1
|
Chandran A, Dominique NL, Kaur G, Clark V, Nalaoh P, Ekowo LC, Jensen IM, Aloisio MD, Crudden CM, Arroyo-Currás N, Jenkins DM, Camden JP. Forming N-heterocyclic carbene monolayers: not all deposition methods are the same. NANOSCALE 2025; 17:5413-5428. [PMID: 39895613 PMCID: PMC11788998 DOI: 10.1039/d4nr04428b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
N-Heterocyclic carbenes (NHCs) are unrivaled in their ability to form persistent and tunable monolayers on noble metal surfaces, with disciplines from heterogeneous catalysis to microelectronics fabrication rapidly adopting this technology. It is currently assumed that different NHC monolayer preparation protocols yield equivalent surfaces; however, a direct comparison of the leading synthetic protocols is yet to validate this assumption. Herein, we explore the binding of NHC ligands to gold (Au) surfaces prepared using the five most common NHC deposition methods and discover significant differences in the resulting monolayer composition and structure. In this work, NHC-Au systems are prepared according to literature procedures starting from either the free carbene, the CO2 adduct, the bicarbonate salt, or the triflate salt. The resulting surfaces are characterized with surface-enhanced Raman spectroscopy (SERS), laser desorption/ionization mass spectrometry (LDI-MS), electrochemistry, and X-ray photoelectron spectroscopy (XPS). These data indicate that the free carbene, vacuum annealing, and solvent annealing methods form chemisorbed NHC monolayers, as expected; however, the solution phase methods without annealing yield surfaces with a fundamentally different character. Although XPS is widely used to confirm the binding of NHCs to metal surfaces, it does not capture the differences in these deposition procedures and should be used with caution. Taken together, these results reveal a significant variation of the NHC surface structure as a function of deposition procedure and provide a critical benchmark to govern the design and preparation of future NHC monolayer systems.
Collapse
Affiliation(s)
- Aruna Chandran
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Vincent Clark
- Chemistry-Biology Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Lilian Chinenye Ekowo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Isabel M Jensen
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Mark D Aloisio
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Netzahualcóyotl Arroyo-Currás
- Chemistry-Biology Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
2
|
Dominique NL, Nalaoh P, Jenkins DM, Vaia R, Park K, Camden JP. One-step functionalization of gold nanorods with N-heterocyclic carbene ligands. RSC Adv 2025; 15:5007-5010. [PMID: 39957825 PMCID: PMC11826410 DOI: 10.1039/d5ra00754b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025] Open
Abstract
Here, we present a one-step approach to append N-heterocyclic carbenes (NHCs) to gold nanorods. The nanorods are treated with NHC gold or silver complexes in a mixture of water and dichloromethane. Surface-enhanced Raman spectroscopy and mass spectrometry characterization reveals that this procedure results in a ligand transfer yielding chemisorbed NHCs.
Collapse
Affiliation(s)
- Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Phattananawee Nalaoh
- Department of Chemistry, University of Tennessee, Knoxville Knoxville Tennessee 37996 USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville Knoxville Tennessee 37996 USA
| | - Richard Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson AFB Ohio 45433-7702 USA
| | - Kyoungweon Park
- Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson AFB Ohio 45433-7702 USA
- Bluehalo Dayton Ohio 45432 USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| |
Collapse
|
3
|
Sullivan AI, Steele EA, Takano S, Zeinizade E, Chen J, Malola S, Siddhant K, Häkkinen H, Stamplecoskie KG, Tsukuda T, Zheng G, Crudden CM. Diving into Unknown Waters: Water-Soluble Clickable Au 13 Nanoclusters Protected with N-Heterocyclic Carbenes for Bio-Medical Applications. J Am Chem Soc 2025; 147:4230-4238. [PMID: 39841626 DOI: 10.1021/jacs.4c14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The use of gold nanoclusters in biomedical applications has been steadily increasing in recent years. However, water solubility is a key factor for these applications, and water-soluble gold nanoclusters are often difficult to isolate and susceptible to exchange or oxidation in vivo. Herein, we report the isolation of N-heterocyclic carbene (NHC)-protected atomically precise gold nanoclusters functionalized with triethylene glycol monomethyl ether groups. These clusters are highly luminescent and water soluble and are shown to be stable in biological media. Importantly, the core structure, stability, and high quantum yield of the nanoclusters were conserved after backbone modification. Depending on the nature of the halide group, clusters have high stability in simulated biofluids and resist attack by glutathione. In vivo studies show that no abnormal cellular morphology is introduced in the kidney, liver, or spleen of mice treated with [Au13(NHC)5Br2]Br3 nanoclusters protected by 1,8-dimethylnaphthyl-linked NHCs. This cluster has a blood elimination half-life of 0.68 h. Functionalization of the wingtip groups of the cluster with azide groups is demonstrated, and complete reaction of all 10 azide groups with strained alkynes is shown, highlighting the potential of these clusters in biological settings.
Collapse
Affiliation(s)
- Angus I Sullivan
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Emily A Steele
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shinjiro Takano
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Elham Zeinizade
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Juan Chen
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Sami Malola
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Kumar Siddhant
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Hannu Häkkinen
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Kevin G Stamplecoskie
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tatsuya Tsukuda
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Gang Zheng
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
4
|
Fan M, Brolo AG. Factors that Affect Quantification in Surface-Enhanced Raman Scattering. ACS NANO 2025; 19:3969-3996. [PMID: 39855155 DOI: 10.1021/acsnano.4c15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS. However, even 50 years after its first observation, SERS is still perceived as an unreliable technique for quantification. This perception has precluded the application of SERS in laboratories that rely on consistent quantification (for regulatory purposes, for instance). In this review, we describe some of the aspects that lead to SERS intensity variations and how those challenges were addressed in the 50 years of the technique. The goal is to identify the sources of variations in SERS intensities and then demonstrate that, even with these pitfalls, the technique can be used for quantification when factors such as nature of the substrate, experimental conditions, sample preparation, surface chemistry, and data analysis are carefully considered and tailored for a particular application.
