1
|
Chang Q, He F, Zhang Z, Fu X, Wang Y, Huang C, Li Y. Self-Organized Integrated Electrocatalyst on Oxygen Conversion for Highly Durable Zinc-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202416664. [PMID: 39592407 DOI: 10.1002/anie.202416664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/09/2024] [Accepted: 11/24/2024] [Indexed: 11/28/2024]
Abstract
Efficient bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are key for clean energy applications such as rechargeable metal-air batteries. Highly efficient bifunctional electrocatalysts have been the focus of great attention by scientists. Here, an innovative and continuous growth method is established to fabricate integrated Janus structure Co3O4/CoNGDY catalyst, which can work for bifunctional oxygen catalytic conversion, achieving highly durable zinc-air batteries. Embedded in the hydrangea-shaped N-doped graphdiyne (NGDY), the Co3O4/CoNGDY is self-organized by CoNGDY at the NGDY contact sites and Co3O4 at the upper part, in which Co3O4 works as OER catalyst and CoNGDY acts as ORR catalyst. Due to the incomplete charge transfer within integrated structure, NGDY reduces the d-band center of the Co sites, so the adsorption strength of intermediates is balanced, and the catalytic activity for ORR/OER is increased. The Co3O4/CoNGDY can serve as an efficient air electrode of rechargeable zinc-air batteries. The rechargeable Co3O4/CoNGDY-based aqueous zinc-air batteries demonstrate excellent performance with a high specific capacity of 746.8 mAh g-1 and an extremely long lifetime of more than 5000 hours. The recoverable modularized cylindrical Co3O4/CoNGDY-based solid-state zinc-air batteries with a power density of up to 167.6 mW cm-2 can be achieved.
Collapse
Affiliation(s)
- Qian Chang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feng He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihui Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinlong Fu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi Wang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Changshui Huang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Qiu L, Wu Z, Liu Y, Qin Z, Liu Y, Zhang J, Deng Y, Hu W. Mn Doping at High-Activity Octahedral Vacancies of γ-Fe 2O 3 for Oxygen Reduction Reaction Electrocatalysis in Metal-Air Batteries. Angew Chem Int Ed Engl 2024:e202421918. [PMID: 39628092 DOI: 10.1002/anie.202421918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Indexed: 12/17/2024]
Abstract
γ-Fe2O3 with the intrinsic cation vacancies is an ideal substrate for heteroatom doping into the highly active octahedral sites in spinel oxide catalysts. However, it is still a challenge to confirm the vacancy location of γ-Fe2O3 through experiments and obtain enhanced catalytic performance by preferential occupation of octahedral sites for heteroatom doping. Here, a Mn-doped γ-Fe2O3 incorporated with carbon nanotubes catalyst was developed to successfully achieve preferential doping into highly active octahedral sites by employing γ-Fe2O3 as the precursor. Further, the vacancy in γ-Fe2O3 was only located on octahedral sites rather than tetrahedral ones, which was first proved by direct experimental evidence through the clarification doping sites of Mn. Notably, the catalyst shows outstanding activity towards oxygen reduction reaction with the half-wave potential of 0.82 V and 0.64 V vs. reversible hydrogen electrode in alkaline and neutral electrolytes, respectively, as well as the maximum power density of 179 mWcm-2 and 403 mWcm-2 for Mg-air batteries and Al-air batteries, respectively. It could be attributed to the synergistic effect of the doping Mn on octahedral sites and the substrate γ-Fe2O3 along with the modification of the adsorption/desorption properties for oxygen-containing intermediates as well as the optimization of the reaction energy barriers.
Collapse
Affiliation(s)
- Liuzhe Qiu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.Institution
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhong Wu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhenbo Qin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yichun Liu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.Institution
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Zhang Y, Huang Q, Sun ZH, Zheng R, Ma Y, Han D, Niu L. A Wearable Electrochemical Sensor Based on Single-Atom Pt Anchored on Activated NiCo-LDH/Ti 3C 2T x for Real-Time Monitoring of Glucose. Anal Chem 2024; 96:18239-18245. [PMID: 39494488 DOI: 10.1021/acs.analchem.4c04471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Wearable, noninvasive sweat sensors enable real-time monitoring of metabolites in human health management. However, the commercial enzyme-based and currently nonenzymatic glucose sensor represents sluggish glucose oxidation kinetics and a narrow sensing range. Rational design of sensitive materials is significant yet faces a huge challenge. Herein, we construct a single-atom Pt supported on NiCo-LDH/Ti3C2Tx heterostructures (Pt1-NiCo-LDH/Ti3C2Tx) as the nonenzymatic electrochemical glucose sensor sensitive materials for selective detection of glucose level in human sweat. The obtained Pt1-NiCo-LDH/Ti3C2Tx with improved structural stability and enhanced charge transfer efficiency shows a low oxidation peak potential of 0.49 V, high sensitivity of 506.6 μA mM-1 cm-2, a low detection limit of 0.035 μM, and long-term stability toward the glucose detection. The wearable sensor, coupled with a wireless transmission module and a signal processing chip, is used for real-time perspiration glucose monitoring during outdoor exercise. The result is comparable to that of high-performance liquid chromatography (HPLC). This research provides a new paradigm for designing a wearable nonenzymatic electrochemical glucose sensor, enabling noninvasive real-time monitoring of glucose concentrations in human sweat.
Collapse
Affiliation(s)
- Yu Zhang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Qiuling Huang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhong-Hui Sun
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Rui Zheng
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yingming Ma
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Fang Z, Zhou Z, Zeng Z, Xia YG, Liu J, Hu B, Li K, Li JH, Lu Q. Revealing the Synergistic Effect of Cation and Anion Vacancies on Enhanced Fenton-Like Reaction: The Electron Density Modulation of O 2p-Co 3d Bands. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402748. [PMID: 38898734 DOI: 10.1002/smll.202402748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Defect engineering is considered as a flexible and effective mean to improve the performance of Fenton-like reactions. Herein, a simple method is employed to synthesize Co3O4 catalysts with Co-O vacancy pairs (VP) for peroxymonosulfate (PMS) activation. Multi-scaled characterization, experimental, and simulation results jointly revealed that the cation vacancies-VCo contributed to enhanced conductivity and anion vacancies-VO provided a new active center for the 1O2 generation. Co3O4-VP can optimize the O 2p and Co 3d bands with the strong assistance of synergistic double vacancies to reduce the reaction energy barrier of the "PMS → Co(IV) = O → 1O2" pathway, ultimately triggering the stable transition of mechanism. Co3O4-VP catalysts with radical-nonradical collaborative mechanism achieve the synchronous improvement of activity and stability, and have good environmental robustness to favor water decontamination applications. This result highlights the possibility of utilizing anion and cation vacancy engineering strategies to rational design Co3O4-based materials widely used in catalytic reactions.
Collapse
Affiliation(s)
- Zhimo Fang
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Zhou Zhou
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Zepeng Zeng
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Yuan-Gu Xia
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Ji Liu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Bin Hu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Kai Li
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Ji-Hong Li
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Qiang Lu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
5
|
Zou X, Lu Q, Tang M, Wu J, Zhang K, Li W, Hu Y, Xu X, Zhang X, Shao Z, An L. Catalyst-Support Interaction in Polyaniline-Supported Ni 3Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn-Air Batteries. NANO-MICRO LETTERS 2024; 17:6. [PMID: 39304540 DOI: 10.1007/s40820-024-01511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Catalyst-support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction (OER). Here we modulate the catalyst-support interaction in polyaniline-supported Ni3Fe oxide (Ni3Fe oxide/PANI) with a robust hetero-interface, which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm-2 and specific activity of 2.08 mA cmECSA-2 at overpotential of 300 mV, 3.84-fold that of Ni3Fe oxide. It is revealed that the catalyst-support interaction between Ni3Fe oxide and PANI support enhances the Ni-O covalency via the interfacial Ni-N bond, thus promoting the charge and mass transfer on Ni3Fe oxide. Considering the excellent activity and stability, rechargeable Zn-air batteries with optimum Ni3Fe oxide/PANI are assembled, delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm-2. The regulation of the effect of catalyst-support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
Collapse
Affiliation(s)
- Xiaohong Zou
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| | - Qian Lu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China
- Department of Chemistry, The Chinese University of Hong Kong, Ma Lin Building, Shatin, Hong Kong SAR, 999077, People's Republic of China
| | - Mingcong Tang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| | - Jie Wu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| | - Kouer Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| | - Wenzhi Li
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| | - Yunxia Hu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China.
- Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China.
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China.
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China.
- Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China.
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
6
|
Chen Y, Wang Y, Liu B, Zhang C, Sun D, Liu H, Zhou W. Room-temperature sulfur doped NiMoO 4 with enhanced conductivity and catalytic activity for efficient hydrogen evolution reaction in alkaline media. J Colloid Interface Sci 2024; 664:469-477. [PMID: 38484515 DOI: 10.1016/j.jcis.2024.03.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Transition metal oxides have been acknowledged for their exceptional water splitting capabilities in alkaline electrolytes, however, their catalytic activity is limited by low conductivity. The introduction of sulfur (S) into nickel molybdate (NiMoO4) at room temperature leads to the formation of sulfur-doped NiMoO4 (S-NiMoO4), thereby significantly enhancing the conductivity and facilitating electron transfer in NiMoO4. Furthermore, the introduction of S effectively modulates the electron density state of NiMoO4 and facilitates the formation of highly active catalytic sites characterized by a significantly reduced hydrogen absorption Gibbs free energy (ΔGH*) value of -0.09 eV. The electrocatalyst S-NiMoO4 exhibits remarkable catalytic performance in promoting the hydrogen evolution reaction (HER), displaying a significantly reduced overpotential of 84 mV at a current density of 10 mA cm-2 and maintaining excellent durability at 68 mA cm-2 for 10 h (h). Furthermore, by utilizing the anodic sulfide oxidation reaction (SOR) instead of the sluggish oxygen evolution reaction (OER), the assembled electrolyzer employing S-NiMoO4 as both the cathode and anode need merely 0.8 V to achieve 105 mA cm-2, while simultaneously producing hydrogen gas (H2) and S monomer. This work paves the way for improving electron transfer and activating active sites of metal oxides, thereby enhancing their HER activity.
Collapse
Affiliation(s)
- Yuke Chen
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yijie Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Baishan Liu
- Zhejiang Viersin Advanced Materials Co., Ltd, 6 Donggang Road, Haiyan Economic Development Zone, PR China
| | - Congcong Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dehui Sun
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China.
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
7
|
Liu Y, Zhou L, Liu S, Li S, Zhou J, Li X, Chen X, Sun K, Li B, Jiang J, Pang H. Fe, N-Inducing Interfacial Electron Redistribution in NiCo Spinel on Biomass-Derived Carbon for Bi-functional Oxygen Conversion. Angew Chem Int Ed Engl 2024; 63:e202319983. [PMID: 38404154 DOI: 10.1002/anie.202319983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 02/24/2024] [Indexed: 02/27/2024]
Abstract
Herein, an interfacial electron redistribution is proposed to boost the activity of carbon-supported spinel NiCo2O4 catalyst toward oxygen conversion via Fe, N-doping strategy. Fe-doping into octahedron induces a redistribution of electrons between Co and Ni atoms on NiCo1.8Fe0.2O4@N-carbon. The increased electron density of Co promotes the coordination of water to Co sites and further dissociation. The generation of proton from water improves the overall activity for the oxygen reduction reaction (ORR). The increased electron density of Ni facilitates the generation of oxygen vacancies. The Ni-VO-Fe structure accelerates the deprotonation of *OOH to improve the activity toward oxygen evolution reaction (OER). N-doping modulates the electron density of carbon to form active sites for the adsorption and protonation of oxygen species. Fir wood-derived carbon endows catalyst with an integral structure to enable outstanding electrocatalytic performance. The NiCo1.8Fe0.2O4@N-carbon express high half-wave potential up to 0.86 V in ORR and low overpotential of 270 mV at 10 mA cm-2 in OER. The zinc-air batteries (ZABs) assembled with the as-prepared catalyst achieve long-term cycle stability (over 2000 cycles) with peak power density (180 mWcm-2). Fe, N-doping strategy drives the catalysis of biomass-derived carbon-based catalysts to the highest level for the oxygen conversion in ZABs.
Collapse
Affiliation(s)
- Yanyan Liu
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Institute of Chemistry Industry of Forest Productsversity CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Limin Zhou
- Institute of Chemistry Industry of Forest Productsversity CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuqi Li
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Jingjing Zhou
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xin Li
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Xiangmeng Chen
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Kang Sun
- Institute of Chemistry Industry of Forest Productsversity CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Institute of Chemistry Industry of Forest Productsversity CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Jianchun Jiang
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
- Institute of Chemistry Industry of Forest Productsversity CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
8
|
Gao Y, Liu L, Jiang Y, Yu D, Zheng X, Wang J, Liu J, Luo D, Zhang Y, Shi Z, Wang X, Deng YP, Chen Z. Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries. NANO-MICRO LETTERS 2024; 16:162. [PMID: 38530476 PMCID: PMC11250732 DOI: 10.1007/s40820-024-01366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/26/2024] [Indexed: 03/28/2024]
Abstract
Zinc-air batteries (ZABs) are promising energy storage systems because of high theoretical energy density, safety, low cost, and abundance of zinc. However, the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs. Therefore, feasible and advanced non-noble-metal electrocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction. In this review, we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field. Then, we discussed the working mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design, crystal structure tuning, interface strategy, and atomic engineering. We also included theoretical studies, machine learning, and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions. Finally, we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
Collapse
Affiliation(s)
- Yunnan Gao
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ling Liu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yi Jiang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| | - Dexin Yu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xiaomei Zheng
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Jiayi Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Jingwei Liu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Dan Luo
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yongguang Zhang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| | - Zhenjia Shi
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xin Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Ya-Ping Deng
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Zhongwei Chen
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
9
|
Wen L, Li X, Na Y, Chen H, Liu M, Yang S, Ding D, Wang G, Liu Y, Chen Y, Chen R. Surface reconstructed Fe@C 1000 for enhanced Fenton-like catalysis: Sustainable ciprofloxacin degradation and toxicity reduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123534. [PMID: 38342432 DOI: 10.1016/j.envpol.2024.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
The Fe-based catalysts typically undergo severe problems such as deactivation and Fe sludge emission during the peroxymonosulfate (PMS) activation, which commonly leads to poor operation and secondary pollution. Herein, an S-doped Fe-based catalyst with a core-shell structure (Fe@CT, T = 1000°C) was synthesized, which can solve the above issues via the dynamic surface evolution during the reaction process. Specifically, the Fe0 on the surface of Fe@C1000 could be consumed rapidly, leaving numerous pores; the Fe3C from the core would subsequently migrate to the surface of Fe@C1000, replenishing the consumed active Fe species. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses demonstrated that the reaction surface reconstructed during the PMS activation, which involved the FeIII in-situ reduction by S species as well as the depletion/replenishment of effective Fe species. The reconstructed Fe@C1000 achieved near-zero Fe sludge emission (from 0.59 to 0.08-0.23 mg L-1) during 5 cycles and enabled the dynamic evolution of dominant reactive oxygen species (ROS) from SO4·- to FeIVO, sustainably improving the oxidation capacity (80.0-92.5% in following four cycles) to ciprofloxacin (CIP) and reducing the toxicity of its intermediates. Additionally, the reconstructed Fe@C1000/PMS system exhibited robust resistance to complex water matrix. This study provides a theoretical guideline for exploring surface reconstruction on catalytic activity and broadens the application of Fe-based catalysts in the contaminants elimination.
