1
|
Marchi-Delapierre C, Cavazza C, Ménage S. EcNikA, a versatile tool in the field of artificial metalloenzymes. J Inorg Biochem 2025; 262:112740. [PMID: 39426332 DOI: 10.1016/j.jinorgbio.2024.112740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/14/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024]
Abstract
This review describes the multiple advantages of using of EcNikA, a nickel transport protein, in the design of artificial metalloenzymes as alternative catalysts for synthetic biology. The rationale behind the strategy of artificial enzyme design is discussed, with particular emphasis on de novo active site reconstitution. The impact of the protein scaffold on the artificial active site and thus the final catalytic properties is detailed, highlighting the considerable aptitude of hybrid systems to catalyze selective reactions, from alkene to thioether transformations (epoxidation, hydroxychlorination, sulfoxidation). The different catalytic approaches - from in vitro to in cristallo - are compared, revealing the considerable advantages of protein crystals in terms of stabilization and acceleration of reaction kinetics. The versatility of proteins, based on metal and ligand diversity and medium/physical conditions, are thus illustrated for oxidation catalysis.
Collapse
Affiliation(s)
| | - Christine Cavazza
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, CBM, F-38000 Grenoble, France
| | - Stéphane Ménage
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, CBM, F-38000 Grenoble, France.
| |
Collapse
|
2
|
Fujieda N, Matsuo A, Itoh S. Copper Complexes with Protein-Based N-Donor Ligands as cis-Selective Nascent Cyclopropanases. Chemistry 2024; 30:e202402803. [PMID: 39258820 DOI: 10.1002/chem.202402803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
In this study, we aimed to develop protein-based metal ligands to catalyze cis-selective cyclopropanation using the TM1459 cupin protein superfamily. Copper complexes with TM1459 mutants containing the 3-His metal-binding site exhibited excellent diastereoselectivity in cyclopropanation reactions with styrene and ethyl diazoacetate. Further mutations in the secondary coordination sphere increased the cis-preference with t-butyl diazoacetate as the substrate with up to 80 : 20 (cis:trans ratio) and high enantioselectivity (90 % ee).
Collapse
Affiliation(s)
- Nobutaka Fujieda
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, 599-8531, Japan
| | - Atsuki Matsuo
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shinobu Itoh
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Morita Y, Kubo H, Matsumoto R, Fujieda N. A thiopyridine-bound mirror-image copper center in an artificial non-heme metalloenzyme. J Inorg Biochem 2024; 260:112694. [PMID: 39167879 DOI: 10.1016/j.jinorgbio.2024.112694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Artificial metalloenzymes, in which a metal complex and protein matrix are combined, have been synthesized to catalyze stereoselective reactions using the chiral environment provided by the protein cavity. Artificial metalloenzymes can be engineered by the chemical modification and mutagenesis of the protein matrix. We developed artificial non-heme metalloenzymes using a cupin superfamily protein (TM1459) with a 4-His tetrad-metal-binding motif. The Cu-bound H52A/C106D mutant with 3-His triad showed a S-enantioselective Michael addition of nitromethane to α,β-unsaturated ketone, 2-aza-chalcone 1. In this study, we demonstrated a chemical modification near the copper-binding site of this mutant to reverse its enantioselectivity. For chemical modification, the amino acid on the Si-face of the binding state of 1 to the copper center was replaced with Cys, followed by reaction with 4,4'-dithiopyridine (4-PDS) to form S-(pyridin-4-ylthio)cysteine (Cys-4py). Cu-bound I49C-4py/H52A/C106D showed reversal of the enantioselectivity from S-form to R-form (ee = 71%, (R)). The effect of steric hindrance of the amino acids at position 49 on enantioselectivity was investigated using I49X/H52A/C106D mutants (X = A, C, I, F, and W). Additionally, chemical modification with 2,2'-dithiopyridine (2-PDS) produced I49-2py/H52A/C106D, which showed lower R-enantioselectivity than I49-4py/H52A/C106D. Among the mutants, the 4py-modification on the Si-face was the most effective in reversing the enantioselectivity. By tuning the Re-face side, the H54A mutation introduced into the I49C-4py/H52A/C106D increased the R-enantioselectivity (ee = 88%, (R)). X-ray crystallography revealed a coordinated structure with ligation of thiopyridine in Cu-bound I49C-4py/H52A/H54A/C106D.
