1
|
Mitsudo K, Osaki A, Inoue H, Sato E, Shida N, Atobe M, Suga S. Electrocatalytic hydrogenation of cyanoarenes, nitroarenes, quinolines, and pyridines under mild conditions with a proton-exchange membrane reactor. Beilstein J Org Chem 2024; 20:1560-1571. [PMID: 39015618 PMCID: PMC11250234 DOI: 10.3762/bjoc.20.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
An electrocatalytic hydrogenation of cyanoarenes, nitroarenes, quinolines, and pyridines using a proton-exchange membrane (PEM) reactor was developed. Cyanoarenes were then reduced to the corresponding benzylamines at room temperature in the presence of ethyl phosphate. The reduction of nitroarenes proceeded at room temperature, and a variety of anilines were obtained. The quinoline reduction was efficiently promoted by adding a catalytic amount of p-toluenesulfonic acid (PTSA) or pyridinium p-toluenesulfonate (PPTS). Pyridine was also reduced to piperidine in the presence of PTSA.
Collapse
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Atsushi Osaki
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Haruka Inoue
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Eisuke Sato
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Naoki Shida
- Graduate School of Engineering Science and Advanced Chemical Energy Research Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mahito Atobe
- Graduate School of Engineering Science and Advanced Chemical Energy Research Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Zhang W, Zou Q, Wang Q, Jin D, Jiang S, Qian P. Electrocatalytic C-H/S-H Coupling of Amino Pyrazoles and Thiophenols: Synthesis of Amino Pyrazole Thioether Derivatives. J Org Chem 2024; 89:5434-5441. [PMID: 38581391 DOI: 10.1021/acs.joc.3c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
A mild method for the C-H/S-H coupling of pyrazol-5-amines and thiophenols was developed via electrochemistry, giving diverse amino pyrazole thioether derivatives in 37-98% yields. This electrochemical reaction is sustainable and an atom-efficient approach with good functional group tolerance and scalability by avoiding metal and external chemical oxidants.
Collapse
Affiliation(s)
- Wenbao Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Experimental and Training Management Center, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Quan Zou
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Qian Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Dongsheng Jin
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Shan Jiang
- Experimental and Training Management Center, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Peng Qian
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
3
|
Schüll A, Grothe L, Rodrigo E, Erhard T, Waldvogel SR. Electrochemical Synthesis of S-Aryl Dibenzothiophenium Triflates as Precursors for Selective Nucleophilic Aromatic (Radio)fluorination. Org Lett 2024; 26:2790-2794. [PMID: 37805940 DOI: 10.1021/acs.orglett.3c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A novel electrosynthetic approach to aryl dibenzothiophenium salts, including the direct intramolecular formation of a C-S bond in a metal-free, electrochemical key step under ambient conditions, is reported. The broad applicability of this method is demonstrated with 14 examples, including nitrogen-containing heterocycles in isolated yields up to 72%. The resulting sulfonium salts can be used as precursors for fluorine labeling to give [18F]fluoroarenes as found in PET tracer ligands.
Collapse
Affiliation(s)
- Aaron Schüll
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Lisa Grothe
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Eduardo Rodrigo
- Medicinal Chemistry & Screening Biology, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen am Rhein, Germany
| | - Thomas Erhard
- Medicinal Chemistry & Screening Biology, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen am Rhein, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Ito K, Nakamura K, Yoshida K. Synthesis of [1]Benzothieno[3,2-b][1]benzothiophenes through Iodine-Mediated Sulfur Insertion Reaction. Chemistry 2024; 30:e202400220. [PMID: 38320966 DOI: 10.1002/chem.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
[1]Benzothieno[3,2-b][1]benzothiophenes (BTBTs) are important molecules that have been extensively studied as high-performance organic field-effect transistors (OFETs). Therefore, it is important to develop a simple synthetic method for these molecules. In this paper, a synthetic method to obtain the BTBTs from 2-arylbenzo[b]thiophenes and elemental sulfur, in which two C-S bonds are formed at once, is described. In this method, molecular iodine plays a very important role as an additive. The role of iodine is discussed in the presumed reaction pathways.