Collapse
Affiliation(s)
- Lanxuan Wen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Li
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Na
- Qinghai Provincial Ecological Environment Planning and Environmental Protection Technology Center, No. 116, Nanshan East Road, Xining, 810007, China
| | - Huanyu Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjiong Yang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shanxi, 710055, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gen Wang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shanxi, 710055, China
| | - Yu Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongzhi Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
10
|
Ma J, Xing S, Wang Y, Yang J, Yu F. Kinetic-Thermodynamic Promotion Engineering toward High-Density Hierarchical and Zn-Doping Activity-Enhancing ZnNiO@CF for High-Capacity Desalination. NANO-MICRO LETTERS 2024; 16:143. [PMID: 38436834 PMCID: PMC11329485 DOI: 10.1007/s40820-024-01371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Despite the promising potential of transition metal oxides (TMOs) as capacitive deionization (CDI) electrodes, the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity, posing a major obstacle. Herein, we prepared the kinetically favorable ZnxNi1 - xO electrode in situ growth on carbon felt (ZnxNi1 - xO@CF) through constraining the rate of OH- generation in the hydrothermal method. ZnxNi1 - xO@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores, benefitting the ion transport/electron transfer. And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites, actual activity of redox-active Ni species, and lower adsorption energy, promoting the adsorption kinetic and thermodynamic of the Zn0.2Ni0.8O@CF. Benefitting from the kinetic-thermodynamic facilitation mechanism, Zn0.2Ni0.8O@CF achieved ultrahigh desalination capacity (128.9 mgNaCl g-1), ultra-low energy consumption (0.164 kW h kgNaCl-1), high salt removal rate (1.21 mgNaCl g-1 min-1), and good cyclability. The thermodynamic facilitation and Na+ intercalation mechanism of Zn0.2Ni0.8O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring, respectively. This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping, which is redox-inert, is essential for enhancing the electrochemical performance of CDI electrodes.
Collapse
Affiliation(s)
- Jie Ma
- College of Marine Ecology and Environment, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
- School of Civil Engineering, Kashi University, 844000, Kashi, People's Republic of China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, People's Republic of China
| | - Siyang Xing
- School of Civil Engineering, Kashi University, 844000, Kashi, People's Republic of China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, People's Republic of China
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yabo Wang
- School of Civil Engineering, Kashi University, 844000, Kashi, People's Republic of China
| | - Jinhu Yang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, People's Republic of China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, 201306, Shanghai, People's Republic of China.
| |
Collapse
|
11
|
Zhao R, Zhu Z, Ouyang T, Liu ZQ. Selective CO 2 -to-Syngas Conversion Enabled by Bimetallic Gold/Zinc Sites in Partially Reduced Gold/Zinc Oxide Arrays. Angew Chem Int Ed Engl 2024; 63:e202313597. [PMID: 37853853 DOI: 10.1002/anie.202313597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
Electrocatalytic CO2 -to-syngas (gaseous mixture of CO and H2 ) is a promising way to curb excessive CO2 emission and the greenhouse gas effect. Herein, we present a bimetallic AuZn@ZnO (AuZn/ZnO) catalyst with high efficiency and durability for the electrocatalytic reduction of CO2 and H2 O, which enables a high Faradaic efficiency of 66.4 % for CO and 26.5 % for H2 and 3 h stability of CO2 -to-syngas at -0.9 V vs. the reversible hydrogen electrode (RHE). The CO/H2 ratios show a wide range from 0.25 to 2.50 over a narrow potential window (-0.7 V to -1.1 V vs. RHE). In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy combined with density functional theory calculations reveals that the bimetallic synergistic effect between Au and Zn sites lowers the activation energy barrier of CO2 molecules and facilitates electronic transfer, further highlighting the potential to control CO/H2 ratios for efficient syngas production using the coexisting Au sites and Zn sites.
Collapse
Affiliation(s)
- Rui Zhao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ziyin Zhu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
12
|
Chen Y, Luo A, Hu D, Liu J. Expediting Ethylbenzene Oxidation via a Bimetallic Cobalt-Manganese Spinel Structure with a Modulated Electronic Environment. Inorg Chem 2024; 63:824-832. [PMID: 38114300 DOI: 10.1021/acs.inorgchem.3c03830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The catalytic oxidation of ethylbenzene (EB) into acetophenone (AP) is a vibrant area, with a growing number of researchers paying attention to this thematic investigation. Herein, we demonstrate that spinel-type (Co,Mn)(Co,Mn)2O4 can function as an efficient catalyst for the solvent-free oxidation of EB with molecular oxygen. The incorporation of Mn into the Co3O4 network can break the local structural symmetry of Co-O-Co linkages due to the bond competition, inducing the formation of an asymmetrical Co-O-Mn configuration with an electron local exchange interaction. The Co-O-Mn sites can facilitate the perturbation of nonpolar O2 and thus contribute to the generation of abundant •O2- species for initiating the oxidation of EB. We envision that this study not only provides a promising catalyst for EB oxidation but also affords a new insight into the design of advanced spinel oxides for selective oxidation reactions.
Collapse
Affiliation(s)
- Yuhang Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Anqi Luo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Dongming Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
13
|
Liu J, Ji X, Wang C, Wang L, Jian P. Beneficial Synergistic Intermetallic Effect in ZnCo 2O 4 for Enhancing the Limonene Oxidation Catalysis. Inorg Chem 2023; 62:18750-18757. [PMID: 37919248 DOI: 10.1021/acs.inorgchem.3c03245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Utilization of naturally occurring limonene from renewable biomass as a key starting material for the synthesis of valuable chemicals is a promising avenue to reduce both the dependence on nonrenewable fossil fuels and global CO2 emission. Herein, we report a highly active tremella-like ZnCo2O4 catalyst for the selective oxidation of limonene with molecular oxygen under mild reaction conditions. The developed ZnCo2O4 catalyst exhibits an appealing reaction performance with a limonene conversion of 93.5% (reaction rate of 0.0823 mmol gcat-1 h-1) and selectivity of 75.8% for 1,2-limonene oxide (LO), far outperforming the monometallic oxides of ZnO and Co3O4. Detained experimental characterizations and analyses manifest that the substitution of Zn into the Co3O4 framework can facilitate the formation of more unsaturated coordination sites and oxygen vacancies due to the modified chemical environment of Co atoms, inducing a beneficial synergistic intermetallic effect for the limonene oxidation catalysis.
Collapse
Affiliation(s)
- Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xingyang Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Chennan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Lixia Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Panming Jian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
14
|
Wang Y, Luo W, Gong S, Luo L, Li Y, Zhao Y, Li Z. Synthesis of High-Entropy-Alloy Nanoparticles by a Step-Alloying Strategy as a Superior Multifunctional Electrocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302499. [PMID: 37155729 DOI: 10.1002/adma.202302499] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Indexed: 05/10/2023]
Abstract
High-entropy-alloy nanoparticles (HEA-NPs) have attracted great attention because of their unique complex compositions and tailorable properties. Further expanding the compositional space is of great significance for enriching the material library. Here, a step-alloying strategy is developed to synthesis HEA-NPs containing a range of strongly repellent elements (e.g., Bi-W) by using the rich-Pt cores formed during the first liquid phase reaction as the seed of the second thermal diffusion. Remarkably, the representative HEA-NPs-(14) with up to 14 elements exhibits extremely excellent multifunctional electrocatalytic performance for pH-universal hydrogen evolution reaction (HER), alkaline methanol oxidation reaction (MOR), and oxygen reduction reaction (ORR). Briefly, HEA-NPs-(14) only requires the ultralow overpotentials of 11 and 18 mV to deliver 10 mA cm-2 and exhibits ultralong durability for 400 and 264 h under 100 mA cm-2 in 0.5 m H2 SO4 and 1 m KOH, respectively, which surpasses most advanced pH-universal HER catalysts. Moreover, HEA-NPs-(14) also exhibits an impressive peak current density of 12.6 A mg-1 Pt in 1 m KOH + 1 m MeOH and a half-wave potential of 0.86 V (vs RHE.) in 0.1 m KOH. The work further expands the spectrum of possible metal alloys, which is important for the broad compositional space and future data-driven material discovery.