Collapse
Affiliation(s)
- Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
5
|
Berg I, Mondal R, Sims JM, Ben-Tzvi T, Lahav L, Friedman B, Michel C, Nairoukh Z, Gross E. Strong Substrate-Adsorbate Interactions Direct the Impact of Fluorinated N-Heterocyclic Carbene Monolayers on Au Surface Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65469-65479. [PMID: 39556756 PMCID: PMC11615852 DOI: 10.1021/acsami.4c12514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Fluorinated self-assembled monolayers (SAMs) have been utilized in a variety of applications such as transistors and optoelectronic devices. However, in most SAMs the fluorinated groups could not be positioned in high proximity to the surface due to steric effects. This limitation hinders the direct analysis of the impact of the fluorination level on surface properties. Herein, fluorinated aromatic N-heterocyclic carbenes (NHCs), with 1-5 fluorine atoms, were self-assembled on a gold substrate. These NHCs enabled the positioning of fluorinated groups in high proximity to the metal surface to identify the influence of the fluorination level on surface properties. Experimental measurements and theoretical calculations identified that all fluorinated NHCs formed SAMs and adopted a flat-lying adsorption configuration while anchored to the metal surface via Au adatom. A higher fluorination level induced a stronger interaction of the fluorinated side groups with the Au surface. The stronger interaction and surface proximity of the fluorinated side groups deteriorated the overall binding energy of the NHC due to the less-optimized adsorption geometry of the carbene carbon. Ultraviolet photoelectron spectroscopy measurements revealed that fluorinated NHC monolayers lowered the surface work function by up to 1 eV and induced an increase of 15-20° in the water contact angle. The impact on surface properties did not vary according to the fluorination level of NHCs, and similar values were measured for NHC with 1-5 fluorine atoms. It is therefore identified that dominant adsorbate-substrate interactions between the fluorinated side groups and the Au surface quenched the distinct impact of the fluorination level on surface functionality.
Collapse
Affiliation(s)
- Iris Berg
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Rajarshi Mondal
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Joshua M. Sims
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d’Italie, F69364 Lyon, France
| | - Tzipora Ben-Tzvi
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Linoy Lahav
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Barak Friedman
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Carine Michel
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d’Italie, F69364 Lyon, France
| | - Zackaria Nairoukh
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
6
|
Ivantcova PM, Kolychev EL, Sizikov AA, Mochalova EN, Cherkasov VR, Nikitin MP. Carbene-coated metal nanoparticles for in vivo applications. Colloids Surf B Biointerfaces 2024; 242:114097. [PMID: 39067190 DOI: 10.1016/j.colsurfb.2024.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
N-Heterocyclic carbenes (NHC) are well-recognized ligands of choice for preparing robust transition metal species. However, their use for fabrication of biomedically relevant nanoparticles has been limited to the synthesis of non-targeted particles showing increased tolerance to different aqueous coagulants. In this work, the first example of carbene-coated metal nanoparticles suitable for in vivo applications is presented. Directed design of a novel biscarbene NHC ligand allowed to prepare the first magnetite/gold (Fe3O4@AuNP@NHC) nanostructures and carbene gold (AuNP@NHC) nanoparticles with significant stability in aqueous solutions and enhanced ability to form bioconjugates. Furthermore, these nanoparticles exhibit an extraordinary property for inorganic nanoparticles: they can endure several additive-free air drying/redispersion cycles without deterioration of their colloidal behavior. Bioconjugated AuNP@NHC and multimodal Fe3O4@AuNP@NHC demonstrated a successful performance in three distinct applications: lateral flow tests, specific cancer cell targeting, and bioimaging. Thus, the results show the notable advantages of the N-heterocyclic carbene coating of inorganic nanoparticles and their utility for complex biomedical applications.
Collapse
Affiliation(s)
- Polina M Ivantcova
- Sirius University of Science and Technology, Olimpiyskiy ave, b.1, Sirius, Krasnodar region 354340, Russian Federation.
| | - Eugene L Kolychev
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation.
| | - Artem A Sizikov
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation; Moscow Institute of Physics and Technology, Kerchenskaya str., 1А, Moscow 117303, Russian Federation
| | - Elizaveta N Mochalova
- Sirius University of Science and Technology, Olimpiyskiy ave, b.1, Sirius, Krasnodar region 354340, Russian Federation; Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation; Moscow Institute of Physics and Technology, Kerchenskaya str., 1А, Moscow 117303, Russian Federation
| | - Vladimir R Cherkasov
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation; Moscow Institute of Physics and Technology, Kerchenskaya str., 1А, Moscow 117303, Russian Federation
| | - Maxim P Nikitin
- Sirius University of Science and Technology, Olimpiyskiy ave, b.1, Sirius, Krasnodar region 354340, Russian Federation; Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
7
|
Eisen C, Keppler BK, Chin JM, Su X, Reithofer MR. Fabrication of azido-PEG-NHC stabilized gold nanoparticles as a functionalizable platform. Chem Sci 2024:d4sc04112g. [PMID: 39430936 PMCID: PMC11487300 DOI: 10.1039/d4sc04112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024] Open
Abstract
Rapid and precise detection of biochemical markers is vital for accurate medical diagnosis. Gold nanoparticles (AuNPs) have emerged as promising candidates for diagnostic sensing due to their biocompatibility and distinctive physical properties. However, AuNPs functionalized with selective targeting vectors often suffer from reduced stability in complex biological environments. To address this, (N)-heterocyclic carbene (NHC) ligands have been investigated for their robust binding affinity to AuNP surfaces, enhancing stability. This study outlines an optimized top-down synthesis route for highly stable, azide-terminal PEGylated NHC (PEG-NHC) functionalized AuNPs. This process employs well-defined oleylamine-protected AuNPs and masked PEGylated NHC precursors. The activation and attachment mechanisms of the masked NHCs were elucidated through the identification of intermediate AuNPs formed during incomplete ligand exchange. The resulting PEG-NHC@AuNPs exhibit exceptional colloidal stability across various biologically relevant media, showing no significant aggregation or ripening over extended periods. These particles demonstrate superior stability compared to those synthesized via a bottom-up approach. Further functionalization of azide-terminal PEG-NHC@AuNPs was achieved through copper-catalyzed click- and bioorthogonal strain-promoted azide-alkyne cycloaddition reactions. The maintained colloidal stability and successful conjugation highlight the potential of azide-functionalized PEG-NHC@AuNPs as a versatile platform for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Constantin Eisen
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Jia Min Chin
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| |
Collapse
|
8
|
Amit E, Mondal R, Berg I, Nairoukh Z, Gross E. N-Heterocyclic Carbene Monolayers on Metal-Oxide Films: Correlations between Adsorption Mode and Surface Functionality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10374-10383. [PMID: 38701356 PMCID: PMC11100006 DOI: 10.1021/acs.langmuir.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
N-Heterocyclic carbene (NHC) ligands have been self-assembled on various metal and semimetal surfaces, creating a covalent bond with surface metal atoms that led to high thermal and chemical stability of the self-assembled monolayer. This study explores the self-assembly of NHCs on metal-oxide films (CuOx, FeOx, and TiOx) and reveals that the properties of these metal-oxide substrates play a pivotal role in dictating the adsorption behavior of NHCs, influencing the decomposition route of the monolayer and its impact on work function values. While the attachment of NHCs onto CuOx is via coordination with surface oxygen atoms, NHCs interact with TiOx through coordination with surface metal atoms and with FeOx via coordination with both metal and oxygen surface atoms. These distinct binding modes arise due to variances in the electronic properties of the metal atoms within the investigated metal-oxide films. Contact angle and ultraviolet photoelectron spectroscopy measurements have shown a significantly higher impact of F-NHC adsorption on CuOx than on TiOx and FeOx , correlated to a preferred, averaged upright orientation of F-NHC on CuOx.