Collapse
Affiliation(s)
- Kazuki Ito
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kohei Nakamura
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kazuhiro Yoshida
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
5
|
S K N, P R, Ann Babu S, John J, Hopf H. A Review on the Synthetic Methods towards Benzothienobenzothiophenes. CHEM REC 2024; 24:e202400019. [PMID: 38456791 DOI: 10.1002/tcr.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Benzothienobenzothiophenes (BTBTs) are a class of heteroacenes for which two distinct isomers have been identified depending on the locations of the fused benzothiophene motifs. Benzothienobenzothiophenes represent a class of heteroacenes demonstrating remarkable electronic properties that make them prominent in the realm of organic semiconductors. The structure of BTBTs, incorporating two sulfur atoms, contributes to their unique electronic characteristics, including narrow bandgaps and effective charge transport pathways. These compounds have gained attention for their high charge carrier mobility, making them desirable candidates for application in organic field-effect transistors (OFETs) and other electronic devices. Researchers have explored various synthetic strategies to design and tailor the properties of BTBT derivatives, leading to advancements in the development of high-performance organic semiconductors. Various synthetic techniques for benzothienobenzothiophenes have been reported in the literature including multistep synthesis, tandem transformations, electrochemical synthesis, and annulations. This review investigates the generality of each synthetic methodology by highlighting its benefits and drawbacks, and it analyses all synthetic approaches described for the creation of the two isomers. For the advantage of the readers, we have delved upon every mechanism of the reactions that are known. Finally, we have also summarized the synthetic methodologies that are used for making benzothienobenzothiophene analogues for material applications.
Collapse
Affiliation(s)
- Nandana S K
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul P
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheba Ann Babu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jubi John
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Henning Hopf
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106, Braunschweig, Germany
| |
Collapse
|
6
|
Fuchigami T. Spiers Memorial Lecture: Old but new organic electrosynthesis: history and recent remarkable developments. Faraday Discuss 2023; 247:9-33. [PMID: 37622750 DOI: 10.1039/d3fd00129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Organic electrosynthesis has a long history. However, this chemistry is still new. Recently, we have seen its second renaissance with organic electrosynthesis being considered a typical green chemistry process. Therefore, a number of novel electrosynthetic methodologies have recently been developed. However, there are still many problems to be solved from a green and sustainable viewpoint. After an explanation of the historical survey of organic electrosynthesis, this paper focuses on recent remarkable developments in new electrosynthetic methodologies, such as novel electrodes, recyclable nonvolatile electrolytic solvents and recyclable supporting electrolytes, as well as new types of electrolytic flow cells. Furthermore, novel types of organic electrosynthetic reactions will be mentioned.
Collapse
Affiliation(s)
- Toshio Fuchigami
- Department of Electronic Chemistry, Tokyo Institute of Technology, Japan.
| |
Collapse
|
7
|
Chen J, Mo Y. Wireless Electrochemical Reactor for Accelerated Exploratory Study of Electroorganic Synthesis. ACS CENTRAL SCIENCE 2023; 9:1820-1826. [PMID: 37780362 PMCID: PMC10540286 DOI: 10.1021/acscentsci.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 10/03/2023]
Abstract
Electrosynthesis is an emerging tool to construct value-added fine chemicals under mild and sustainable conditions. However, the complex apparatus required impedes the facile development of new electrochemistry in the laboratory. Herein, we proposed and demonstrated the concept of wireless electrochemistry (Wi-eChem) based on wireless power transfer technology. The core of this concept is the dual-function wireless electrochemical magnetic stirrer that provides an electrolysis driving force and mixing simultaneously in a miniaturized form factor. This Wi-eChem system allowed electrochemists to execute electrochemical reactions in a manner similar to traditional organic chemistry without handling wire connections. The controllability, reusability, and versatility were validated with a series of modern electrosynthesis reactions, including electrodecarboxylative etherification, electroreductive olefin-ketone coupling, and electrochemical nickel-catalyzed oxygen atom transfer reaction. Its remarkably simplified operation enabled its facile integration into a fully automated robotic synthesis platform to achieve autonomous parallel electrosynthesis screening.
Collapse
Affiliation(s)
- Jie Chen
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Yiming Mo
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, Zhejiang, China
| |
Collapse
|
8
|
Sato E, Yukiue A, Mitsudo K, Suga S. Anodic Dehydrogenative Aromatization of Tetrahydrocarbazoles Leading to Carbazoles. Org Lett 2023. [PMID: 37428821 DOI: 10.1021/acs.orglett.3c01914] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Anodic oxidation-promoted aromatization of 1,2,3,4-tetrahydrocarbazoles was achieved. Nitrogen-protected tetrahydrocarbazoles could be converted to the corresponding carbazoles with the use of bromide as a mediator. LiBr, an inexpensive bromide source, allowed for efficient transformation in the presence of AcOH.
Collapse
Affiliation(s)
- Eisuke Sato
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Ayaka Yukiue
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
9
|
Yang N, Shen C, Zhang G, Gan F, Ding Y, Crassous J, Qiu H. Helicity-modulated remote C-H functionalization. SCIENCE ADVANCES 2023; 9:eadg6680. [PMID: 37115920 PMCID: PMC10146887 DOI: 10.1126/sciadv.adg6680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Remote C-H functionalization is highly important for the conversion and utilization of arenes, but the conventional routes are comprehensively developed with the assistance of transition metal catalysts or templates. We report a facile metal/template-free electrochemical strategy for remote C-H functionalization in a helical system, where aromatic or aliphatic hydrogen act as a directing group to promote the alkoxylation at the opposite site of the helical skeleton by generating a unique helical "back-biting" environment. Such helicity-modulated C-H functionalization is prevalent for carbo[n]helicenes (n = 6 to 9, primitive or substituted) and hetero[6]helicenes and also occurs when the aryl hydrogen on the first position is replaced by a methyl group or a phenyl group. Thus, the relatively inert helicene skeleton can be precisely furnished with a rich array of alkoxy pendants with tunable functional moieties. Notably, the selective decoration of a methoxy group on N-methylated aza[6]helicene close or distant to the nitrogen atom leads to distinct luminescence variation upon changing the solvents.