Collapse
Affiliation(s)
- Yang Wang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Wenhui Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Shen Gong
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Liuxiong Luo
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yixuan Li
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yuyuan Zhao
- School of Engineering, University of Liverpool, Liverpool, L69 3GH, UK
| | - Zhou Li
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
15
|
Cai J, Zhang H, Zhang L, Xiong Y, Ouyang T, Liu ZQ. Hetero-Anionic Structure Activated CoS Bonds Promote Oxygen Electrocatalytic Activity for High-Efficiency Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303488. [PMID: 37201909 DOI: 10.1002/adma.202303488] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/14/2023] [Indexed: 05/20/2023]
Abstract
The electronic structure of transition metal complexes can be modulated by replacing partial ion of complexes to obtain tuned intrinsic oxygen reduction reaction (ORR) or oxygen evolution reaction (OER) electrocatalytic activity. However, the anion-modulated transition metal complexes ORR activity of is still unsatisfactory, and the construction of hetero-anionic structure remains challenging. Herein, an atomic doping strategy is presented to prepare the CuCo2 O4-x Sx /NC-2 (CCSO/NC-2) as electrocatalysts, the structrual characterization results favorably demonstrate the partial substitution of S atoms for O in CCSO/NC-2, which shows excellent catalytic performance and durability for OER and ORR in 0.1 m KOH. In addition, the catalyst assembled Zinc-air battery with an open circuit potential of 1.43 V maintains performance after 300 h of cyclic stability. Theoretical calculations and differential charges illustrate that S doping optimizes the reaction kinetics and promotes electron redistribution. The superior performance of CCSO/NC-2 catalysis is mainly due to its unique S modulation of the electronic structure of the main body. The introduction of S promotes CoO covalency and constructs a fast electron transport channel, thus optimizing the adsorption degree of active site Co to the reaction intermediates.
Collapse
Affiliation(s)
- Jingjing Cai
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Huijian Zhang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Lizhu Zhang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Yuqing Xiong
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
16
|
Muuli K, Kumar R, Mooste M, Gudkova V, Treshchalov A, Piirsoo HM, Kikas A, Aruväli J, Kisand V, Tamm A, Krumme A, Moni P, Wilhelm M, Tammeveski K. Iron, Cobalt, and Nickel Phthalocyanine Tri-Doped Electrospun Carbon Nanofibre-Based Catalyst for Rechargeable Zinc-Air Battery Air Electrode. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4626. [PMID: 37444939 DOI: 10.3390/ma16134626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
The goal of achieving the large-scale production of zero-emission vehicles by 2035 will create high expectations for electric vehicle (EV) development and availability. Currently, a major problem is the lack of suitable batteries and battery materials in large quantities. The rechargeable zinc-air battery (RZAB) is a promising energy-storage technology for EVs due to the environmental friendliness and low production cost. Herein, iron, cobalt, and nickel phthalocyanine tri-doped electrospun carbon nanofibre-based (FeCoNi-CNF) catalyst material is presented as an affordable and promising alternative to Pt-group metal (PGM)-based catalyst. The FeCoNi-CNF-coated glassy carbon electrode showed an oxygen reduction reaction/oxygen evolution reaction reversibility of 0.89 V in 0.1 M KOH solution. In RZAB, the maximum discharge power density (Pmax) of 120 mW cm-2 was obtained with FeCoNi-CNF, which is 86% of the Pmax measured with the PGM-based catalyst. Furthermore, during the RZAB charge-discharge cycling, the FeCoNi-CNF air electrode was found to be superior to the commercial PGM electrocatalyst in terms of operational durability and at least two times higher total life-time.
Collapse
Affiliation(s)
- Kaur Muuli
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Rohit Kumar
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Marek Mooste
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Viktoria Gudkova
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Alexey Treshchalov
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Helle-Mai Piirsoo
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Arvo Kikas
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Jaan Aruväli
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Aile Tamm
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Andres Krumme
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Prabu Moni
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, IW3, 28359 Bremen, Germany
| | - Michaela Wilhelm
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, IW3, 28359 Bremen, Germany
| | - Kaido Tammeveski
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
17
|
He C, Liu Q, Wang H, Xia C, Li FM, Guo W, Xia BY. Regulating Reversible Oxygen Electrocatalysis by Built-in Electric Field of Heterojunction Electrocatalyst with Modified d-Band. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207474. [PMID: 36604992 DOI: 10.1002/smll.202207474] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott-Schottky heterojunction composed of porous cobalt-nitrogen-carbon (Co-N-C) polyhedra containing abundant metal-phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc-air batteries (ZABs). The built-in electric field in the Mott-Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d-band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.
Collapse
Affiliation(s)
- Chaohui He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Qingqing Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Hongming Wang
- Institute for Advanced Study, College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Fu-Min Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
18
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
19
|
Lu J, Ren L, Li C, Liu H. Three-dimensional hierarchical flower-like bimetallic–organic materials in situ grown on carbon cloth and doped with sulfur as an air cathode in a microbial fuel cell. NEW J CHEM 2023. [DOI: 10.1039/d2nj05476k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Herein, the output power density produced by Zn/Co-S-3DHFLM as the cathode catalyst of an MFC was higher than that of Co-3DHFLM.
Collapse
Affiliation(s)
- Jinrong Lu
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| | - Linde Ren
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| | - Cheng Li
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| | - Hua Liu
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| |
Collapse
|
20
|
Luo F, Li M, Yang Z. Ultrafine CoFe 2O 4 quantum dots as an oxygen electrocatalyst for rechargeable zinc air batteries. Chem Commun (Camb) 2022; 58:13739-13742. [PMID: 36416016 DOI: 10.1039/d2cc04560e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CoFe2O4 quantum dots (QDs) showed a battery performance 1.79 times higher than that displayed by the benchmark Pt/C-IrO2. Furthermore, a power density of 87 mW cm-2 was achieved for all-solid-state zinc air batteries (ZABs) of CoFe2O4 QDs, implying good prospects of using these QDs in practical applications.
Collapse
Affiliation(s)
- Fang Luo
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, 430200 Wuhan, P. R. China
| | - Min Li
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China.
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China. .,Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| |
Collapse
|
21
|
Bo L, Shi W, Nian F, Hu Y, Pu L, Li P, Zhang Z, Tong J. Interface engineering of Co3S4@Co3O4/N, S-doped carbon core@shell nanostructures serve as an excellent bifunctional ORR/OER electrocatalyst for rechargeable Zn-air battery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Electronic structure modulation of nickel hydroxide porous nanowire arrays via manganese doping for urea-assisted energy-efficient hydrogen generation. J Colloid Interface Sci 2022; 626:445-452. [DOI: 10.1016/j.jcis.2022.06.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022]
|
23
|
Zhou M, Wang H, Zhang L, Li C, Kumbhar A, Abruña HD, Fang J. Facet Impact of CuMn 2O 4 Spinel Nanocatalysts on Enhancement of the Oxygen Reduction Reaction in Alkaline Media. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York13902, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York14853, United States
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York13902, United States
| | - Amar Kumbhar
- Chapel Hill Analytical and Nanofabrication Laboratory, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York13902, United States
| |
Collapse
|
24
|
Qi J, Zhang Y, Liu H, Xu H, Wang C, Hu L, Feng M, Lü W. Strain Modified Oxygen Evolution Reaction Performance in Epitaxial, Freestanding, and Van Der Waals Manganite Thin Films. NANO LETTERS 2022; 22:7066-7072. [PMID: 35976127 DOI: 10.1021/acs.nanolett.2c01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In perovskite complex oxides, the strain has been established as a promising approach for tuning the oxygen evolution reaction (OER) performance by the manipulated electronic structure and interaction/coupling. In this study, we have employed rigid epitaxial, flexible freestanding, and van der Waals La2/3Sr1/3MnO3 (LSMO) to investigate the strain effects on OER, which are different in stress strength and range via lattice mismatch and curvature change. It was found that the OER performances as a function of strain exhibited volcano and monotonous trends in rigid and flexible LSMO, respectively. The findings suggest that distinguished oxygen activation energy in varied lattice fields also plays a crucial role in the epitaxial LSMO in contrast to the pure strain effect in the flexible LSMO. Our results not only fundamentally clarify the effort of strain but also technologically provide an effective route to engineer the electronic structure for modified OER performance by perovskite complex oxides.