Collapse
Affiliation(s)
- Einav Amit
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Rajarshi Mondal
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Iris Berg
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Zackaria Nairoukh
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Palasz JM, Long Z, Meng J, Videla PE, Kelly HR, Lian T, Batista VS, Kubiak CP. A Resilient Platform for the Discrete Functionalization of Gold Surfaces Based on N-Heterocyclic Carbene Self-Assembled Monolayers. J Am Chem Soc 2024; 146:10489-10497. [PMID: 38584354 DOI: 10.1021/jacs.3c14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We describe the synthesis and characterization of a versatile platform for gold functionalization, based on self-assembled monolayers (SAMs) of distal-pyridine-functionalized N-heterocyclic carbenes (NHC) derived from bis(NHC) Au(I) complexes. The SAMs are characterized using polarization-modulation infrared reflectance-absorption spectroscopy, surface-enhanced Raman spectroscopy, and X-ray photoelectron spectroscopy. The binding mode is examined computationally using density functional theory, including calculations of vibrational spectra and direct comparisons to the experimental spectroscopic signatures of the monolayers. Our joint computational and experimental analyses provide structural information about the SAM binding geometries under ambient conditions. Additionally, we examine the reactivity of the pyridine-functionalized SAMs toward H2SO4 and W(CO)5(THF) and verify the preservation of the introduced functionality at the interface. Our results demonstrate the versatility of N-heterocyclic carbenes as robust platforms for on-surface acid-base and ligand exchange reactions.
Collapse
Affiliation(s)
- Joseph M Palasz
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Zhuoran Long
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Jinhui Meng
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Pablo E Videla
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - H Ray Kelly
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Victor S Batista
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Amit E, Berg I, Zhang W, Mondal R, Shema H, Gutkin V, Kravchuk T, Toste FD, Nairoukh Z, Gross E. Selective Deposition of N-Heterocyclic Carbene Monolayers on Designated Au Microelectrodes within an Electrode Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302317. [PMID: 37667447 DOI: 10.1002/smll.202302317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Indexed: 09/06/2023]
Abstract
The incorporation of organic self-assembled monolayers (SAMs) in microelectronic devices requires precise spatial control over the self-assembly process. In this work, selective deposition of N-heterocyclic carbenes (NHCs) on specific electrodes within a two-microelectrode array is achieved by using pulsed electrodeposition. Spectroscopic analysis of the NHC-coated electrode arrays reveals that each electrode is selectively coated with a designated NHC. The impact of NHC monolayers on the electrodes' work function is quantified using Kelvin probe force microscopy. These measurements demonstrate that the work function values of each electrode can be independently tuned by the adsorption of a specific NHC. The presented deposition method enables to selectively coat designated microelectrodes in an electrode array with chosen NHC monolayers for tuning their chemical and electronic functionality.
Collapse
Affiliation(s)
- Einav Amit
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| | - Iris Berg
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| | - Wenhao Zhang
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Rajarshi Mondal
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
| | - Hadar Shema
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| | - Vitaly Gutkin
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| | - Tatyana Kravchuk
- Surface Science Laboratory of Solid-State Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Zackaria Nairoukh
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
| | - Elad Gross
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| |
Collapse
|
11
|
Jensen IM, Chowdhury S, Hu G, Jensen L, Camden JP, Jenkins DM. Seeking a Au-C stretch on gold nanoparticles with 13C-labeled N-heterocyclic carbenes. Chem Commun (Camb) 2023; 59:14524-14527. [PMID: 37966800 DOI: 10.1039/d3cc04973f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Gold nanoparticles were functionalized with natural abundance and 13C-labeled N-heterocyclic carbenes (NHCs) to investigate the Au-C stretch. A combinatorial approach of surface enhanced Raman spectroscopy (SERS) and density-functional theory (DFT) calculations highlighted vibrational modes significantly impacted by isotopic labeling at the carbene carbon. Critically, no isotopically-impacted stretching mode showed majority Au-C character.