Collapse
Affiliation(s)
- Na Yang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengshuo Shen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Corresponding author. (H.Q.); (C.S.)
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongle Ding
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes, Université de Rennes, UMR CNRS 6226, Campus de Beaulieu, Rennes 35042, France
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author. (H.Q.); (C.S.)
| |
Collapse
|
10
|
Wood D, Lin S. Deuterodehalogenation Under Net Reductive or Redox-Neutral Conditions Enabled by Paired Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202218858. [PMID: 36738472 PMCID: PMC10050105 DOI: 10.1002/anie.202218858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/06/2023]
Abstract
Interest in deuterated active pharmaceutical ingredients (APIs) is increasing as deuteration holds promise for kinetic isotope effect (KIE) regulated fine-tuning of API performance. Moreover, deuterium isotope labeling is frequently carried out to study organic and bioorganic reaction mechanisms and to facilitate complex target synthesis. As such, methods for highly selective deuteration of organic molecules are highly desirable. Herein, we present an electrochemical method for the selective deuterodehalogenation of benzylic halides via a radical-polar crossover mechanism, using inexpensive deuterium oxide (D2 O) as the deuterium source. We demonstrate broad functional group compatibility across a range of aryl and heteroaryl benzylic halides. Furthermore, we uncover a sequential paired electrolysis regime, which permits switching between net reductive and overall redox-neutral reactions of sulfur-containing substrates simply by changing the identity of the sacrificial reductant employed.
Collapse
Affiliation(s)
- Devin Wood
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| |
Collapse
|
11
|
Wang Y, Zhao R, Ackermann L. Electrochemical Syntheses of Polycyclic Aromatic Hydrocarbons (PAHs). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300760. [PMID: 36965124 DOI: 10.1002/adma.202300760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have surfaced as increasingly viable components in optoelectronics and material sciences. The development of highly efficient and atom-economic tools to prepare PAHs under exceedingly mild conditions constitutes a long-term goal. Traditional syntheses of PAHs have largely relied on multistep approaches or the conventional Scholl reaction. However, Scholl reactions are largely inefficient with electron-deficient substrates, require stoichiometric chemical oxidants, and typically occur in the presence of strong acid. In sharp contrast, electrochemistry has gained considerable momentum during the past decade as an alternative for the facile and straightforward PAHs assembly, generally via electro-oxidative dehydrogenative annulation, releasing molecular hydrogen as the sole stoichiometric byproduct by the hydrogen evolution reaction. This review provides an overview on the recent and significant advances in the field of electrochemical syntheses of various PAHs until January 2023.
Collapse
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Rong Zhao
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
12
|
Mitsudo K, Tachibana Y, Sato E, Suga S. Electrochemical Synthesis of Dibenzothiophenes via Intramolecular C-S Cyclization with a Halogen Mediator. Org Lett 2022; 24:8547-8552. [PMID: 36367294 DOI: 10.1021/acs.orglett.2c03574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Electrochemical synthesis of dibenzothiophene derivatives was achieved. Several bis(biaryl) disulfides are efficiently converted to dibenzothiophenes by electrochemical oxidation. The use of Bu4NBr as a halogen mediator was essential, and wide varieties of dibenzothiophene derivatives were obtained in good yields.
Collapse
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuri Tachibana
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Eisuke Sato
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
13
|
Huang J, Wang W, Zhang L, Meng X. Recent advances in the synthesis of benzo[b]thiophene fused polycyclic derivatives: strategies and reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Lee J, Yu E, Park CM. Catalyst-free electrosynthesis of benzothiophenes from 2-alkenylaryl disulfides. Org Biomol Chem 2022; 20:7499-7502. [PMID: 36106773 DOI: 10.1039/d2ob01402e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of benzothiophenes through electrosynthesis under oxidant- and metal-free conditions has been discovered. Electrolysis of symmetrical 2-alkenylaryl disulfides using an undivided cell leads to the formation of the corresponding benzothiophenes in good to moderate yields with good functional group tolerance. The usefulness of this methodology was further investigated with a scale-up experiment, which delivered a similar result to that of the small scale reaction. Several mechanistic investigations including DFT calculations were carried out to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Juyeong Lee
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea.
| | - Eunsoo Yu
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea.
| | - Cheol-Min Park
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea.
| |
Collapse
|
15
|
Mitsudo K, Inoue H, Niki Y, Sato E, Suga S. Electrochemical hydrogenation of enones using a proton-exchange membrane reactor: selectivity and utility. Beilstein J Org Chem 2022; 18:1055-1061. [PMID: 36105727 PMCID: PMC9443409 DOI: 10.3762/bjoc.18.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Electrochemical hydrogenation of enones using a proton-exchange membrane reactor is described. The reduction of enones proceeded smoothly under mild conditions to afford ketones or alcohols. The reaction occurred chemoselectively with the use of different cathode catalysts (Pd/C or Ir/C).