Collapse
Affiliation(s)
- Ji Qi
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Yuan Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Huan Liu
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Hang Xu
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Chen Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Linglong Hu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Weiming Lü
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
25
|
Guo M, Ma P, Wang J, Xu H, Zheng K, Cheng D, Liu Y, Guo G, Dai H, Duan E, Deng J. Synergy in Au-CuO Janus Structure for Catalytic Isopropanol Oxidative Dehydrogenation to Acetone. Angew Chem Int Ed Engl 2022; 61:e202203827. [PMID: 35419926 DOI: 10.1002/anie.202203827] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/09/2022]
Abstract
The controlled oxidation of alcohols to the corresponding ketones or aldehydes via selective cleavage of the β-C-H bond of alcohols under mild conditions still remains a significant challenge. Although the metal/oxide interface is highly active and selective, the interfacial sites fall far behind the demand, due to the large and thick support. Herein, we successfully develop a unique Au-CuO Janus structure (average particle size=3.8 nm) with an ultrathin CuO layer (0.5 nm thickness) via a bimetal in situ activation and separation strategy. The resulting Au-CuO interfacial sites prominently enhance isopropanol adsorption and decrease the energy barrier of β-C-H bond scission from 1.44 to 0.01 eV due to the strong affinity between the O atom of CuO and the H atom of isopropanol, compared with Au sites alone, thereby achieving ultrahigh acetone selectivity (99.3 %) over 1.1 wt % AuCu0.75 /Al2 O3 at 100 °C and atmospheric pressure with 97.5 % isopropanol conversion. Furthermore, Au-CuO Janus structures supported on SiO2 , TiO2 or CeO2 exhibit remarkable catalytic performance, and great promotion in activity and acetone selectivity is achieved as well for other reducible oxides derived from Fe, Co, Ni and Mn. This study should help to develop strategies for maximized interfacial site construction and structure optimization for efficient β-C-H bond activation.
Collapse
Affiliation(s)
- Meng Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Peijie Ma
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jiayi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haoxiang Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kun Zheng
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuxi Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Guangsheng Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Hongxing Dai
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, P. R. China
| | - Jiguang Deng
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
26
|
Wang H, Jiao S, Liu S, Yin S, Zhou T, Xu Y, Li X, Wang Z, Wang L. Tannic acid modified PdAu alloy nanowires as efficient oxygen reduction electrocatalysts. NANOTECHNOLOGY 2022; 33:375401. [PMID: 35653927 DOI: 10.1088/1361-6528/ac7575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Design of the structure, composition and interface of the catalysts is very important to improve oxygen reduction reaction (ORR) catalytic activity under alkaline environment. Herein, we propose a direct method to rapid synthesis of tannic acid (TA) modified PdAu alloy nanowires (PdAu@TA NWs). Compared with pure PdAu NWs and commercial Pt/C, the PdAu@TA NWs exhibit superior ORR electrocatalytic activity (mass activity: 0.73 A mg-1metaland specific activity: 3.50 mA cm-2), stability, and methanol tolerance in an alkaline medium because PdAu@TA NWs possess sufficient active sites and synergistic effect that can effectively promote the oxygen reduction, inhibit the oxidation of the catalyst and improve the methanol tolerance of the catalyst. This synthetic method is a promising strategy to prepare metallic catalyst with surface functionalization.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Shiqian Jiao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Tongqing Zhou
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
27
|
Atomic modulation of Fe-Co pentlandite coupled with nitrogen-doped carbon sphere for boosting oxygen catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63932-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Gao T, Li L, Yan S, Zhang Q, Yuan M, Xiao T, Wang Y, Yu S, Fan Y. Moldable NiO electrode for solid-state energy storage based on its bifunction of electrochemical redox and catalytic activity. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Jiao J, Zhang N, Zhang C, Sun N, Pan Y, Chen C, Li J, Tan M, Cui R, Shi Z, Zhang J, Xiao H, Lu T. Doping Ruthenium into Metal Matrix for Promoted pH-Universal Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200010. [PMID: 35332693 PMCID: PMC9130909 DOI: 10.1002/advs.202200010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/10/2022] [Indexed: 05/13/2023]
Abstract
For heterogeneous catalysts, the active sites exposed on the surface have been investigated intensively, yet the effect of the subsurface-underlying atoms is much less scrutinized. Here, a surface-engineering strategy to dope Ru into the subsurface/surface of Co matrix is reported, which alters the electronic structure and lattice strain of the catalyst surface. Using hydrogen evolution (HER) as a model reaction, it is found that the subsurface doping Ru can optimize the hydrogen adsorption energy and improve the catalytic performance, with overpotentials of 28 and 45 mV at 10 mA cm-2 in alkaline and acidic media, respectively, and in particular, 28 mV in neutral electrolyte. The experimental results and theoretical calculations indicate that the subsurface/surface doping Ru improves the HER efficiency in terms of both thermodynamics and kinetics. The approach here stands as an effective strategy for catalyst design via subsurface engineering at the atomic level.
Collapse
Affiliation(s)
- Jiqing Jiao
- MOE International Joint Laboratory of Materials MicrostructureInstitute for New Energy Materials and Low Carbon TechnologiesSchool of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
- College of Materials Science and Engineering, State Key Laboratory of Bio‐Fibers and Eco‐TextilesQingdao UniversityQingdao266071China
| | - Nan‐Nan Zhang
- Department of ChemistryTsinghua UniversityBeijing100084China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials MicrostructureInstitute for New Energy Materials and Low Carbon TechnologiesSchool of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Ning Sun
- MOE International Joint Laboratory of Materials MicrostructureInstitute for New Energy Materials and Low Carbon TechnologiesSchool of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum (East China)Qingdao266580China
| | - Chen Chen
- Department of ChemistryTsinghua UniversityBeijing100084China
| | - Jun Li
- Department of ChemistryTsinghua UniversityBeijing100084China
| | - Meijie Tan
- MOE International Joint Laboratory of Materials MicrostructureInstitute for New Energy Materials and Low Carbon TechnologiesSchool of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Ruixue Cui
- MOE International Joint Laboratory of Materials MicrostructureInstitute for New Energy Materials and Low Carbon TechnologiesSchool of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Zhaolin Shi
- MOE International Joint Laboratory of Materials MicrostructureInstitute for New Energy Materials and Low Carbon TechnologiesSchool of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Hai Xiao
- Department of ChemistryTsinghua UniversityBeijing100084China
| | - Tongbu Lu
- MOE International Joint Laboratory of Materials MicrostructureInstitute for New Energy Materials and Low Carbon TechnologiesSchool of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
30
|
Sun J, Xue H, Zhang Y, Zhang XL, Guo N, Song T, Dong H, Kong Y, Zhang J, Wang Q. Unraveling the Synergistic Effect of Heteroatomic Substitution and Vacancy Engineering in CoFe 2O 4 for Superior Electrocatalysis Performance. NANO LETTERS 2022; 22:3503-3511. [PMID: 35315671 DOI: 10.1021/acs.nanolett.1c04425] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal ion substitution and anion exchange are two effective strategies for regulating the electronic and geometric structure of spinel. However, the optimal location of foreign metallic cations and the exact role of these metals and anions remain elusive. Herein, CoFe2O4-based hollow nanospheres with outstanding oxygen evolution reaction activity are prepared by Cr3+ substitution and S2- exchange. X-ray absorption spectra and theoretical calculations reveal that Cr3+ can be precisely doped into octahedral (Oh) Fe sites and simultaneously induce Co vacancy, which can activate adjacent tetrahedral (Td) Fe3+. Furthermore, S2- exchange results in structure distortion of Td-Fe due to compressive strain effect. The change in the local geometry of Td-Fe causes the *OOH intermediate to deviate from the y-axis plane, thus enhancing the adsorption of the *OOH. The Co vacancy and S2- exchange can adjust the geometric and electronic structure of Td-Fe, thus activating the inert Td-Fe and improving the electrochemical performance.
