1
|
Wei Y, Wang G, Zhang Z, Li M, Ma N, Wu H, Zhang G. Cope Rearrangement of 1-Acyl-2-vinylcyclopropanes to Cyclohept-4-Enones. J Org Chem 2024. [PMID: 38166204 DOI: 10.1021/acs.joc.3c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Cycloheptenones are widespread in natural products and bioactive molecules. An efficient and convenient NaH-mediated Cope Rearrangement of doubly activated vinylcyclopropanes is reported for the synthesis of cyclohepten-4-ones. These flexible intramolecular reactions were applicable to a wide range of substrates and could be performed on gram scale. The derivatization of the product leads to short and highly efficient synthesis of some useful functional molecules.
Collapse
Affiliation(s)
- Yinhe Wei
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Gang Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Mengjuan Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hao Wu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Jiang F, Meng T, Zhou Y, Xiong Z, Zhao Y, Guo W. Pseudo-Diastereodivergent Synthesis of Chiral Fluorenes Bearing Bis-1,3-Nonadjacent Stereogenic Centers via Organocatalytic Desymmetrization of meso-Epoxides. Org Lett 2023; 25:6006-6011. [PMID: 37526278 DOI: 10.1021/acs.orglett.3c02150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
We report an enantio- and diastereodivergent synthesis of enantioenriched fluorenes bearing bis-1,3-nonadjacent stereocenters with broad substrate scope and high enantioselectivity (up to 99% ee) under low catalyst loading (0.1 mol %). The key to the success of this method is the pseudo-diastereodivergent desymmetrization of stereoisomers of meso-epoxides enabled by the same organocatalyst. Furthermore, some of the chiral fluorenes obtained exhibit high fluorescence quantum yields (up to 76.6%), as evidenced by photophysical properties studies.
Collapse
Affiliation(s)
- Feng Jiang
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Tengfei Meng
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Ying Zhou
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Zhenying Xiong
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yupei Zhao
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wengang Guo
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
3
|
Cai M, Ma J, Wu Q, Lin A, Yao H. Enantioselective Syntheses of 2-Azabicyclo[2.2.1]heptanes via Brønsted Acid Catalyzed Ring-Opening of meso-Epoxides. Org Lett 2022; 24:8791-8795. [PMID: 36414324 DOI: 10.1021/acs.orglett.2c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A chiral phosphoric acid-catalyzed ring-opening of meso-epoxides was developed. A range of 2-azabicyclo[2.2.1]heptanes were obtained in high yields with excellent enantioselectivities. In addition, the hydroxyl and amide groups in the products provided handles for further derivatization.
Collapse
Affiliation(s)
- Min Cai
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiao Ma
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qimin Wu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
4
|
Meninno S, Lattanzi A. Epoxides: Small Rings to Play with under Asymmetric Organocatalysis. ACS ORGANIC & INORGANIC AU 2022; 2:289-305. [PMID: 35942279 PMCID: PMC9354533 DOI: 10.1021/acsorginorgau.2c00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Optically pure epoxides
are recognized as highly valuable products
and key intermediates, useful in different areas from pharmaceutical
and agrochemical industries to natural product synthesis and materials
science. The predictable fate of the ring-opening process, in terms
of stereoselectivity and often of regioselectivity, enables useful
functional groups to be installed at vicinal carbon atoms in a desired
manner. In this way, products of widespread utility either for synthetic
applications or as final products can be obtained. The advent of asymmetric
organocatalysis provided a new convenient tool, not only for their
preparation but also for the elaboration of this class of heterocycles.
In this review, we focus on recent developments of stereoselective
organocatalytic ring-opening reactions of meso-epoxides,
kinetic resolution of racemic epoxides, and Meinwald-type rearrangement.
Examples of asymmetric organocatalytic processes toward specific synthetic
targets, which include ring opening of an epoxide intermediate, are
also illustrated.