Collapse
Affiliation(s)
- Yoshitsugu Morita
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan.
| | - Hiroki Kubo
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Ryusei Matsumoto
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Nobutaka Fujieda
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan.
| |
Collapse
|
4
|
Huang HP, Xie YH, Gan XM, Wen XY, Wang CX, Deng YQ, Zhang ZW. Squaramide-catalyzed enantioselective Michael addition of nitromethane to 2-enoylazaarenes: synthesis of chiral azaarene-containing γ-nitroketones. RSC Adv 2024; 14:20056-20060. [PMID: 38911828 PMCID: PMC11192089 DOI: 10.1039/d4ra03826f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Bifunctional chiral squaramide-catalyzed highly enantioselective Michael addition of nitromethane to diverse 2-enoylazaarenes was successfully performed. This protocol provided a set of chiral azaarene-containing γ-nitroketones with up to 98% yield and 98% ee in a solvent-free catalytic system under mild conditions. Furthermore, gram-scale synthetic utility was also showcased.
Collapse
Affiliation(s)
- Hong-Ping Huang
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| | - Yu-Hang Xie
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| | - Xu-Mei Gan
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| | - Xin-Yu Wen
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| | - Cui-Xia Wang
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| | - Yan-Qiu Deng
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| | - Zhen-Wei Zhang
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| |
Collapse
|
5
|
Kato S, Onoda A, Schwaneberg U, Hayashi T. Evolutionary Engineering of a Cp*Rh(III) Complex-Linked Artificial Metalloenzyme with a Chimeric β-Barrel Protein Scaffold. J Am Chem Soc 2023; 145. [PMID: 36892401 PMCID: PMC10119979 DOI: 10.1021/jacs.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 03/10/2023]
Abstract
Evolutionary engineering of our previously reported Cp*Rh(III)-linked artificial metalloenzyme was performed based on a DNA recombination strategy to improve its catalytic activity toward C(sp2)-H bond functionalization. Improved scaffold design was achieved with α-helical cap domains of fatty acid binding protein (FABP) embedded within the β-barrel structure of nitrobindin (NB) as a chimeric protein scaffold for the artificial metalloenzyme. After optimization of the amino acid sequence by directed evolution methodology, an engineered variant, designated NBHLH1(Y119A/G149P) with enhanced performance and enhanced stability was obtained. Additional rounds of metalloenzyme evolution provided a Cp*Rh(III)-linked NBHLH1(Y119A/G149P) variant with a >35-fold increase in catalytic efficiency (kcat/KM) for cycloaddition of oxime and alkyne. Kinetic studies and MD simulations revealed that aromatic amino acid residues in the confined active-site form a hydrophobic core which binds to aromatic substrates adjacent to the Cp*Rh(III) complex. The metalloenzyme engineering process based on this DNA recombination strategy will serve as a powerful method for extensive optimization of the active-sites of artificial metalloenzymes.
Collapse
Affiliation(s)
- Shunsuke Kato
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Akira Onoda
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Ulrich Schwaneberg
- Institute
of Biotechnology, RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany
| | - Takashi Hayashi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
6
|
Grill B, Pavkov-Keller T, Grininger C, Darnhofer B, Gruber K, Hall M, Schwab H, Steiner K. Engineering TM1459 for Stabilisation against Inactivation by Amino Acid Oxidation. CHEM-ING-TECH 2023. [DOI: 10.1002/cite.202200176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Birgit Grill
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
| | - Tea Pavkov-Keller
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
- University of Graz Institute of Molecular Biosciences Humboldtstraße 50 8010 Graz Austria
| | - Christoph Grininger
- University of Graz Institute of Molecular Biosciences Humboldtstraße 50 8010 Graz Austria
| | - Barbara Darnhofer
- Medical University of Graz Core Facility Mass Spectrometry Stiftingtalstraße 24 8010 Graz Austria
| | - Karl Gruber
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
- University of Graz Institute of Molecular Biosciences Humboldtstraße 50 8010 Graz Austria
| | - Mélanie Hall
- University of Graz Institute of Chemistry Heinrichstraße 28 8010 Graz Austria
| | - Helmut Schwab
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
- Graz University of Technology Institute of Molecular Biotechnology Petersgasse 14 8010 Graz Austria
| | - Kerstin Steiner
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
| |
Collapse
|
7
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Design, synthesis, biological assessment, and in-Silico studies of 1,2,4-triazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors. Bioorg Chem 2022; 121:105687. [DOI: 10.1016/j.bioorg.2022.105687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022]