Collapse
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Haruka Inoue
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Niki
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Eisuke Sato
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
16
|
Okamoto K, Shida N, Morizumi H, Kitano Y, Chiba K. Oxidation Potential Gap (ΔE ox ): The Hidden Parameter in Redox Chemistry. Angew Chem Int Ed Engl 2022; 61:e202206064. [PMID: 35610179 DOI: 10.1002/anie.202206064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/27/2022]
Abstract
Oxidative biaryl coupling of aryls with different electronic features generally fails. However, this has not been systematically studied via theoretical analysis, and thus, the crucial factor governing coupling efficiency remains unclear. Herein, we propose that the "oxidation potential gap (ΔEox )" is a key parameter in predicting the efficiency of an intramolecular oxidative coupling reaction, with ΔEox defined as a difference in the oxidation potentials of the relevant aromatic rings. Our experimental and computational analyses revealed that the efficiency of an aromatic intramolecular coupling reaction correlates with the activation energy (ΔE≠ ) of C-C bond formation of the radical cation intermediates. Furthermore, ΔE≠ correlates with ΔEox . Therefore, we demonstrate the tuning of ΔEox by attaching cleavable extra electron-donating/-withdrawing groups, enabling the rational synthesis of a phenanthridone skeleton using aromatic rings with an electronic gap.
Collapse
Affiliation(s)
- Kazuhiro Okamoto
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.,Department of Science and Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Naoki Shida
- Department of Science and Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Haruka Morizumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Yoshikazu Kitano
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
17
|
Liu L, Doucet H. One Pot Access to 2'‐Aryl‐2,3'‐Bithiophenes via Twofold Palladium‐Catalyzed C‐X/C‐H Coupling Associated to a Pd‐1,4‐Migration. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Devi S, Jyoti, Kiran, Wadhwa D, Sindhu J. Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. Org Biomol Chem 2022; 20:5163-5229. [PMID: 35730661 DOI: 10.1039/d2ob00572g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterocyclic compounds are considered to be one of the most established structural classes due to their extensive application in agrochemicals, pharmaceuticals and organic materials. Over the past few years, the development of heterocyclic compounds has gone through a considerable renaissance from conventional traditional methodologies to non-conventional electro-organic synthesis. Replacing metal catalysts, strong oxidants and multi-step methodologies with metal and strong oxidant-free single-step protocols has revolutionized the field of sustainable organic synthesis. Electro-organic synthesis has evolved as a scalable and sustainable approach in different synthetic protocols in an environment-benign manner. The current review outlines the recent developments in C-C, C-N, C-S and C-O/Se bond formation for heterocycle synthesis using electrochemical methods. Different synthetic strategies and their detailed mechanistic description are presented to enlighten the future applications of electrochemistry in heterocycle synthesis.
Collapse
Affiliation(s)
- Suman Devi
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jyoti
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| | - Deepak Wadhwa
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| |
Collapse
|
19
|
Liu H, Chen F, Zhao N, Vummaleti SVC, Sullivan MB, Ying JY, Wang L. Rhodium-Catalyzed Ring Expansion Reactions for the Concise Construction of Densely Functionalized Oxathionines and Oxathiocines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, P. R. China
| | - Feng Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Nannan Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, P. R. China
| | - Sai V. C. Vummaleti
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-6 Connexis, Singapore 138632, Singapore
| | - Michael B. Sullivan
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-6 Connexis, Singapore 138632, Singapore
| | - Jackie Y. Ying
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Lei Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, P. R. China
| |
Collapse
|
20
|
Krishnan R A, Babu SA, Ravi NP, Thulasi S, John J. Base-Mediated Annulation of Electrophilic Benzothiophene with Naphthols and Phenols: Accessing Benzothiophene-Fused Heteroacenes. J Org Chem 2022; 87:8017-8027. [PMID: 35666573 DOI: 10.1021/acs.joc.2c00645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A base-mediated annulation of 2-nitrobenzothiophenes with naphthols was realized for the synthesis of hitherto unknown class of heteroacenes, namely benzothieno[2,3-b]naphthofurans. By using naphthols with a hydroxyl group positioned at 1st or 2nd position, we could synthesize two positional isomers, benzothieno[2,3-b]naphtho[2,1-d]furans or benzothieno[2,3-b]naphtho[2,3-d]furans. The annulation was found to be general with a range of substituted 2-nitrobenzothiophenes and naphthols. This heteroannulation of benzothiophene was extended using a range of phenols affording the corresponding benzothieno[2,3-b]benzofurans in moderate yields. The basic photophysical properties of these heteroacenes were evaluated, and we also demonstrated the applicability of this annulation on the gram scale.