Collapse
Affiliation(s)
- Jing Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Hui Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - YiFei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation, Center of Quantum Information and Quantum Physics CAS Center for Excellence in Nanoscience and Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Niankun Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Tianshan Song
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, P. R. China
| | - Yuan Kong
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation, Center of Quantum Information and Quantum Physics CAS Center for Excellence in Nanoscience and Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
31
|
Synergy in Au‐CuO Janus Structure for Catalytic Isopropanol Oxidative Dehydrogenation to Acetone. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Zhang C, Lu R, Liu C, Lu J, Zou Y, Yuan L, Wang J, Wang G, Zhao Y, Yu C. Trimetallic Sulfide Hollow Superstructures with Engineered d-Band Center for Oxygen Reduction to Hydrogen Peroxide in Alkaline Solution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104768. [PMID: 35233987 PMCID: PMC9036009 DOI: 10.1002/advs.202104768] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/04/2022] [Indexed: 05/19/2023]
Abstract
High-performance transition metal chalcogenides (TMCs) as electrocatalysts for two-electron oxygen reduction reaction (2e-ORR) in alkaline medium are promising for hydrogen peroxide (H2 O2 ) production, but their synthesis remains challenging. In this work, a titanium-doped zinc-cobalt sulfide hollow superstructure (Ti-ZnCoS HSS) is rationally designed as an efficient electrocatalyst for H2 O2 electrosynthesis. Synthesized by using hybrid metal-organic frameworks (MOFs) as precursors after sulfidation treatment, the resultant Ti-ZnCoS HSS exhibits a hollow-on-hollow superstructure with small nanocages assembled around a large cake-like cavity. Both experimental and simulation results demonstrate that the polymetallic composition tailors the d-band center and binding energy with oxygen species. Moreover, the hollow superstructure provides abundant active sites and promotes mass and electron transfer. The synergistic d-band center and superstructure engineering at both atomic and nanoscale levels lead to the remarkable 2e-ORR performance of Ti-ZnCoS HSS with a high selectivity of 98%, activity (potential at 1 mA cm-2 of 0.774 V vs reversible hydrogen electrode (RHE)), a H2 O2 production rate of 675 mmol h-1 gcat -1 , and long-term stability in alkaline condition, among the best 2e-ORR electrocatalysts reported to date. This strategy paves the way toward the rational design of polymetallic TMCs as advanced 2e-ORR catalysts.
Collapse
Affiliation(s)
- Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Ruihu Lu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jingyi Lu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jing Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yan Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
33
|
Liu JN, Zhao CX, Ren D, Wang J, Zhang R, Wang SH, Zhao C, Li BQ, Zhang Q. Preconstructing Asymmetric Interface in Air Cathodes for High-Performance Rechargeable Zn-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109407. [PMID: 34989032 DOI: 10.1002/adma.202109407] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Rechargeable zinc-air batteries afford great potential toward next-generation sustainable energy storage. Nevertheless, the oxygen redox reactions at the air cathode are highly sluggish in kinetics to induce poor energy efficiency and limited cycling lifespan. Air cathodes with asymmetric configurations significantly promote the electrocatalytic efficiency of the loaded electrocatalysts, whereas rational synthetic methodology to effectively fabricate asymmetric air cathodes remains insufficient. Herein, a strategy of asymmetric interface preconstruction is proposed to fabricate asymmetric air cathodes for high-performance rechargeable zinc-air batteries. Concretely, the asymmetric interface is preconstructed by introducing immiscible organic-water diphases within the air cathode, at which the electrocatalysts are in situ formed to achieve an asymmetric configuration. The as-fabricated asymmetric air cathodes realize high working rates of 50 mA cm-2 , long cycling stability of 3400 cycles at 10 mA cm-2 , and over 100 cycles under harsh conditions of 25 mA cm-2 and 25 mAh cm-2 . Moreover, the asymmetric interface preconstruction strategy is universal to many electrocatalytic systems and can be easily scaled up. This work provides an effective strategy toward advanced asymmetric air cathodes with high electrocatalytic efficiency and significantly promotes the performance of rechargeable zinc-air batteries.
Collapse
Affiliation(s)
- Jia-Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chang-Xin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ding Ren
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Juan Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Rui Zhang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shu-Hao Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
34
|
Xie M, Zhou M, Zhang Y, Du C, Chen J, Wan L. Freestanding trimetallic Fe-Co-Ni phosphide nanosheet arrays as an advanced electrode for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2022; 608:79-89. [PMID: 34626998 DOI: 10.1016/j.jcis.2021.09.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Transition metal phosphides hold great promise for high performance battery-type electrode materials due to their superb electrical conductivity and high theoretical capacity. Unfortunately, the electrochemical properties of single metal or bimetallic phosphides are unsatisfactory owing to their low energy density and poor cyclic stability, and one feasible approach is to introduce heteroatoms to form trimetallic phosphides. Here, novel Fe-Co-Ni-P nanosheet arrays are in situ synthesized on a flexible carbon cloth substrate via an electrodeposition method followed by a phosphorization treatment. Due to the presence of abundant redox active sites, large specific surface area with mesoporous channels, desirable electrical conductivity, modified electronic structure, and synergistic effect of Fe, Co, and Ni ions, the as-prepared Fe-Co-Ni-P electrode displays significantly enhanced electrochemical performance when compared to bimetallic phosphides Fe-Co-P and Fe-Ni-P. Remarkably, the Fe-Co-Ni-P electrode exhibits a large specific capacity of 593.0 C g-1 at 1 A g-1, exceptional rate performance (80.3% capacity retention at 20 A g-1), and good cycling stability (84.2% capacity retention after 5000cycles). Besides, an asymmetric supercapacitor device with Fe-Co-Ni-P electrode as a positive electrode and a hierarchical porous carbon as a negative electrode shows a high energy density of 57.1 Wh kg-1 at a power density of 768.5 W kg-1 as well as excellent cyclability with 88.4% of initial capacity after 10,000cycles. This work manifests that the construction of trimetallic phosphides is an effective strategy to solve the shortcomings of single or bimetallic phosphides for high-performance supercapacitors.
Collapse
Affiliation(s)
- Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| | - Meng Zhou
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| |
Collapse
|
35
|
Zhang Z, Li J, Qian J, Li Z, Jia L, Gao D, Xue D. Significant Change of Metal Cations in Geometric Sites by Magnetic-Field Annealing FeCo 2 O 4 for Enhanced Oxygen Catalytic Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104248. [PMID: 34877765 DOI: 10.1002/smll.202104248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The application of magnetic fields in the oxygen reduction/evolution reaction (ORR/OER) testing for electrocatalysts has attracted increasing interest, but it is difficult to characterize on-site surface reconstruction. Here, a strategy is developed for annealing-treated FeCo2 O4 nanofibers at a magnetic field of 2500 Oe, named FeCo2 O4 -M, showing a right-shifted half-wave potential of 20 mV for the ORR and a left-shifted overpotential of 60 mV at 10 mV cm-2 for the OER as compared with its counterpart. Magnetic characterizations indicate that FeCo2 O4 -M shows the spin-state transition of cations from a low-spin state to an intermediate-spin state compared with FeCo2 O4 . Mössbauer spectra show that the Fe3+ ion in the octahedral site (0.76) of FeCo2 O4 -M is more than that of FeCo2 O4 (0.71), indicating the effective stimulus of metal cations in geometric sites by magnetic-field annealing. Furthermore, theoretical calculations demonstrate that the d-band centers (εd ) of Co 3d and Fe 3d in the tetrahedral and octahedral sites of the FeCo2 O4 -M nanofibers shift close to the Fermi level, revealing the enhanced mechanism of the ORR/OER activity.