|
9
|
Hall M. Enzymatic strategies for asymmetric synthesis. RSC Chem Biol 2021; 2:958-989. [PMID: 34458820 PMCID: PMC8341948 DOI: 10.1039/d1cb00080b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Enzymes, at the turn of the 21st century, are gaining a momentum. Especially in the field of synthetic organic chemistry, a broad variety of biocatalysts are being applied in an increasing number of processes running at up to industrial scale. In addition to the advantages of employing enzymes under environmentally friendly reaction conditions, synthetic chemists are recognizing the value of enzymes connected to the exquisite selectivity of these natural (or engineered) catalysts. The use of hydrolases in enantioselective protocols paved the way to the application of enzymes in asymmetric synthesis, in particular in the context of biocatalytic (dynamic) kinetic resolutions. After two decades of impressive development, the field is now mature to propose a panel of catalytically diverse enzymes for (i) stereoselective reactions with prochiral compounds, such as double bond reduction and bond forming reactions, (ii) formal enantioselective replacement of one of two enantiotopic groups of prochiral substrates, as well as (iii) atroposelective reactions with noncentrally chiral compounds. In this review, the major enzymatic strategies broadly applicable in the asymmetric synthesis of optically pure chiral compounds are presented, with a focus on the reactions developed within the past decade.
Collapse
Affiliation(s)
- Mélanie Hall
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
- Field of Excellence BioHealth - University of Graz Austria
| |
Collapse
|
10
|
Klein AS, Zeymer C. Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis. Protein Eng Des Sel 2021; 34:6150309. [PMID: 33635315 DOI: 10.1093/protein/gzab003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Metalloproteins are essential to sustain life. Natural evolution optimized them for intricate structural, regulatory and catalytic functions that cannot be fulfilled by either a protein or a metal ion alone. In order to understand this synergy and the complex design principles behind the natural systems, simpler mimics were engineered from the bottom up by installing de novo metal sites in either natural or fully designed, artificial protein scaffolds. This review focuses on key challenges associated with this approach. We discuss how proteins can be equipped with binding sites that provide an optimal coordination environment for a metal cofactor of choice, which can be a single metal ion or a complex multinuclear cluster. Furthermore, we highlight recent studies in which artificial metalloproteins were engineered towards new functions, including electron transfer and catalysis. In this context, the powerful combination of de novo protein design and directed evolution is emphasized for metalloenzyme development.
Collapse
Affiliation(s)
- Andreas S Klein
- Department of Chemistry, Technische Universität München, 85747 Garching, Germany
| | - Cathleen Zeymer
- Department of Chemistry, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
11
|
Himiyama T, Okamoto Y. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Molecules 2020; 25:molecules25132989. [PMID: 32629938 PMCID: PMC7411666 DOI: 10.3390/molecules25132989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 11/16/2022] Open
Abstract
Artificial metalloenzymes (ArMs) comprise a synthetic metal complex in a protein scaffold. ArMs display performances combining those of both homogeneous catalysts and biocatalysts. Specifically, ArMs selectively catalyze non-natural reactions and reactions inspired by nature in water under mild conditions. In the past few years, the construction of ArMs that possess a genetically incorporated unnatural amino acid and the directed evolution of ArMs have become of great interest in the field. Additionally, biochemical applications of ArMs have steadily increased, owing to the fact that compartmentalization within a protein scaffold allows the synthetic metal complex to remain functional in a sea of inactivating biomolecules. In this review, we present updates on: 1) the newly reported ArMs, according to their type of reaction, and 2) the unique biochemical applications of ArMs, including chemoenzymatic cascades and intracellular/in vivo catalysis. We believe that ArMs have great potential as catalysts for organic synthesis and as chemical biology tools for pharmaceutical applications.
Collapse
Affiliation(s)
- Tomoki Himiyama
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan;
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Ikeda, Osaka 563-8577, Japan
| | - Yasunori Okamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Correspondence: ; Tel.: +81-22-795-5264
| |
Collapse
|