Collapse
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
5
|
Cai L, Zhang H, Wang K, Zhao H. Pd‐Catalyzed Decarboxylative Coupling Between Allyl Carbonates and Vinyl Benzoxazinanones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lu‐Yu Cai
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Heng Zhang
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Kuo Wang
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Hong‐Wu Zhao
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| |
Collapse
|
6
|
Tyszka-Gumkowska A, Purohit VB, Nienałtowski T, Dąbrowski M, Kajetanowicz A, Grela K. Testing enabling techniques for olefin metathesis reactions of lipophilic substrates in water as a diluent. iScience 2022; 25:104131. [PMID: 35434568 PMCID: PMC9010768 DOI: 10.1016/j.isci.2022.104131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Olefin metathesis reactions of diverse polyfunctional substrates were conducted in water emulsions using two hydrophobic ruthenium catalysts in the presence of air. Instead of using surfactants to increase the efficiency of the metathesis reaction in water, ultrasound and microwave techniques were tested on a small-scale reaction, whereas conventional heating and mechanical stirring were effective enough to provide high conversion and selectivity on a larger scale. The developed conditions extend known protocols for the aqueous metathesis methodology, utilizing relatively low catalyst loadings and allowing for simple product isolation and purification. The established synthetic protocol was successfully adopted in the large-scale synthesis of a pharmaceutically related product – sildenafil (Viagra) derivative. Sustainable approach for metathesis reaction in water emulsion system on air. Utilization of enabling techniques for boosting metathesis under aqueous conditions. RCM of medically important sildenafil derivative.
Collapse
Affiliation(s)
- Agata Tyszka-Gumkowska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Vishal B Purohit
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Tomasz Nienałtowski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.,Polpharma SA Pharmaceutical Works, Pelplińska 19, 83-200 Starogard Gdański, Poland
| | - Michał Dąbrowski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Kajetanowicz
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
7
|
Xu Y, Zhai TY, Xu Z, Ye LW. Recent advances towards organocatalytic enantioselective desymmetrizing reactions. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Rodriguez S, Uria U, Reyes E, Prieto L, Rodríguez‐Rodríguez M, Tejero T, Merino P, Vicario JL. The Pseudotransannular Ring Opening of 1‐Aminocyclohept‐4‐ene‐derived Epoxides in the Synthesis of Tropane Alkaloids: Total Synthesis of (±)‐Ferrugine. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sandra Rodriguez
- Department of Organic and Inorganic Chemistry University of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Uxue Uria
- Department of Organic and Inorganic Chemistry University of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Efraim Reyes
- Department of Organic and Inorganic Chemistry University of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry University of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Marta Rodríguez‐Rodríguez
- Department of Organic and Inorganic Chemistry University of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Tomás Tejero
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Universidad de Zaragoza, CSIC 50009 Zaragoza Spain
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza 50009 Zaragoza Spain
| | - Jose L. Vicario
- Department of Organic and Inorganic Chemistry University of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| |
Collapse
|
9
|
Rodriguez S, Uria U, Reyes E, Prieto L, Rodríguez-Rodríguez M, Carrillo L, Vicario JL. Enantioselective construction of the 8-azabicyclo[3.2.1]octane scaffold: application in the synthesis of tropane alkaloids. Org Biomol Chem 2021; 19:3763-3775. [PMID: 33949549 DOI: 10.1039/d1ob00143d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 8-azabicyclo[3.2.1]octane scaffold is the central core of the family of tropane alkaloids, which display a wide array of interesting biological activities. As a consequence, research directed towards the preparation of this basic structure in a stereoselective manner has attracted attention from many research groups worldwide across the years. Despite this, most of the approaches rely on the enantioselective construction of an acyclic starting material that contains all the required stereochemical information to allow the stereocontrolled formation of the bicyclic scaffold. As an alternative, there are a number of important methodologies reported in which the stereochemical control is achieved directly in the same transformation that generates the 8-azabicyclo[3.2.1]octane architecture or in a desymmetrization process starting from achiral tropinone derivatives. This review compiles the most relevant achievements in these areas.