Collapse
Affiliation(s)
- Zhengmei Zhang
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Atomic and Molecular Physics & Function Material of Gansu Province, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Junfu Li
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jinmei Qian
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhiwei Li
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Lei Jia
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Daqiang Gao
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Desheng Xue
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
36
|
Zhao S, Yang Y, Tang Z. Insight into Structural Evolution, Active Sites, and Stability of Heterogeneous Electrocatalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shenlong Zhao
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Yongchao Yang
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| |
Collapse
|
37
|
Jiang B, Lu D, Jiang N, Jiang H, Qi L, Shi S, Cui Y, Tan W. Synthesis of non‐precious N‐doped mesoporous Fe3O4/CoO@NC materials towards efficient oxygen reduction reaction for microbial fuel cells. ELECTROANAL 2022. [DOI: 10.1002/elan.202100601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | - Lihua Qi
- Qingdao University of Technology CHINA
| | | | | | | |
Collapse
|
38
|
Lu R, Sam DK, Wang W, Gong S, Liu J, Durairaj A, Li M, Lv X. Boron, nitrogen co-doped biomass-derived carbon aerogel embedded nickel-cobalt-iron nanoparticles as a promising electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 2022; 613:126-135. [PMID: 35033759 DOI: 10.1016/j.jcis.2022.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
The electrocatalytic performance of oxygen evolution reaction (OER) electrocatalysts is highly reliant on the activity of its catalytic active site, which may be augmented by raising the number of active sites. In this study, nanoscaled nickel-cobalt-iron (NiCoFe) alloy was embedded on conductive boron(B), nitrogen(N) co-doped/biomass-derived carbon aerogel as an OER electrocatalyst. The synthesized electrocatalysts were calcined under different temperatures and with variable dopants. The optimal electrocatalyst (BN/CA-NiCoFe-600) demonstrated a low overpotential of 321 mV (at current density of 10 mA cm-2) and a minute Tafel slope of 42 mV dec-1, which was even smaller than that of IrO2 and RuO2. Its mass activity and specific activity were calculated to be 201.7 A g-1, and 34.1 cm-2ECSA, respectively. Furthermore, the electrocatalyst showed excellent stability and durability. This work provides an easy and practical synthetic strategy for acquiring very active and durable electrocatalysts for OER.
Collapse
Affiliation(s)
- Runqing Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Daniel Kobina Sam
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wenbo Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shanhe Gong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jun Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Arulappan Durairaj
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Mengxian Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiaomeng Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, Henan 467036, PR China.
| |
Collapse
|
39
|
Yang B, Gu C, Zhao Q, Zhou G, Xu L, Pang H. Reactive template-engaged synthesis of Ni-doped Co 3S 4 hollow and porous nanospheres with optimal electronic modulation toward high-efficiency electrochemical oxygen evolution. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00896c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ni-doped Co3S4 hollow and porous nanoflowers are synthesized via a self-sacrificial reactive template-engaged strategy. The obtained sample with optimal electronic structure exhibits excellent oxygen evolution performance.
Collapse
Affiliation(s)
- Bing Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Chengjun Gu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Qun Zhao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Guangyao Zhou
- College of Science, Jinling Institute of Technology, Nanjing 211169, PR China
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
40
|
NOMOTO S, KITAMURA H, TAKASE S, SHIMIZU Y. Bi-functional Oxygen Electrocatalysts Using Mixed-Metal Tungsten-Nitrides in Alkaline Media. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shotaro NOMOTO
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology
| | - Hiroki KITAMURA
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology
| | - Satoko TAKASE
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology
| | - Youichi SHIMIZU
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology
| |
Collapse
|
41
|
Zhou G, Ma Y, Gu C, Yang J, Pang H, Li J, Xu L, Tang Y. Fe incorporation-induced electronic modification of Co-tannic acid complex nanoflowers for high-performance water oxidation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01630j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exploration of high-efficiency, cost-effective and earth-abundant non-noble metal electrocatalysts toward oxygen evolution reaction (OER) is of vital importance for the advancement of renewable energy conversion technologies. Herein, we report...
Collapse
|
42
|
Lu Q, Zou X, Bu Y, Liao K, Zhou W, Shao Z. A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional Electrocatalyst for Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105604. [PMID: 34837318 DOI: 10.1002/smll.202105604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Searching for bifunctional noble-free electrocatalysts with high activity and stability are urgently demanded for the commercial application of zinc-air batteries (ZABs). Herein, the authors propose a controllable dual interface engineering concept to design a noble-metal-free bifunctional catalyst with two well-designed interfaces (Ni3 FeN|MnO and MnO|CNTs) via a simple etching and wet chemical route. The heterointerface between MnO and Ni3 FeN facilitates the charge transfer rate during surface reaction, and heterointerface between MnO and carbon nanotubes (CNTs) support provides effective electron transfer path, while the CNTs matrix builds free diffusion channels for gas and electrolyte. Benefiting from the advantages of dual interfaces, Ni3 FeN/MnO-CNTs show superior oxygen reduction reaction and oxygen evolution reaction catalytic activity with an ultralow polarization gap (∆E) of 0.73 V, as well as preferable durability and rapid reaction kinetics. As proof of concept, the practical ZAB with Ni3 FeN/MnO-CNT exhibits high power density of 197 mW cm-2 and rate performance up to 40 mA cm-2 , as well as superior cycling stability over 600 cycles, outperforming the benchmark mixture of Pt/C and RuO2 . This work proposes a controllable dual interface engineering concept toward regulating the charge, electron, and gas transfer to achieve efficient bifunctional catalysts for ZABs.
Collapse
Affiliation(s)
- Qian Lu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, UNIST-NUIST Research Center of Environment and Energy, School of Environmental Science and Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Xiaohong Zou
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 South Puzu Road, Nanjing, 211816, P. R. China
| | - Yunfei Bu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, UNIST-NUIST Research Center of Environment and Energy, School of Environmental Science and Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Kaiming Liao
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 South Puzu Road, Nanjing, 211816, P. R. China
| | - Wei Zhou
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 South Puzu Road, Nanjing, 211816, P. R. China
| | - Zongping Shao
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 South Puzu Road, Nanjing, 211816, P. R. China
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| |
Collapse
|
43
|
Liu J, Li H, Cai J, Liu J, Liu Y, Sun Z, He X, Qu D, Li X. Enhanced oxygen evolution performance by partial phase transformation of cobalt/nickel carbonate hydroxide nanosheet arrays in Fe-containing alkaline electrolyte. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01558c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we employ a partial phase conversion strategy to transform cobalt/nickel carbonate hydroxide (CoxNiyCH) nanosheet arrays in Fe-containing KOH electrolyte. The optimized sample exhibits a remarkable electrocatalytic activity (η50 =...
Collapse
|
44
|
Zhao S, Wang Z, Huang J, Wang L, Liu Y, Liu W, Liu ZQ. Cation-Tuning Induced d-Band Center Modulation on Co-based Spinel Oxide for Rechargeable Zn-Air Batteries. Angew Chem Int Ed Engl 2021; 61:e202114696. [PMID: 34970837 DOI: 10.1002/anie.202114696] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/06/2022]
Abstract
Atomic substitutions at the tetrahedral site (A Td ) could theoretically achieve an efficient optimization of the charge at the octahedral site (B Oh ) through the A Td -O-B Oh interactions in the spinel oxides (AB2O4). However, the precise control and adjustment of the spinel oxides are still challenging owing to the complexity of their crystal structure. In this work, we demonstrate a simple solvent method to tailor the structures of spinel oxides and further use the spinel oxide composites (ACo2O4/NCNTs, A = Mn, Co, Ni, Cu, Zn) for oxygen electrocatalysis. And the optimized MnCo2O4/NCNTs exhibit high activity and excellent durability for oxygen reduction/evolution reactions. Remarkably, the rechargeable liquid Zn-air battery equipped the MnCo2O4/NCNTs cathode affords a specific capacity of 827 mAh gZn-1 with high power density of 74.63 mW cm-2 and no voltage degradation after 300 cycles at a high charging-discharging rate (5 mA cm-2). The density functional theory (DFT) calculations reveal that the substitution could regulate the ratio of Co3+/Co2+ and thereby lead to the electronic structure modulated accompanied with the movement of d-band center. The tetrahedral and octahedral sites interact through the Mn-O-Co, the Co3+ Oh of MnCo2O4 with the optimal charge structure allows more suitable binding interaction between the active center and the oxygenated species, resulting in superior oxygen electrocatalytic performance. This work not only proves the influence of the charge modulation mechanism on the oxygen catalysis process but also provides novel strategies for the subsequent design of other oxygen catalysis materials.