Collapse
Affiliation(s)
- Isabel M Jensen
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Shayanta Chowdhury
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gaohe Hu
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, USA
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - David M Jenkins
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
12
|
Berg I, Schio L, Reitz J, Molteni E, Lahav L, Bolaños CG, Goldoni A, Grazioli C, Fratesi G, Hansmann MM, Floreano L, Gross E. Self-Assembled Monolayers of N-Heterocyclic Olefins on Au(111). Angew Chem Int Ed Engl 2023; 62:e202311832. [PMID: 37743324 DOI: 10.1002/anie.202311832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Self-assembled monolayers (SAMs) of N-heterocyclic olefins (NHOs) have been prepared on Au(111) and their thermal stability, adsorption geometry, and molecular order were characterized by X-ray photoelectron spectroscopy, polarized X-ray absorption spectroscopy, scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The strong σ-bond character of NHO anchoring to Au induced high geometrical flexibility that enabled a flat-lying adsorption geometry via coordination to a gold adatom. The flat-lying adsorption geometry was utilized to further increase the surface interaction of the NHO monolayer by backbone functionalization with methyl groups that induced high thermal stability and a large impact on work-function values, which outperformed that of N-heterocyclic carbenes. STM measurements, supported by DFT modeling, identified that the NHOs were self-assembled in dimers, trimers, and tetramers constructed of two, three, and four complexes of NHO-Au-adatom. This self-assembly pattern was correlated to strong NHO-Au interactions and steric hindrance between adsorbates, demonstrating the crucial influence of the carbon-metal σ-bond on monolayer properties.
Collapse
Affiliation(s)
- Iris Berg
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Luca Schio
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Justus Reitz
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Elena Molteni
- Dipartimento di Fisica "Aldo Pontremoli'' Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Linoy Lahav
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | | | - Andrea Goldoni
- Elettra-Sincrotrone Trieste S.C.p.A, Basovizza SS-14, Km 163.5, Trieste, 34149, Italy
| | - Cesare Grazioli
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Guido Fratesi
- Dipartimento di Fisica "Aldo Pontremoli'' Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Max M Hansmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Luca Floreano
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| |
Collapse
|
13
|
Chevalier RB, Pantano J, Kiesewetter MK, Dwyer JR. N-Heterocyclic carbene-based gold etchants. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:865-871. [PMID: 37674545 PMCID: PMC10477970 DOI: 10.3762/bjnano.14.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
N-Heterocyclic carbenes (NHCs) are an emerging alternative to thiols for the formation of stable self-assembled monolayers (SAMs) on gold. We examined several different species that have been used to produce NHC-based monolayers on gold, namely 1,3-diisopropyl-5-nitrobenzimidazolium iodide, 1,3-diisopropyl-5-nitrobenzimidazolium hydrogen carbonate, bis(1,3-diisopropyl-5-nitrobenzimidazolium)gold(I) iodide, and 1,3-diisopropyl-5-nitrobenzimidazole-2-ylidene. Contrary to expectation, solutions containing the first two species in tetrahydrofuran and dichloromethane caused visible loss of gold from thin-film-coated glass slides. The use of toluene solutions of all species resulted in no apparent dissolution of gold. We present scanning electron micrographs and elemental imaging analyses by energy dispersive X-ray spectroscopy to examine the effect of solutions of each species on the gold film. This work highlights the risk of unwanted etching during some routes to NHC-based surface functionalization but also the potential for deliberate etching, with the outcome determined by choice of chemically synthesized organic species and solvent.
Collapse
Affiliation(s)
- Robert B Chevalier
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 02881, USA
| | - Justin Pantano
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 02881, USA
| | - Matthew K Kiesewetter
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 02881, USA
| | - Jason R Dwyer
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI, 02881, USA
| |
Collapse
|
14
|
Hippolyte L, Sadek O, Ba Sowid S, Porcheron A, Bridonneau N, Blanchard S, Desage-El Murr M, Gatineau D, Gimbert Y, Mercier D, Marcus P, Chauvier C, Chanéac C, Ribot F, Fensterbank L. N-Heterocyclic Carbene Boranes: Dual Reagents for the Synthesis of Gold Nanoparticles. Chemistry 2023; 29:e202301610. [PMID: 37265455 DOI: 10.1002/chem.202301610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/03/2023]
Abstract
N-Heterocyclic carbenes (NHCs) have drawn considerable interest in the field of nanomaterials chemistry as highly stabilizing ligands enabling the formation of strong and covalent carbon-metal bonds. Applied to gold nanoparticles synthesis, the most common strategy consists of the reduction of a preformed NHC-AuI complex with a large excess of a reducing agent that makes the particle size difficult to control. In this paper, we report the straightforward synthesis of NHC-coated gold nanoparticles (NHC-AuNPs) by treating a commercially available gold(I) precursor with an easy-to-synthesize NHC-BH3 reagent. The latter acts as both the reducing agent and the source of surface ligands operating under mild conditions. Mechanistic studies including NMR spectroscopy and mass spectrometry demonstrate that the reduction of gold(I) generates NHC-BH2 Cl as a by-product. This strategy gives efficient control over the nucleation and growth of gold particles by varying the NHC-borane/gold(I) ratio, allowing unparalleled particle size variation over the range of 4.9±0.9 to 10.0±2.7 nm. Our strategy also allows an unprecedented precise and controlled seeded growth of gold nanoparticles. In addition, the as-prepared NHC-AuNPs exhibit narrow size distributions without the need for extensive purification or size-selectivity techniques, and are stable over months.
Collapse
Affiliation(s)
- Laura Hippolyte
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Omar Sadek
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Salem Ba Sowid
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Alexandre Porcheron
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Nathalie Bridonneau
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), 91400, Orsay Cedex, France
| | - Sébastien Blanchard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Marine Desage-El Murr
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - David Gatineau
- Département de Chimie Moléculaire (UMR CNRS 5250), Université Grenoble Alpes, 38050, Grenoble, France
| | - Yves Gimbert
- Département de Chimie Moléculaire (UMR CNRS 5250), Université Grenoble Alpes, 38050, Grenoble, France
| | - Dimitri Mercier
- PSL Research University, CNRS - Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), Physical Chemistry of Surfaces Research Group, 75005, Paris, France
| | - Philippe Marcus
- PSL Research University, CNRS - Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), Physical Chemistry of Surfaces Research Group, 75005, Paris, France
| | - Clément Chauvier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Corinne Chanéac
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
| | - François Ribot
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| |
Collapse
|
15
|
Thimes RL, Santos AVB, Chen R, Kaur G, Jensen L, Jenkins DM, Camden JP. Using Surface-Enhanced Raman Spectroscopy to Unravel the Wingtip-Dependent Orientation of N-Heterocyclic Carbenes on Gold Nanoparticles. J Phys Chem Lett 2023; 14:4219-4224. [PMID: 37125787 DOI: 10.1021/acs.jpclett.3c00588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
N-Heterocyclic carbenes (NHCs) are an attractive alternative to thiol ligands when forming self-assembled monolayers on noble-metal surfaces; however, relative to the well-studied thiol monolayers, comparatively little is known about the binding, orientation, and packing of NHC monolayers. Herein, we combine surface-enhanced Raman spectroscopy (SERS) and first-principles theory to investigate how the alkyl "wingtip" groups, i.e., those attached to the nitrogens of N-heterocyclic carbenes, affect the NHC orientation on gold nanoparticles. Consistent with previous literature, smaller wingtip groups lead to stable flat configurations; surprisingly, bulkier wingtips also have stable flat configurations likely due to the presence of an adatom. Comparison of experimental SERS results with the theoretically calculated spectra for flat and vertical configurations shows that we are simultaneously detecting both NHC configurations. In addition to providing information on the adsorbate geometry, this study highlights the extreme SERS enhancement of vibrational modes perpendicular to the surface.