Collapse
Affiliation(s)
- Akhil Krishnan R
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Sheba Ann Babu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nitha P Ravi
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreeja Thulasi
- Department of Chemistry, T. K. Madhava Memorial College, Nangiarkulangara, Haripad 690513, India
| | - Jubi John
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Okamoto K, Shida N, Morizumi H, Kitano Y, Chiba K. Oxidation Potential Gap (ΔEox): The Hidden Parameter in Redox Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuhiro Okamoto
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Department of Applied Biological Science JAPAN
| | - Naoki Shida
- Yokohama National University: Yokohama Kokuritsu Daigaku Department of Science and Engineering JAPAN
| | - Haruka Morizumi
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Department of Applied Biological Science JAPAN
| | - Yoshikazu Kitano
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Department of Applied Biological Science JAPAN
| | - Kazuhiro Chiba
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Applied Biological Science 3-5-8 Saiwai-cho, Fuchu 183-8509 Tokyo JAPAN
| |
Collapse
|
22
|
Wang Z, Cheng Q, Peng RK, Yan P, Zeng R, Tian WJ, Pan B, Gu J, Li YL, Ouyang Q. An Oxidant- and Catalyst-Free Electrooxidative Cross-Coupling Approach to Synthesize meso-Substituted Porphyrin Derivatives. J Org Chem 2022; 87:4742-4749. [PMID: 35302772 DOI: 10.1021/acs.joc.2c00031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of porphyrin and chlorin derivatives has attracted significant attention due to their numerous applications. Herein, we report an environment friendly oxidant- and catalyst-free electrooxidative cross-coupling approach for multiple coupling reactions to synthesize meso C-N, C-O, and C-S substituted porphyrin and chlorin derivatives. For C-N cross-coupling reactions, diaminated porphyrins were obtained as the main products, while using 4-bromo-2,6-dimethyl aniline resulted in monoaminated product. Similarly, electrochemical catalysis of porphyrins with phenol and thiophene produced meso-disubstituted porphyrins in moderate yields under a smaller current. Chlorins were also applicable, and 20-substituted products were efficiently produced regioselectively. To the best of our knowledge, this work represents the first example of electrooxidative C-X cross-coupling of porphyrins and chlorins.
Collapse
Affiliation(s)
- Zheng Wang
- College of Pharmacy, Third Military of Medical University, Chongqing 400038, PR China
| | - Qi Cheng
- College of Pharmacy, Third Military of Medical University, Chongqing 400038, PR China
| | - Rui-Kun Peng
- College of Pharmacy, Third Military of Medical University, Chongqing 400038, PR China
| | - Peng Yan
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, PR China
| | - Rong Zeng
- College of Pharmacy, Third Military of Medical University, Chongqing 400038, PR China
| | - Wen-Jing Tian
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, PR China
| | - Bin Pan
- College of Pharmacy, Third Military of Medical University, Chongqing 400038, PR China
| | - Jing Gu
- College of Pharmacy, Third Military of Medical University, Chongqing 400038, PR China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, PR China
| | - Qin Ouyang
- College of Pharmacy, Third Military of Medical University, Chongqing 400038, PR China
| |
Collapse
|
23
|
Tayu M, Rahmanudin A, Perry GJP, Khan RU, Tate DJ, Marcial-Hernandez R, Shen Y, Dierking I, Janpatompong Y, Aphichatpanichakul S, Zamhuri A, Victoria-Yrezabal I, Turner ML, Procter DJ. Modular synthesis of unsymmetrical [1]benzothieno[3,2- b][1]benzothiophene molecular semiconductors for organic transistors. Chem Sci 2022; 13:421-429. [PMID: 35126974 PMCID: PMC8730195 DOI: 10.1039/d1sc05070b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022] Open
Abstract
A modular approach to underexplored, unsymmetrical [1]benzothieno[3,2-b][1]benzothiophene (BTBT) scaffolds delivers a library of BTBT materials from readily available coupling partners by combining a transition-metal free Pummerer CH-CH-type cross-coupling and a Newman-Kwart reaction. This effective approach to unsymmetrical BTBT materials has allowed their properties to be studied. In particular, tuning the functional groups on the BTBT scaffold allows the solid-state assembly and molecular orbital energy levels to be modulated. Investigation of the charge transport properties of BTBT-containing small-molecule:polymer blends revealed the importance of molecular ordering during phase segregation and matching the highest occupied molecular orbital energy level with that of the semiconducting polymer binder, polyindacenodithiophene-benzothiadiazole (PIDTBT). The hole mobilities extracted from transistors fabricated using blends of PIDTBT with phenyl or methoxy functionalized unsymmetrical BTBTs were double those measured for devices fabricated using pristine PIDTBT. This study underscores the value of the synthetic methodology in providing a platform from which to study structure-property relationships in an underrepresented family of unsymmetrical BTBT molecular semiconductors.
