1
|
Al Hareri M, Romero P, Britten JF, Emslie DJH. Silyl- and Germyl-Substituted Boranes: Synthesis and Investigation as Potential Atomic Layer Deposition Precursors. Inorg Chem 2024; 63:21143-21154. [PMID: 39428956 DOI: 10.1021/acs.inorgchem.4c03416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Boranes featuring bulky hypersilyl or supersilyl groups and/or sterically unencumbered trimethylgermyl substituents were synthesized for investigation as potential precursors for atomic layer deposition (ALD) of elemental boron. The envisaged ALD process would employ a boron trihalide coreactant, exploiting the formation of strong silicon-halogen and germanium-halogen bonds as a driving force. The alkali metal silyl and germyl compounds hypersilyl lithium, {(Me3Si)3Si}Li(THF)3 (1), supersilyl sodium, (tBu3Si)Na(THF)n (2, n = 2-3), and trimethylgermyl lithium, {Me3GeLi(THF)2}2 (3), were used for the synthesis of the silyl- and germyl-substituted boranes in this work. Compounds 1 and 2 were synthesized as previously reported, and compound 3 was isolated from the reaction of trimethylgermane with tert-butyl lithium. Compounds 2 and 3 were crystallographically characterized. Reaction of B(NMe2)Cl2 with 2 equiv of 1 afforded previously reported {(Me3Si)3Si}2B(NMe2) (4), whereas reactions of B(NMe2)Cl2 or {B(NMe2)F2}2 with excess 2 only afforded the monosilyl boranes (tBu3Si)B(NMe2)X {X = Cl (5) and F (6)}. Reaction of 5 with 0.5 equiv of {Me3GeLi(THF)2}2 (3) provided the first example of a mixed silyl/germyl-substituted borane, (tBu3Si)(Me3Ge)B(NMe2) (7). Attempts to synthesize (Me3Ge)2B(NMe2) from the 1:1 reaction of B(NMe2)Cl2 with {Me3GeLi(THF)2}2 afforded a mixture of two major products, one of which was identified as the tri(germyl)(amido)borate {(Me3Ge)3B(NMe2)}Li(THF)2 (8); compound 8 was isolated from the 1:1.5 reaction. Reaction of more sterically encumbered B(TMP)Cl2 with 1 equiv of {Me3GeLi(THF)2}2 afforded the di(germyl)(amido)borane (Me3Ge)2B(TMP) (9). Boranes 4, 7, and 9 and borate 8 were crystallographically characterized. The thermal stability and volatility of boranes 4, 7, and 9 was evaluated, the solution reactivity of 4 and 7 with boron trihalides was assessed, and ALD was attempted using 4 in combination with BCl3 and BBr3 at 150 and 300 °C.
Collapse
Affiliation(s)
- Majeda Al Hareri
- Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Patricio Romero
- Intel Corporation, Technology Research, 2511 NE Century Blvd., Hillsboro, Oregon 97124, United States
| | - James F Britten
- McMaster Analytical X-Ray Diffraction Facility (MAX), McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L8, Canada
| | - David J H Emslie
- Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
2
|
Zhu H, Fujimori S, Kostenko A, Inoue S. Dearomatization of C 6 Aromatic Hydrocarbons by Main Group Complexes. Chemistry 2023; 29:e202301973. [PMID: 37535350 DOI: 10.1002/chem.202301973] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
The dearomatization reaction is a powerful method for transformation of simple aromatic compounds to unique chemical architectures rapidly in synthetic chemistry. Over the past decades, the chemistry in this field has evolved significantly and various important organic compounds such as crucial bioactive molecules have been synthesized through dearomatization. In general, photochemical conditions or assistance by transition metals are required for dearomatization of rigid arenes. Recently, main-group elements, especially naturally abundant elements in the Earth's crust, have attracted attention as they have low toxicity and are cost-effective compared to the late transition metals. In recent decades, a variety of low-valent main-group molecules, which enable the activation of stable aromatic compounds under mild conditions, have been developed. This minireview highlights the developments in the chemistry of dearomatization of C6 aromatic hydrocarbons by main-group compounds leading to the formation of seven-membered EC6 (E=main-group elements) ring or cycloaddition products.