Collapse
Affiliation(s)
- Rebekah L Thimes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Alyssa V B Santos
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ran Chen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
16
|
Dominique NL, Jensen IM, Kaur G, Kotseos CQ, Boggess WC, Jenkins DM, Camden JP. Giving Gold Wings: Ultrabright and Fragmentation Free Mass Spectrometry Reporters for Barcoding, Bioconjugation Monitoring, and Data Storage. Angew Chem Int Ed Engl 2023; 62:e202219182. [PMID: 36853583 DOI: 10.1002/anie.202219182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
The widespread application of laser desorption/ionization mass spectrometry (LDI-MS) highlights the need for a bright and multiplexable labeling platform. While ligand-capped Au nanoparticles (AuNPs) have emerged as a promising LDI-MS contrast agent, the predominant thiol ligands suffer from low ion yields and extensive fragmentation. In this work, we develop a N-heterocyclic carbene (NHC) ligand platform that enhances AuNP LDI-MS performance. NHC scaffolds are tuned to generate barcoded AuNPs which, when benchmarked against thiol-AuNPs, are bright mass tags and form unfragmented ions in high yield. To illustrate the transformative potential of NHC ligands, the mass tags were employed in three orthogonal applications: monitoring a bioconjugation reaction, performing multiplexed imaging, and storing and reading encoded information. These results demonstrate that NHC-nanoparticle systems are an ideal platform for LDI-MS and greatly broaden the scope of nanoparticle contrast agents.
Collapse
Affiliation(s)
- Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Isabel M Jensen
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Chandler Q Kotseos
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - William C Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
17
|
Thomas SR, Yang W, Morgan DJ, Davies TE, Li JJ, Fischer RA, Huang J, Dimitratos N, Casini A. Bottom-up Synthesis of Water-Soluble Gold Nanoparticles Stabilized by N-Heterocyclic Carbenes: From Structural Characterization to Applications. Chemistry 2022; 28:e202201575. [PMID: 35801389 PMCID: PMC9804724 DOI: 10.1002/chem.202201575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/09/2023]
Abstract
N-heterocyclic carbenes (NHCs) have become attractive ligands for functionalizing gold nanoparticle surfaces with applications ranging from catalysis to biomedicine. Despite their great potential, NHC stabilized gold colloids (NHC@AuNPs) are still scarcely explored and further efforts should be conducted to improve their design and functionalization. Here, the 'bottom-up' synthesis of two water-soluble gold nanoparticles (AuNP-1 and AuNP-2) stabilized by hydrophilic mono- and bidentate NHC ligands is reported together with their characterization by various spectroscopic and analytical methods. The NPs showed key differences likely to be due to the selected NHC ligand systems. Transmission electron microscopy (TEM) images showed small quasi-spherical and faceted NHC@AuNPs of similar particle size (ca. 2.3-2.6 nm) and narrow particle size distribution, but the colloids featured different ratios of Au(I)/Au(0) by X-ray photoelectron spectroscopy (XPS). Furthermore, the NHC@AuNPs were supported on titania and fully characterized. The new NPs were studied for their catalytic activity towards the reduction of nitrophenol substrates, the reduction of resazurin and for their photothermal efficiency. Initial results on their application in photothermal therapy (PTT) were obtained in human cancer cells in vitro. The aforementioned reactions represent important model reactions towards wastewater remediation, bioorthogonal transformations and cancer treatment.
Collapse
Affiliation(s)
- Sophie R. Thomas
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Wenjie Yang
- School of Chemical and Biomolecular EngineeringUniversity of SydneyNSW2006Australia
| | - David J. Morgan
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATU.K.
| | - Thomas E. Davies
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATU.K.
| | - Jiao Jiao Li
- Kolling InstituteFaculty of Medicine and HealthUniversity of SydneySt LeonardsNSW2065Australia
| | - Roland A. Fischer
- Chair of Inorganic and Metal–Organic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Jun Huang
- School of Chemical and Biomolecular EngineeringUniversity of SydneyNSW2006Australia
| | - Nikolaos Dimitratos
- Department of Industrial Chemistry “Toso Montanari” Universita' degli Studi di BolognaViale Risorgimento40136BolognaItaly,Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di BolognaViale Risorgimento 440136BolognaItaly
| | - Angela Casini
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstrasse 485747GarchingGermany,Munich Data Science Institute (MDSI)Technical University of MunichWalther-von-Dyck Strasse 1085748GarchingGermany
| |
Collapse
|
18
|
Heller ER, Richardson JO. Heavy-Atom Quantum Tunnelling in Spin Crossovers of Nitrenes. Angew Chem Int Ed Engl 2022; 61:e202206314. [PMID: 35698730 PMCID: PMC9540336 DOI: 10.1002/anie.202206314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 01/01/2023]
Abstract
We simulate two recent matrix-isolation experiments at cryogenic temperatures, in which a nitrene undergoes spin crossover from its triplet state to a singlet state via quantum tunnelling. We detail the failure of the commonly applied weak-coupling method (based on a linear approximation of the potentials) in describing these deep-tunnelling reactions. The more rigorous approach of semiclassical golden-rule instanton theory in conjunction with double-hybrid density-functional theory and multireference perturbation theory does, however, provide rate constants and kinetic isotope effects in good agreement with experiment. In addition, these calculations locate the optimal tunnelling pathways, which provide a molecular picture of the reaction mechanism. The reactions involve substantial heavy-atom quantum tunnelling of carbon, nitrogen and oxygen atoms, which unexpectedly even continues to play a role at room temperature.
