SiCl, Me3 SnCl) to form B-B/C/Si/Sn bonds. The substrate dependence of open-shell versus closed-shell pathways has been investigated.
Collapse
Affiliation(s)
- Jannik Gilmer
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Hendrik Budy
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Thomas Kaese
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Michael Bolte
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Matthias Wagner
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| |
Collapse
|
36
|
Trageser T, Bolte M, Lerner H, Wagner M. B−B Bond Nucleophilicity in a Tetraaryl μ‐Hydridodiborane(4) Anion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Timo Trageser
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| |
Collapse
|