Collapse
Affiliation(s)
- Huaiyuan Zhu
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| | - Shiori Fujimori
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| |
Collapse
|
3
|
Lv W, Dai Y, Guo R, Su Y, Ruiz DA, Liu LL, Tung CH, Kong L. Geometrically Constrained Organoboron Species as Lewis Superacids and Organic Superbases. Angew Chem Int Ed Engl 2023; 62:e202308467. [PMID: 37395499 DOI: 10.1002/anie.202308467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
This report unveils an advancement in the formation of a Lewis superacid (LSA) and an organic superbase by the geometrical deformation of an organoboron species towards a T-shaped geometry. The boron dication [2]2+ supported by an amido diphosphine pincer ligand features both a large fluoride ion affinity (FIA>SbF5 ) and hydride ion affinity (HIA>B(C6 F5 )3 ), which qualifies it as both a hard and soft LSA. The unusual Lewis acidic properties of [2]2+ are further showcased by its ability to abstract hydride and fluoride from Et3 SiH and AgSbF6 respectively, and effectively catalyze the hydrodefluorination, defluorination/arylation, as well as reduction of carbonyl compounds. One and two-electron reduction of [2]2+ affords stable boron radical cation [2]⋅+ and borylene 2, respectively. The former species has an extremely high spin density of 0.798e at the boron atom, whereas the latter compound has been demonstrated to be a strong organic base (calcd. pKBH + (MeCN)=47.4) by both theoretical and experimental assessment. Overall, these results demonstrate the strong ability of geometric constraining to empower the central boron atom.
Collapse
Affiliation(s)
- Weiwei Lv
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yuyang Dai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Rui Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - David A Ruiz
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Leo Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Yadav R, Janßen P, Schorpp M, Greb L. Calix[4]pyrrolato-germane-(thf) 2: Unlocking the Anti-van't Hoff-Le Bel Reactivity of Germanium(IV) by Ligand Dissociation. J Am Chem Soc 2023; 145:17746-17754. [PMID: 37549106 PMCID: PMC10436272 DOI: 10.1021/jacs.3c04424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 08/09/2023]
Abstract
Anti-van't Hoff-Le Bel configured p-block element species possess intrinsically high reactivity and are thus challenging to isolate. Consequently, numerous elements in this configuration, including square-planar germanium(IV), remain unexplored. Herein, we follow a concept to reach anti-van't Hoff-Le Bel reactivity by ligand dissociation from a rigid calix[4]pyrrole germane in its bis(thf) adduct. While the macrocyclic ligand assures square-planar coordination in the uncomplexed form, the labile thf donors provide robustness for isolation on a multigram scale. Unique properties of a low-lying acceptor orbital imparted to germanium(IV) can be verified, e.g., by isolating an elusive anionic hydrido germanate and exploiting it for challenging bond activations. Aldehydes, water, alcohol, and a CN triple bond are activated for the first time by germanium-ligand cooperativity. Unexpected behaviors against fluoride ion donors disclose critical interferences of a putative redox-coupled fluoride ion transfer during the experimental determination of Lewis acidity. Overall, we showcase how ligand lability grants access to the uncharted chemistry of anti-van't Hoff-Le Bel germanium(IV) and line up this element as a member in the emerging class of structurally constrained p-block elements.