Collapse
Affiliation(s)
- Eric R. Heller
- Laboratory of Physical ChemistryETH Zürich8093ZürichSwitzerland
| | | |
Collapse
|
19
|
Heller ER, Richardson JO. Heavy‐Atom Quantum Tunnelling in Spin Crossovers of Nitrenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eric R Heller
- Eidgenossische Technische Hochschule Zurich Lab. Physical Chemistry SWITZERLAND
| | - Jeremy O Richardson
- Eidgenössische Technische Hochschule Zürich Lab. Physical Chemistry Vladimir-Prelog-Weg 2 8093 Zurich SWITZERLAND
| |
Collapse
|
20
|
|
21
|
Sherman L, Finley MD, Borsari RK, Schuster-Little N, Strausser SL, Whelan RJ, Jenkins DM, Camden JP. N-Heterocyclic Carbene Ligand Stability on Gold Nanoparticles in Biological Media. ACS OMEGA 2022; 7:1444-1451. [PMID: 35036806 PMCID: PMC8756590 DOI: 10.1021/acsomega.1c06168] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 05/26/2023]
Abstract
The ability to functionalize gold nanoparticle surfaces with target ligands is integral to developing effective nanosystems for biomedical applications, ranging from point-of-care diagnostic devices to site-specific cancer therapies. By forming strong covalent bonds with gold, thiol functionalities can easily link molecules of interest to nanoparticle surfaces. Unfortunately, thiols are inherently prone to oxidative degradation in many biologically relevant conditions, which limits their broader use as surface ligands in commercial assays. Recently, N-heterocyclic carbene (NHC) ligands emerged as a promising alternative to thiols since initial reports demonstrated their remarkable stability against ligand displacement and stronger metal-ligand bonds. This work explores the long-term stability of NHC-functionalized gold nanoparticles suspended in five common biological media: phosphate-buffered saline, tris-glycine potassium buffer, tris-glycine potassium magnesium buffer, cell culture media, and human serum. The NHCs on gold nanoparticles were probed with surface-enhanced Raman spectroscopy (SERS) and X-ray photoelectron spectroscopy (XPS). SERS is useful for monitoring the degradation of surface-bound species because the resulting vibrational modes are highly sensitive to changes in ligand adsorption. Our measurements indicate that imidazole-based NHCs remain stable on gold nanoparticles over the 21 days of examination in all tested environments, with no observed change in the molecule's SERS signature, XPS response, or UV-vis plasmon band.
Collapse
Affiliation(s)
- Lindy
M. Sherman
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Matthew D. Finley
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Rowan K. Borsari
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Naviya Schuster-Little
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Shelby L. Strausser
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Rebecca J. Whelan
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - David M. Jenkins
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jon P. Camden
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
22
|
Kaur G, Thimes RL, Camden JP, Jenkins DM. Fundamentals and applications of N-heterocyclic carbene functionalized gold surfaces and nanoparticles. Chem Commun (Camb) 2022; 58:13188-13197. [DOI: 10.1039/d2cc05183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Improved stability and higher degree of synthetic tunability has allowed N-heterocyclic carbenes to supplant thiols as ligands for gold surface functionalization. This review article summarizes the basic science and applications of NHCs on gold.
Collapse
Affiliation(s)
- Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Rebekah L. Thimes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Jon P. Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - David M. Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
23
|
Dominique NL, Chen R, Santos AVB, Strausser SL, Rauch T, Kotseos CQ, Boggess WC, Jensen L, Jenkins DM, Camden JP. Ad aurum: tunable transfer of N-heterocyclic carbene complexes to gold surfaces. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01941h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The exceptional stability of N-heterocyclic carbene (NHC) monolayers on gold surfaces and nanoparticles (AuNPs) is enabling new and diverse applications from catalysis to biomedicine.
Collapse
Affiliation(s)
- Nathaniel L. Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Ran Chen
- Department of Chemistry, Penn State University, 101 Chemistry Building, University Park, PA 16802, USA
| | - Alyssa V. B. Santos
- Department of Chemistry, Penn State University, 101 Chemistry Building, University Park, PA 16802, USA
| | - Shelby L. Strausser
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, USA
| | - Theodore Rauch
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Chandler Q. Kotseos
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - William C. Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Lasse Jensen
- Department of Chemistry, Penn State University, 101 Chemistry Building, University Park, PA 16802, USA
| | - David M. Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, USA
| | - Jon P. Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
24
|
Eisen C, Chin JM, Reithofer MR. Catalytically Active Gold Nanomaterials Stabilized by N-heterocyclic Carbenes. Chem Asian J 2021; 16:3026-3037. [PMID: 34399027 PMCID: PMC8597167 DOI: 10.1002/asia.202100731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Indexed: 12/04/2022]
Abstract
Solid supported or ligand capped gold nanomaterials (AuNMs) emerged as versatile and recyclable heterogeneous catalysts for a broad variety of conversions in the ongoing catalytic 'gold rush'. Existing at the border of homogeneous and heterogeneous catalysis, AuNMs offer the potential to merge high catalytic activity with significant substrate selectivity. Owing to their strong binding towards the surface atoms of AuMNs, NHCs offer tunable activation of surface atoms while maintaining selectivity and stability of the NM even under challenging conditions. This work summarizes well-defined catalytically active NHC capped AuNMs including spherical nanoparticles and atom-precise nanoclusters as well as the important NHC design choices towards activity and (stereo-)selectivity enhancements.