Collapse
Affiliation(s)
- Shenlong Zhao
- The University of Sydney, School of Chemical and Biomolecular Engineering, 28 Bristol Rd, Hurstville, 2220, Sydney, AUSTRALIA
| | - Zepan Wang
- Guangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Jiahui Huang
- Guangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Ling Wang
- Guangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Yangyang Liu
- The University of Sydney, School of Chemical and Biomolecular Engineering, AUSTRALIA
| | - Wenhui Liu
- Guangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Zhao-Qing Liu
- Guangzhou University, School of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
45
|
Zhao S, Wang Z, Huang J, Wang L, Liu Y, Liu W, Liu ZQ. Cation‐Tuning Induced d‐Band Center Modulation on Co‐based Spinel Oxide for Rechargeable Zn–Air Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shenlong Zhao
- The University of Sydney School of Chemical and Biomolecular Engineering 28 Bristol Rd, Hurstville 2220 Sydney AUSTRALIA
| | - Zepan Wang
- Guangzhou University School of Chemistry and Chemical Engineering CHINA
| | - Jiahui Huang
- Guangzhou University School of Chemistry and Chemical Engineering CHINA
| | - Ling Wang
- Guangzhou University School of Chemistry and Chemical Engineering CHINA
| | - Yangyang Liu
- The University of Sydney School of Chemical and Biomolecular Engineering AUSTRALIA
| | - Wenhui Liu
- Guangzhou University School of Chemistry and Chemical Engineering CHINA
| | - Zhao-Qing Liu
- Guangzhou University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
46
|
Shi W, Zhang Y, Bo L, Guan X, Wang Y, Tong J. Ce-Substituted Spinel CuCo 2O 4 Quantum Dots with High Oxygen Vacancies and Greatly Improved Electrocatalytic Activity for Oxygen Evolution Reaction. Inorg Chem 2021; 60:19136-19144. [PMID: 34839658 DOI: 10.1021/acs.inorgchem.1c02931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exploring effective electrocatalysts for oxygen evolution reaction (OER) is a crucial requirement of many energy storage and transformation systems, involving fuel cells, water electrolysis, and metal-air batteries. Transition-metal oxides (TMOs) have attracted much attention to OER catalysts because of their earth abundance, tunable electronic properties, and so forth. Defect engineering is a general and the most important strategy to tune the electronic structure and control size, and thus improve their intrinsic activities. Herein, OER performance on spinel CuCo2O4 was greatly enhanced through cation substitution and size reduction. Ce-substituted spinel CuCeδCo2-δOx (δ = 0.45, 0.5 and 0.55) nanoparticles in the quantum dot scale (2-8 nm) were synthesized using a simple and facile phase-transfer coprecipitation strategy. The as-prepared samples were highly dispersed and have displayed a low overpotential of 294 mV at 10 mA·cm-2 and a Tafel slope of 57.5 mV·dec-1, which outperform commercial RuO2 and the most high-performance analogous catalysts reported. The experimental and calculated results all confirm that Ce substitution with an appropriate content can produce rich oxygen vacancies, tune intermediate absorption, consequently lower the energy barrier of the determining step, and greatly enhance the OER activity of the catalysts. This work not only provides advanced OER catalysts but also opens a general avenue to understand the structure-activity relationship of pristine TMO catalysts deeply in the quantum dot scale and the rational design of more efficient OER catalysts.
Collapse
Affiliation(s)
- Wenping Shi
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yuning Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Lili Bo
- College of Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaolin Guan
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yunxia Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730070, China
| | - Jinhui Tong
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
47
|
Wang C, Zhai P, Xia M, Wu Y, Zhang B, Li Z, Ran L, Gao J, Zhang X, Fan Z, Sun L, Hou J. Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chen Wang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Mingyue Xia
- Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Yunzhen Wu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Bo Zhang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Zhuwei Li
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Lei Ran
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Xiaomeng Zhang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Zhaozhong Fan
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
- Center of Artificial Photosynthesis for Solar Fuels School of Science Westlake University Hangzhou 310024 P. R. China
- School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10044 Stockholm Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| |
Collapse
|
48
|
Wang C, Zhai P, Xia M, Wu Y, Zhang B, Li Z, Ran L, Gao J, Zhang X, Fan Z, Sun L, Hou J. Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2021; 60:27126-27134. [PMID: 34626056 DOI: 10.1002/anie.202112870] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/08/2022]
Abstract
Developing robust oxygen evolution reaction (OER) catalysts requires significant advances in material design and in-depth understanding for water electrolysis. Herein, we report iridium clusters stabilized surface reconstructed oxyhydroxides on amorphous metal borides array, achieving an ultralow overpotential of 178 mV at 10 mA cm-2 for OER in alkaline medium. The coupling of iridium clusters induced the formation of high valence cobalt species and Ir-O-Co bridge between iridium and oxyhydroxides at the atomic scale, engineering lattice oxygen activation and non-concerted proton-electron transfer to trigger multiple active sites for intrinsic pH-dependent OER activity. The lattice oxygen oxidation mechanism (LOM) was confirmed by in situ 18 O isotope labeling mass spectrometry and chemical recognition of negative peroxo-like species. Theoretical simulations reveal that the OER performance on this catalyst is intrinsically dominated by LOM pathway, facilitating the reaction kinetics. This work not only paves an avenue for the rational design of electrocatalysts, but also serves the fundamental insights into the lattice oxygen participation for promising OER application.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Mingyue Xia
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Yunzhen Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Bo Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Zhuwei Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Lei Ran
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Xiaomeng Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Zhaozhong Fan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China.,Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, P. R. China.,School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| |
Collapse
|
49
|
Wang Y, Wang ZP, Wu H, Hou L, Liu ZQ. Reconstruction of spinel Co 3O 4 by inert Zn 2+ towards enhanced oxygen catalytic activity. Chem Commun (Camb) 2021; 58:637-640. [PMID: 34904594 DOI: 10.1039/d1cc04330g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ZnxCo3-xO4 (0 ≤ x≤ 1) coupled with nitrogen-doped hollow porous carbon spheres exhibits a superior oxygen catalytic activity. A Zn-air battery using Zn0.6Co2.4O4/NHCS as a cathodic catalyst affords a high-power density (130 mW cm-2) and excellent stability. The effect of reconstruction of catalytically active Co ions induced by Zn is well-investigated.
Collapse
Affiliation(s)
- Yifan Wang
- School of Life Science, Guangzhou University, Guangzhou 510006, China. .,School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| | - Ze-Pan Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| | - Huixiang Wu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| | - Liping Hou
- School of Life Science, Guangzhou University, Guangzhou 510006, China.
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
50
|
Miao BQ, Liu YM, Wang TJ, Ding Y, Chen Y. One-dimensional cobalt oxide nanotubes with rich defect for oxygen evolution reaction. NANOTECHNOLOGY 2021; 33:075401. [PMID: 34740207 DOI: 10.1088/1361-6528/ac3702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
For the electrochemcial hydrogen production, the oxygen evolution reaction (OER) is a pivotal half-reaction in water splitting. However, OER suffers sluggish kinetics and high overpotential, leading to the increase of overall energy consumption and decrease of the energy efficiency. In this work, high-quality cobalt oxide porous nanotubes (Co3O4-PNTs) are easily obtained by simple self-template approach. One-dimensional (1D) porous structure provides the large specific surface area, enough abundant active atoms and effective mass transfer. In addition, Co3O4-PNTs also own self-stability of 1D architecture, benefitting the their durability for electrocatalytic reaction. Thus, Co3O4-PNTs with optimal annealing temperature and time reveal the attractive alkaline OER performance (Tafel slope of 56 mV dec-1and 323 mV overpotential at 10 mA cm-2), which outperform the Co3O4nanoparticles and benchmark commercial RuO2nanoparticles. Furthermore, Co3O4-PNTs also exhibit excellent OER durability for least 10 h at the 10 mA cm-2. Overall, Co3O4-PNTs with low cost can be serve as a highly reactive and economical catalyst for OER.
Collapse
Affiliation(s)
- Bo-Qiang Miao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yi-Ming Liu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Tian-Jiao Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yu Ding
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|