Collapse
Affiliation(s)
| | | | | | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
5
|
Wang W, Bao M, Dai Y, Liu X, Liu C, Liu C, Su Y, Wang X. Isolable Pincer-type Dianionic Dialane(6). Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenjuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Manling Bao
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Yuyang Dai
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Xiaona Liu
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Chen Liu
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Chunmeng Liu
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Cui J, Dietz M, Härterich M, Fantuzzi F, Lu W, Dewhurst RD, Braunschweig H. Diphosphino-Functionalized 1,8-Naphthyridines: a Multifaceted Ligand Platform for Boranes and Diboranes. Chemistry 2021; 27:15751-15756. [PMID: 34545966 PMCID: PMC9292315 DOI: 10.1002/chem.202102721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 12/25/2022]
Abstract
A 1,8-naphthyridine diphosphine (NDP) reacts with boron-containing Lewis acids to generate complexes featuring a number of different naphthyridine bonding modes. When exposed to diborane B2 Br4 , NDP underwent self-deprotonation to afford [NDP-B2 Br3 ]Br, an unsymmetrical diborane comprised of four fused rings. The reaction of two equivalents of monoborane BBr3 and NDP in a non-polar solvent provided the simple phosphine-borane adduct [NDP(BBr3 )2 ], which then underwent intramolecular halide abstraction to furnish the salt [NDP-BBr2 ][BBr4 ], featuring a different coordination mode from that of [NDP-B2 Br3 ]Br. Direct deprotonation of NDP by KHMDS or PhCH2 K generates mono- and dipotassium reagents, respectively. The monopotassium reagent reacts with one or half an equivalent of B2 (NMe2 )2 Cl2 to afford NDP-based diboranes with three or four amino substituents.
Collapse
Affiliation(s)
- Jingjing Cui
- School of Chemistry and Environmental EngineeringWuhan Institute of TechnologyWuhan430205P. R. China
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maximilian Dietz
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Marcel Härterich
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Felipe Fantuzzi
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität WürzburgEmil-Fischer-Str. 4297074WürzburgGermany
| | - Wei Lu
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Rian D. Dewhurst
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
7
|
Shimoyama D, Baser-Kirazli N, Lalancette RA, Jäkle F. Electrochromic Polycationic Organoboronium Macrocycles with Multiple Redox States. Angew Chem Int Ed Engl 2021; 60:17942-17946. [PMID: 34111328 DOI: 10.1002/anie.202105852] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Polycationic macrocycles are attractive as they display unique molecular switching capabilities arising from their redox properties. Although diverse polycationic macrocycles have been developed, those based on cationic boron systems remain very limited. We present herein the development of novel polycationic macrocycles by introducing organoboronium moieties into a conjugated organoboron macrocyclic framework. These macrocycles consist of four bipyridylboronium units that are connected by fluorene and either electron-deficient arylborane or electron-rich arylamine moieties. Electrochemical studies reveal that the macrocycles undergo reversible multi-step redox processes with transfer of up to 10 electrons. Switchable electrochromic behavior is demonstrated via spectroelectrochemical studies and the observed color changes are rationalized by correlation with computed electronic transitions using DFT methods.