Collapse
Affiliation(s)
- Constantin Eisen
- Department of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Jia Min Chin
- Department of Physical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Michael R. Reithofer
- Department of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| |
Collapse
|
25
|
Dominique NL, Strausser SL, Olson JE, Boggess WC, Jenkins DM, Camden JP. Probing N-Heterocyclic Carbene Surfaces with Laser Desorption Ionization Mass Spectrometry. Anal Chem 2021; 93:13534-13538. [PMID: 34582180 DOI: 10.1021/acs.analchem.1c02401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The proliferation of N-heterocyclic carbene (NHC) self-assembled monolayers (SAMs) on gold surfaces stems from their exceptional stability compared to conventional thiol-SAMs. The prospect of biological applications for NHC-SAMs on gold shows the need for biocompatible techniques (e.g., large biomolecule detection and high throughput) that assesses SAM molecular composition. Herein, we demonstrate that laser desorption ionization mass spectrometry (LDI-MS) is a powerful and facile probe of NHC surface chemistry. LDI-MS of prototypical imidazole-NHC- and benzimidazole-NHC-functionalized AuNPs yields exclusively [NHC2Au]+ ions and not larger gold clusters. Employing benzimidazole-NHC isotopologues, we explore how monolayers pack on a single AuNP and the lability of the NHCs once ligated. Quantitative analysis of the homoleptic and heteroleptic [NHC2Au]+ ions is performed by comparing to a binomial model representative of a randomized monolayer. Lastly, the reduction of nitro-NHC-AuNPs to amine-NHC-AuNPs is tracked via LDI-MS signals, illustrating the ability of LDI-MS to probe postsynthetic modifications of the anchored NHCs, which is critical for current and future applications of NHC surfaces.
Collapse
Affiliation(s)
- Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shelby L Strausser
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Jacob E Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William C Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
26
|
Zhou B, Guo X, Yang N, Huang Z, Huang L, Fang Z, Zhang C, Li L, Yu C. Surface engineering strategies of gold nanomaterials and their applications in biomedicine and detection. J Mater Chem B 2021; 9:5583-5598. [PMID: 34161402 DOI: 10.1039/d1tb00181g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanomaterials have potential applications in biosensors and biomedicine due to their controllable synthesis steps, high biocompatibility, low toxicity and easy surface modification. However, there are still various limitations including low water solubility and stability, which greatly affect their applications. In addition, some synthetic methods are very complicated and costly. Therefore, huge efforts have been made to improve their properties. This review mainly introduces the strategies for surface modification of gold nanomaterials, such as amines, biological small molecules and organic small molecules as well as the biological applications of these functionalized AuNPs. We aim to provide effective ideas for better functionalization of gold nanomaterials in the future.
Collapse
Affiliation(s)
- Bicong Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Lihua Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhijie Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| |
Collapse
|
27
|
Strausser SL, Jenkins DM. Synthesis of d10 N-Heterocyclic Carbene Complexes with a Perimidine Scaffold. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shelby L. Strausser
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - David M. Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
28
|
Sherman LM, Strausser SL, Borsari RK, Jenkins DM, Camden JP. Imidazolinium N-Heterocyclic Carbene Ligands for Enhanced Stability on Gold Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5864-5871. [PMID: 33914540 DOI: 10.1021/acs.langmuir.1c00314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
N-heterocyclic carbenes (NHCs) have emerged as versatile and robust ligands for noble metal surface modifications due to their ability to form compact, self-assembled monolayers. Despite a growing body of research, previous NHC surface modification schemes have employed just two structural motifs: the benzimidazolium NHC and the imidazolium NHC. However, different NHC moieties, including saturated NHCs, are often more effective in homogenous catalysis chemistry than these aforementioned motifs and may impart numerous advantages to NHC surfaces, such as increased stability and access to chiral groups. This work explores the preparation and stability of NHC-coated gold surfaces using imidazolium and imidazolinium NHC ligands. X-ray photoelectron spectroscopy and surface-enhanced Raman spectroscopy demonstrate the attachment of NHC ligands to the gold surface and show enhanced stability of imidazolinium compared to the traditional imidazolium under harsh acidic conditions.
Collapse
Affiliation(s)
- Lindy M Sherman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, South Bend 46556, Indiana, United States
| | - Shelby L Strausser
- Department of Chemistry, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - Rowan K Borsari
- Department of Chemistry, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, South Bend 46556, Indiana, United States
| |
Collapse
|
29
|
|
30
|
N-Heterocyclic carbenes as “smart” gold nanoparticle stabilizers: State-of-the art and perspectives for biomedical applications. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Pasyukov DV, Chernenko AY, Shepelenko KE, Kutyrev VV, Khrustalev VN, Chernyshev VM. 3-Amino-1,2,4-triazolium salts as NHC-proligands: synthesis and postmodification of a new type of amino-functionalized Pd/NHC complexes. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Berg I, Hale L, Carmiel-Kostan M, Toste FD, Gross E. Using silyl protecting group to enable post-deposition C–C coupling reactions of alkyne-functionalized N-heterocyclic carbene monolayers on Au surfaces. Chem Commun (Camb) 2021; 57:5342-5345. [DOI: 10.1039/d1cc01271a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkyne-functionalized NHC ligands were protected by TIPS group that enabled surface-anchoring of NHCs with chemically-sensitive functionality and providing access, following TIPS removal, to on-surface Sonogashira cross–coupling reactions.