Collapse
Affiliation(s)
- Masanori Tayu
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Aiman Rahmanudin
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gregory J P Perry
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Raja U Khan
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Daniel J Tate
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Yuan Shen
- Department of Physics & Astronomy, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ingo Dierking
- Department of Physics & Astronomy, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | | | - Adibah Zamhuri
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Michael L Turner
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - David J Procter
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
24
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Gao W, Zong L, Wu W, Zhu M, Liu W, Zhao Y, Li T, Zhang S. Electrochemical Synthesis of Cyclic Diaryl Phosphinamides via Intramolecular sp 2 C-H Phosphinamidation. J Org Chem 2021; 87:547-555. [PMID: 34958216 DOI: 10.1021/acs.joc.1c02559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed an oxidant- and transition-metal-free approach to construct six-membered cyclic phosphinamides via an intramolecular electrochemical C-H phosphinamidation process. With nBu4NBr as the catalyst and electrolyte, cyclic phosphinamides bearing a variety of functional groups (22 examples) were readily accessed under mild conditions. Meanwhile, this protocol provided an alternative route to organic electroluminescent materials and P-N ligands.
Collapse
Affiliation(s)
- Wenchao Gao
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Luyi Zong
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Weilong Wu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Ming Zhu
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wenmin Liu
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yiyang Zhao
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ting Li
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Sheng Zhang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
26
|
Ai L, Ajibola IY, Li B. Copper-mediated construction of benzothieno[3,2- b]benzofurans by intramolecular dehydrogenative C-O coupling reaction. RSC Adv 2021; 11:36305-36309. [PMID: 35492801 PMCID: PMC9043471 DOI: 10.1039/d1ra06985c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
An efficient method to synthesize benzothieno[3,2-b]benzofurans via intramolecular dehydrogenative C-H/O-H coupling has been developed. Good to excellent yields (64-91%) could be obtained no matter if the substituted group is electron-donating or electron-withdrawing. Notably, three-to-six fused ring thienofuran compounds could be constructed using this method. A reaction mechanism study showed that 1,1-diphenylethylene can completely inhibit the reaction. Therefore, it is a radical pathway initiated by single electron transfer between the hydroxyl of the substrate and the copper catalyst.
Collapse
Affiliation(s)
- Liankun Ai
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ibrahim Yusuf Ajibola
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Baolin Li
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
27
|
Jang HY. Oxidative cross-coupling of thiols for S-X (X = S, N, O, P, and C) bond formation: mechanistic aspects. Org Biomol Chem 2021; 19:8656-8686. [PMID: 34596196 DOI: 10.1039/d1ob01368h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on the reactive intermediates (disulfides, sulfenyl halides, thiyl radicals, sulfenium cations, and metal-organosulfur species) and the mechanisms of the recently reported oxidative couplings of thiols. These intermediates are generated by chemical oxidants, transition metal catalysts, electrochemistry, and photochemistry. Chemical oxidant-mediated reactions involve radical, halogenated, or cationic intermediates, or disulfides. Transition metal-catalyzed mechanisms proposed various metal-organosulfur intermediates to elucidate the reactivity and selectivity of metal catalysts. In electro- and photooxidation, direct oxidation/reduction mechanisms of reactants at the electrode or indirect oxidation/reduction of reactants in the presence of redox catalysts have been reported. The following sections are based on the products, thiosulfonates (S-S bond), sulfenamides, sulfinamides, and sulfonamides (S-N bond), sulfinates (S-O bond), thiophosphine oxides and thiophosphates (S-P bond), and sulfides, sulfoxides, and sulfones (S-C bond) and discuss the reaction mechanisms and the above-mentioned key intermediates for product formation. The contents of this review will provide helpful information, guiding the choice of oxidative coupling conditions for the synthesis of various organosulfur compounds with high yields and selectivity.
Collapse
Affiliation(s)
- Hye-Young Jang
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
28
|
Wan JL, Cui JF, Zhong WQ, Huang JM. Iminyl-radicals by electrochemical decarboxylation of α-imino-oxy acids: construction of indole-fused polycyclics. Chem Commun (Camb) 2021; 57:10242-10245. [PMID: 34528040 DOI: 10.1039/d1cc03891e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iminyl radicals are reactive intermediates that can be used for the construction of various valuable heterocycles. Herein, the electrochemical decarboxylation of α-imino-oxy acids for the generation of iminyl radicals has been accomplished under exogenous-oxidant- and metal-free conditions through the use of nBu4NBr as a mediator. The resulting iminyl radicals undergo intramolecular cyclization smoothly with the adjacent (hetero)arenes to afford a series of indole-fused polycyclic compounds.