Collapse
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Nurcan Baser-Kirazli
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| |
Collapse
|
8
|
Shimoyama D, Baser‐Kirazli N, Lalancette RA, Jäkle F. Electrochromic Polycationic Organoboronium Macrocycles with Multiple Redox States. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Nurcan Baser‐Kirazli
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
9
|
Qin Z, Zhang R, Ma Y, Li F. Co(II)‐Catalyzed Oxidation of
N,N
‐Dimethylaminoethanol: An Efficient Synthesis of Unsymmetrical (2,4‐) and Symmetrical (2,6‐) Diarylpyridines through Annulation of Aromatic Ketones with a Nitrogen Source. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zemin Qin
- School of Pharmaceutical Sciences Zhejiang Chinese Medical University Hangzhou 310053 P. R China
- School of Pharmaceutical and Chemical Engineering Taizhou University Taizhou 318000 P. R. China
| | - Ruiqin Zhang
- School of Pharmaceutical Sciences Zhejiang Chinese Medical University Hangzhou 310053 P. R China
| | - Yongmin Ma
- School of Pharmaceutical Sciences Zhejiang Chinese Medical University Hangzhou 310053 P. R China
- School of Pharmaceutical and Chemical Engineering Taizhou University Taizhou 318000 P. R. China
| | - Fanzhu Li
- School of Pharmaceutical Sciences Zhejiang Chinese Medical University Hangzhou 310053 P. R China
| |
Collapse
|
10
|
Maar RR, Katzman BD, Boyle PD, Staroverov VN, Gilroy JB. Cationic Boron Formazanate Dyes**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ryan R. Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Benjamin D. Katzman
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Paul D. Boyle
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Viktor N. Staroverov
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| |
Collapse
|
11
|
|
12
|
Maar RR, Katzman BD, Boyle PD, Staroverov VN, Gilroy JB. Cationic Boron Formazanate Dyes*. Angew Chem Int Ed Engl 2021; 60:5152-5156. [PMID: 33217138 DOI: 10.1002/anie.202015036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Incorporation of cationic boron atoms into molecular frameworks is an established strategy for creating chemical species with unusual bonding and reactivity but is rarely thought of as a way of enhancing molecular optoelectronic properties. Using boron formazanate dyes as examples, we demonstrate that the wavelengths, intensities, and type of the first electronic transitions in BN heterocycles can be modulated by varying the charge, coordination number, and supporting ligands at the cationic boron atom. UV-vis absorption spectroscopy measurements and density-functional (DFT) calculations show that these modulations are caused by changes in the geometry and extent of π-conjugation of the boron formazanate ring. These findings suggest a new strategy for designing optoelectronic materials based on π-conjugated heterocycles containing boron and other main-group elements.
Collapse
Affiliation(s)
- Ryan R Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Benjamin D Katzman
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Paul D Boyle
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Viktor N Staroverov
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Joe B Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
13
|
Moon HW, Maity A, Radosevich AT. Ancillary Tethering Influences σ3-P vs σ5-P Speciation and Enables Intermolecular S–H Oxidative Addition to Nontrigonal Phosphorus Compounds. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hye Won Moon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ayan Maity
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T. Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Kundu S. Pincer-Type Ligand-Assisted Catalysis and Small-Molecule Activation by non-VSEPR Main-Group Compounds. Chem Asian J 2020; 15:3209-3224. [PMID: 32794320 DOI: 10.1002/asia.202000800] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Indexed: 12/21/2022]
Abstract
In 2005, a facile dihydrogen activation was reported by the Power group using an alkyne analog of germanium [ArGe≡GeAr; Ar=2,6-Trip2 -C6 H3 (Trip=2,4,6-i Pr3 -C6 H2 )]. After that, a significant progress has been made in the activation of various small molecules by main-group compounds, and a variety of stoichiometric and catalytic processes have been formulated using the p-block elements. In this regard, compounds containing low-valent main-group elements with a frontier orbitals of relatively small energy gaps or compounds forming frustrated Lewis pair (FLP) became quite successful. In spite of these promising stoichiometric and catalytic transformations, redox-cycling catalysts based on main-group elements remain extremely rare. Recently, it has been observed that pincer type ligands supported geometry constrained main-group compounds are capable of acting as redox catalysts similar to those of the transition metals. In this review, we focus on the synthesis and the structural aspects of the geometry constrained main-group compounds using pincer ligands. Emphasis has been placed on their applications on catalytic activity and small molecules activation.
Collapse
Affiliation(s)
- Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
15
|
Blavatnik‐Nachwuchspreis: E. Levy / EuChemS‐Verdienstpreis: E. Keinan / Karl‐Ziegler‐Vorlesung: D. Milstein. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Blavatnik Young Scientist Award: E. Levy / EuChemS Award for Service: E. Keinan / Karl Ziegler Lectureship: D. Milstein. Angew Chem Int Ed Engl 2020; 59:8755. [DOI: 10.1002/anie.202004625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|