Collapse
Affiliation(s)
- Iris Berg
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Lillian Hale
- Department of Chemistry
- University of California
- Berkeley
- California 94720
- USA
| | - Mazal Carmiel-Kostan
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology
- The Hebrew University
- Jerusalem 91904
- Israel
| | - F. Dean Toste
- Department of Chemistry
- University of California
- Berkeley
- California 94720
- USA
| | - Elad Gross
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology
- The Hebrew University
- Jerusalem 91904
- Israel
| |
Collapse
|
33
|
Stein R, Friedrich B, Mühlberger M, Cebulla N, Schreiber E, Tietze R, Cicha I, Alexiou C, Dutz S, Boccaccini AR, Unterweger H. Synthesis and Characterization of Citrate-Stabilized Gold-Coated Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications. Molecules 2020; 25:E4425. [PMID: 32993144 PMCID: PMC7583944 DOI: 10.3390/molecules25194425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Surface-functionalized gold-coated superparamagnetic iron oxide nanoparticles (Au-SPIONs) may be a useful tool in various biomedical applications. To obtain Au-SPIONs, gold salt was precipitated onto citrate-stabilized SPIONs (Cit-SPIONs) using a simple, aqueous one-pot technique inspired by the Turkevich method of gold nanoparticle synthesis. By the further stabilization of the Au-SPION surface with additional citrate (Cit-Au-SPIONs), controllable and reproducible Z-averages enhanced long-term dispersion stability and moderate dispersion pH values were achieved. The citrate concentration of the reaction solution and the gold/iron ratio was found to have a major influence on the particle characteristics. While the gold-coating reduced the saturation magnetization to 40.7% in comparison to pure Cit-SPIONs, the superparamagnetic behavior of Cit-Au-SPIONs was maintained. The formation of nanosized gold on the SPION surface was confirmed by X-ray diffraction measurements. Cit-Au-SPION concentrations of up to 100 µg Fe/mL for 48 h had no cytotoxic effect on Jurkat cells. At a particle concentration of 100 µg Fe/mL, Jurkat cells were found to take up Cit-Au-SPIONs after 24 h of incubation. A significantly higher attachment of thiol-containing L-cysteine to the particle surface was observed for Cit-Au-SPIONs (53%) in comparison to pure Cit-SPIONs (7%).
Collapse
Affiliation(s)
- René Stein
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Bernhard Friedrich
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Marina Mühlberger
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Nadine Cebulla
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Eveline Schreiber
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Rainer Tietze
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Iwona Cicha
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany;
| | - Harald Unterweger
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| |
Collapse
|
34
|
Veinot AJ, Al-Rashed A, Padmos JD, Singh I, Lee DS, Narouz MR, Lummis PA, Baddeley CJ, Crudden CM, Horton JH. N-Heterocyclic Carbenes Reduce and Functionalize Copper Oxide Surfaces in One Pot. Chemistry 2020; 26:11431-11434. [PMID: 32428330 DOI: 10.1002/chem.202002308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Indexed: 01/15/2023]
Abstract
Benzimidazolium hydrogen carbonate salts have been shown to act as N-heterocyclic carbene precursors, which can remove oxide from copper oxide surfaces and functionalize the resulting metallic surfaces in a single pot. Both the surfaces and the etching products were fully characterized by spectroscopic methods. Analysis of surfaces before and after NHC treatment by X-ray photoelectron spectroscopy demonstrates the complete removal of copper(II) oxide. By using 13 C-labelling, we determined that the products of this transformation include a cyclic urea, a ring-opened formamide and a bis-carbene copper(I) complex. These results illustrate the potential of NHCs to functionalize a much broader class of metals, including those prone to oxidation, greatly facilitating the preparation of NHC-based films on metals other than gold.
Collapse
Affiliation(s)
- Alex J Veinot
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - Abrar Al-Rashed
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - J Daniel Padmos
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - Ishwar Singh
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - Dianne S Lee
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - Mina R Narouz
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - Paul A Lummis
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - Christopher J Baddeley
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, United Kingdom
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - J Hugh Horton
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
35
|
Nguyen DT, Freitag M, Gutheil C, Sotthewes K, Tyler BJ, Böckmann M, Das M, Schlüter F, Doltsinis NL, Arlinghaus HF, Ravoo BJ, Glorius F. Ein auf Arylazopyrazol basierendes N‐heterocyclisches Carben als Photoschalter auf Goldoberflächen: Lichtschaltbare Benetzbarkeit, Austrittsarbeit und Leitwert. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- D. Thao Nguyen
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Deutschland
| | - Matthias Freitag
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Christian Gutheil
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials MESA+ Institute for Nanotechnology University of Twente P.O. Box 217 7500 AE Enschede Niederlande
| | - Bonnie J. Tyler
- Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| | - Marcus Böckmann
- Institute for Solid State Theory and Center for Multiscale Theory & Computation Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| | - Mowpriya Das
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Friederike Schlüter
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Deutschland
| | - Nikos L. Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory & Computation Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| | - Heinrich F. Arlinghaus
- Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
36
|
Nguyen DT, Freitag M, Gutheil C, Sotthewes K, Tyler BJ, Böckmann M, Das M, Schlüter F, Doltsinis NL, Arlinghaus HF, Ravoo BJ, Glorius F. An Arylazopyrazole-Based N-Heterocyclic Carbene as a Photoswitch on Gold Surfaces: Light-Switchable Wettability, Work Function, and Conductance. Angew Chem Int Ed Engl 2020; 59:13651-13656. [PMID: 32271973 DOI: 10.1002/anie.202003523] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/08/2020] [Indexed: 12/13/2022]
Abstract
A novel photoresponsive and fully conjugated N-heterocyclic carbene (NHC) has been synthesized that combines the excellent photophysical properties of arylazopyrazoles (AAPs) with an NHC that acts as a robust surface anchor (AAP-BIMe). The formation of self-assembled monolayers (SAMs) on gold was proven by ToF-SIMS and XPS, and the organic film displayed a very high stability at elevated temperatures. This stability was also reflected in a high desorption energy, which was determined by temperature-programmed SIMS measurements. E-/Z-AAP-BIMe@Au photoisomerization resulted in reversible alterations of the surface energy (i.e. wettability), the surface potential (i.e. work function), and the conductance (i.e. resistance). The effects could be explained by the difference in the dipole moment of the isomers. Furthermore, sequential application of a dummy ligand by microcontact printing and subsequent backfilling with AAP-BIMe allowed its patterning on gold. To the best of our knowledge, this is the first example of a photoswitchable NHC on a gold surface. These properties of AAP-BIMe@Au illustrate its suitability as a molecular switch for electronic devices.
Collapse
Affiliation(s)
- D Thao Nguyen
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.,Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
| | - Matthias Freitag
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Christian Gutheil
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Bonnie J Tyler
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Marcus Böckmann
- Institute for Solid State Theory and Center for Multiscale Theory & Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Mowpriya Das
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Friederike Schlüter
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.,Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
| | - Nikos L Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory & Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Heinrich F Arlinghaus
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.,Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|