Collapse
Affiliation(s)
- Jin-Lin Wan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Jian-Feng Cui
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Wei-Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
29
|
Du Z, Qi Q, Gao W, Ma L, Liu Z, Wang R, Chen J. Electrochemical Heteroatom-Heteroatom Bond Construction. CHEM REC 2021; 22:e202100178. [PMID: 34463430 DOI: 10.1002/tcr.202100178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/30/2023]
Abstract
Heteroatom-heteroatom linkage, with S-S bond as a presentative motif, served a crucial role in biochemicals, pharmaceuticals, pesticides, and material sciences. Thus, preparation of the privileged scaffold has always been attracting tremendous attention from the synthetic community. However, classic protocols suffered from several drawbacks, such as toxic and unstable agents, poor functional group tolerance, multiple steps, and explosive oxidizing regents as well as the transitional metal catalysts. Electrochemical organic synthesis exhibited a promising alternative to the traditional chemical reaction due to the sustainable electricity can be employed as the traceless redox agents. Hence, toxic and explosive oxidants and/or transitional metals could be discarded under mild reaction with high efficiency. In this context, a series of electrochemical approaches for the construction of heteroatom-heteroatom bond were reviewed. Notably, most of the cases illustrated the dehydrogenative feature with the clean energy molecules hydrogen as the sole by-product.
Collapse
Affiliation(s)
- Zhiying Du
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Qiqi Qi
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.,Archives of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Zhenxian Liu
- Intellectual Property Operations Management Office, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.,Intellectual Property Operations Management Office, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| |
Collapse
|
30
|
Li D, Jia J, Zhao X, Zhang Z, Wang H, Li S, Xu Z, Xie Z. Electrochemical Oxidation Cross Dehydrogenative Coupling of Enamines and Thiophenols for the Synthesis of Vinyl Sulfides. ChemistrySelect 2021. [DOI: 10.1002/slct.202101541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dandan Li
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering Xuchang University Henan 461000 P. R. China
| | - Jingpeng Jia
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering Xuchang University Henan 461000 P. R. China
| | - Xiaowei Zhao
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering Xuchang University Henan 461000 P. R. China
| | - Zixuan Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering Xuchang University Henan 461000 P. R. China
| | - Huimin Wang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering Xuchang University Henan 461000 P. R. China
| | - Shuaibing Li
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering Xuchang University Henan 461000 P. R. China
| | - Zhihong Xu
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering Xuchang University Henan 461000 P. R. China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering Xuchang University Henan 461000 P. R. China
| |
Collapse
|
31
|
Mitsudo K, Kobashi Y, Nakata K, Kurimoto Y, Sato E, Mandai H, Suga S. Cu-Catalyzed Dehydrogenative C-O Cyclization for the Synthesis of Furan-Fused Thienoacenes. Org Lett 2021; 23:4322-4326. [PMID: 34029106 DOI: 10.1021/acs.orglett.1c01256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first Cu-catalyzed dehydrogenative C-O cyclization for the synthesis of furan-fused thienoacenes is described. A variety of heteroacenes including a thieno[3,2-b]furan or a thieno[2,3-b]furan skeleton were synthesized by intramolecular C-H/O-H coupling. The use of a mixed solvent of N-methyl-2-pyrrolidone, ethylene glycol monomethyl ether, and toluene was essential for suppressing side reactions and efficiently promoting the reaction. Double C-O cyclization was also conducted to afford highly π-expanded furan-fused thienoacenes.
Collapse
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yoshiaki Kobashi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kaito Nakata
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuji Kurimoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Eisuke Sato
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
32
|
Mitsudo K. Electro-Oxidative Coupling Reactions Leading to π-Conjugated Compounds. CHEM REC 2021; 21:2269-2276. [PMID: 33735536 DOI: 10.1002/tcr.202100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
Electrochemical reactions are rapidly gaining attention today as a powerful and environmentally benign reaction processes for organic synthesis. We found that the electro-oxidation of palladium acetate afforded cationic palladium species and thus-generated cationic Pd species were efficient mediators for electro-oxidative coupling reactions. Homo-coupling of arylboronic acids and terminal alkynes proceeded efficiently to afford biaryls and butadiyne, respectively. Cross-coupling reactions between terminal alkynes and arylboronic acids were also achieved with the use of a Ag anode. As an advantage of electrochemical reactions, we developed a sequential reaction system switched between oxidative and neutral conditions by the on/off application of electricity, and several π-extended butadiynes were obtained in one-sequence by the system. Electrochemical intramolecular C-S coupling for the synthesis of thienoacene was also developed. The use of Bu4 NBr as a halogen mediator was essential for the reaction.