Collapse
Affiliation(s)
- Sandra Rodriguez
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| | - Uxue Uria
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| | - Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| | - Marta Rodríguez-Rodríguez
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| | - Luisa Carrillo
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| | - Jose L Vicario
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
10
|
Liu W, Yang X. Recent Advances in (Dynamic) Kinetic Resolution and Desymmetrization Catalyzed by Chiral Phosphoric Acids. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100091] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wei Liu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
- Shanghai Institute of Organic Chemistry Shanghai 200032 (P. R. China
| | - Xiaoyu Yang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 (P. R. China
| |
Collapse
|
11
|
Qiu Y, Yuan H, Zhang X, Zhang J. Insights into the Chiral Phosphoric Acid-Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes: An Allyl Carbocation/Phosphate Pair Mechanism. J Org Chem 2021; 86:4121-4130. [PMID: 33617248 DOI: 10.1021/acs.joc.0c02956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Computational studies of chiral phosphoric acid (CPA)-catalyzed dynamic kinetic asymmetric hydroamination (DyKAH) of racemic allenes show that the reaction proceeds through a catalytic asymmetric model involving a highly reactive π-allylic carbocationic intermediate, generated from a racemic allene through an intermolecular proton transfer mediated by CPA, which also results in a high E/Z selectivity. Moreover, the distortion-interaction, atom in molecule, and electrostatic interaction analyses and space-filling models are employed on the basis of the DyKAH catalyzed by (S)-A5 (reaction 1) or (R)-A2 (reaction 2) to explain the high enantioselectivity and the controlling effects of SPINOL scaffolds on the signs of enantioselectivity. Our calculations indicate that the enantioselectivity of reactions 1 and 2 can be mainly ascribed to the favorable noncovalent interactions within the stronger chiral electrostatic environment created by the phosphoric acid in the preferential transition states. Finally, the effect of (S/R)-SPINOL-based CPAs on the signs of enantioselectivity can be explained by the different combination modes of substrates into the chiral binding pocket of the catalyst controlled by the chirality of SPINOL backbones. Overall, the new insights into the reaction rationalize the outcome and these key factors that affect the product enantioselectivity are important to guide the DyKAHs.
Collapse
Affiliation(s)
- Yuting Qiu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiyan Yuan
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoying Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jingping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
12
|
Parella R, Jakkampudi S, Zhao JC. Recent Applications of Asymmetric Organocatalytic Methods in Total Synthesis. ChemistrySelect 2021. [DOI: 10.1002/slct.202004196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ramarao Parella
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio, Texas 78249-0698 USA
| | - Satish Jakkampudi
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio, Texas 78249-0698 USA
| | - John C.‐G. Zhao
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio, Texas 78249-0698 USA
| |
Collapse
|
13
|
Sonnleitner CM, Park S, Eckl R, Ertl T, Reiser O. Stereoselective Synthesis of Tropanes via a 6π-Electrocyclic Ring-Opening/ Huisgen [3+2]-Cycloaddition Cascade of Monocyclopropanated Heterocycles. Angew Chem Int Ed Engl 2020; 59:18110-18115. [PMID: 32627302 PMCID: PMC7589232 DOI: 10.1002/anie.202006030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 12/18/2022]
Abstract
The synthesis of tropanes via a microwave-assisted, stereoselective 6π-electrocyclic ring-opening/ Huisgen [3+2]-cycloaddition cascade of cyclopropanated pyrrole and furan derivatives with electron-deficient dipolarophiles is demonstrated. Starting from furans or pyrroles, 8-aza- and 8-oxabicyclo[3.2.1]octanes are accessible in two steps in dia- and enantioselective pure form, being versatile building blocks for the synthesis of pharmaceutically relevant targets, especially for new cocaine analogues bearing various substituents at the C-6/C-7 positions of the tropane ring system. Moreover, the 2-azabicyclo[2.2.2]octane core (isoquinuclidines), being prominently represented in many natural and pharmaceutical products, is accessible via this approach.
Collapse
Affiliation(s)
- Carina M. Sonnleitner
- Institut für Organische ChemieUniversität RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Saerom Park
- Institut für Organische ChemieUniversität RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Robert Eckl
- Institut für Organische ChemieUniversität RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Thomas Ertl
- Institut für Organische ChemieUniversität RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Oliver Reiser
- Institut für Organische ChemieUniversität RegensburgUniversitätsstrasse 3193053RegensburgGermany
| |
Collapse
|
14
|
Sonnleitner CM, Park S, Eckl R, Ertl T, Reiser O. Stereoselektive Synthese von Tropanen über eine 6π‐elektrocyclische Ringöffnung/ Huisgen‐[3+2]‐Cycloadditionskaskade von monocyclopropanierten Heterocyclen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Carina M. Sonnleitner
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Deutschland
| | - Saerom Park
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Deutschland
| | - Robert Eckl
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Deutschland
| | - Thomas Ertl
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Deutschland
| | - Oliver Reiser
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Deutschland
| |
Collapse
|