Collapse
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
33
|
Krishnan R A, Babu SA, P R N, Krishnan J, John J. Synthesis of Benzothienobenzofurans via Annulation of Electrophilic Benzothiophenes with Phenols. Org Lett 2021; 23:1814-1819. [PMID: 33591196 DOI: 10.1021/acs.orglett.1c00219] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have developed a metal-free, mild, and green synthetic route toward benzothieno[3,2-b]benzofurans by the annulation of 3-nitrobenzothiophene with phenols. The reaction was found to be general with a range of substituted phenols. In addition, we could extend the methodology for the synthesis of pentacenes and could demonstrate the synthesis in gram-scale. Moreover, we extended the strategy for the synthesis of benzothieno[2,3-b]benzofurans by starting from 2-nitrobenzothiophenes.
Collapse
Affiliation(s)
- Akhil Krishnan R
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Sheba Ann Babu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nitha P R
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadeesh Krishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Jubi John
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
Lu F, Zhang K, Wang X, Yao Y, Li L, Hu J, Lu L, Gao Z, Lei A. Electrochemical Oxidative Cross‐Coupling of Enaminones and Thiophenols to Construct C−S Bonds. Chem Asian J 2020; 15:4005-4008. [DOI: 10.1002/asia.202001116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Fangling Lu
- College of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Xian Shi 710119 P. R.China
| | - Kan Zhang
- College of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Xian Shi 710119 P. R.China
| | - Xiaoyu Wang
- College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang 330022 Jiangxi P. R.China
| | - Yanxiu Yao
- College of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Xian Shi 710119 P. R.China
| | - Liangsen Li
- College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang 330022 Jiangxi P. R.China
| | - Jianguo Hu
- College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang 330022 Jiangxi P. R.China
| | - Lijun Lu
- College of Chemistry and Molecular Sciences the Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 P. R.China
| | - Ziwei Gao
- College of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Xian Shi 710119 P. R.China
| | - Aiwen Lei
- College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang 330022 Jiangxi P. R.China
- College of Chemistry and Molecular Sciences the Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 P. R.China
| |
Collapse
|
35
|
Tasior M, Vakuliuk O, Koga D, Koszarna B, Górski K, Grzybowski M, Kielesiński Ł, Krzeszewski M, Gryko DT. Method for the Large-Scale Synthesis of Multifunctional 1,4-Dihydro-pyrrolo[3,2- b]pyrroles. J Org Chem 2020; 85:13529-13543. [PMID: 32907329 PMCID: PMC7656515 DOI: 10.1021/acs.joc.0c01665] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
A thorough investigation has enabled
the optimization of the synthesis
of 1,4-dihydro-pyrrolo[3,2-b]pyrroles. Although salts
of such metals as vanadium, niobium, cerium, and manganese were found
to facilitate the formation of 1,4-dihydro-pyrrolo[3,2-b]pyrroles from amines, aldehydes, and diacetyl, we confirmed that
iron salts are the most efficient catalysts. The conditions identified
(first step: toluene/AcOH = 1:1, 1 h, 50 °C; second step: toluene/AcOH
= 1:1, Fe(ClO4)3·H2O, 16 h,
50 °C) resulted in the formation of tetraarylpyrrolo[3,2-b]pyrroles in a 6–69% yield. For the first time,
very electron-rich substituents (4-Me2NC6H4, 3-(OH)C6H4, pyrrol-2-yl) originating
from aldehydes and sterically hindered substituents (2-ClC6H4, 2-BrC6H4, 2-CNC6H4, 2-(CO2Me)C6H4, 2-(TMS-C≡C)C6H4) present on anilines can be appended to the
pyrrolo[3,2-b]pyrrole core. It is now also possible
to prepare 1,4-dihydropyrrolo[3,2-b]pyrroles bearing
an ordered arrangement of N-substituents and C-substituents ranging from coumarin, quinoline, phthalimide
to truxene. These advances in scope enable independent regulations
of many desired photophysical properties, including the Stokes shift
value and emission color ranging from violet-blue through deep blue,
green, yellow to red. Simultaneously, the optimized conditions have
finally allowed the synthesis of these extremely promising heterocycles
in amounts of more than 10 g per run without a concomitant decrease
in yield or product contamination. Empowered with better functional
group compatibility, novel derivatization strategies were developed.
Collapse
Affiliation(s)
- Mariusz Tasior
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Olena Vakuliuk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Daiki Koga
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Beata Koszarna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Krzysztof Górski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Marek Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Łukasz Kielesiński
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| |
Collapse
|
36
|
Kaehler T, John A, Jin T, Bolte M, Lerner H, Wagner M. Selective Vicinal Diiodination of Polycyclic Aromatic Hydrocarbons. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tanja Kaehler
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Alexandra John
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Tao Jin
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| |
Collapse
|