1
|
Zhang Q, Che Q, Wu D, Zhao Y, Chen Y, Xuan F, Zhang B. Dual Redox-active Covalent Organic Framework-based Memristors for Highly-efficient Neuromorphic Computing. Angew Chem Int Ed Engl 2024; 63:e202413311. [PMID: 39104289 DOI: 10.1002/anie.202413311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024]
Abstract
Organic memristors based on covalent organic frameworks (COFs) exhibit significant potential for future neuromorphic computing applications. The preparation of high-quality COF nanosheets through appropriate structural design and building block selection is critical for the enhancement of memristor performance. In this study, a novel room-temperature single-phase method was used to synthesize Ta-Cu3 COF, which contains two redox-active units: trinuclear copper and triphenylamine. The resultant COF nanosheets were dispersed through acid-assisted exfoliation and subsequently spin-coated to fabricate a high-quality COF film on an indium tin oxide (ITO) substrate. The synergistic effect of the dual redox-active centers in the COF film, combined with its distinct crystallinity, significantly reduces the redox energy barrier, enabling the efficient modulation of 128 non-volatile conductive states in the Al/Ta-Cu3 COF/ITO memristor. Utilizing a convolutional neural network (CNN) based on these 128 conductance states, image recognition for ten representative campus landmarks was successfully executed, achieving a high recognition accuracy of 95.13 % after 25 training epochs. Compared to devices based on binary conductance states, the memristor with 128 conductance states exhibits a 45.56 % improvement in recognition accuracy and significantly enhances the efficiency of neuromorphic computing.
Collapse
Affiliation(s)
- Qiongshan Zhang
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiang Che
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dongchuang Wu
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunjia Zhao
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fuzhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection, East China University of Science and Technology, Shanghai, 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Intelligent Sensing and Detection, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Huang R, Liu T, Peng H, Liu J, Liu X, Ding L, Fang Y. Molecular design and architectonics towards film-based fluorescent sensing. Chem Soc Rev 2024; 53:6960-6991. [PMID: 38836431 DOI: 10.1039/d4cs00347k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.
Collapse
Affiliation(s)
- Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| |
Collapse
|
3
|
Vega-Fernández J, Marcos V, Álvarez J, Capitán MJ, Fraile A, Alemán J. Photocatalytic functionalization of thin-layer membranes using a monomer truncation strategy. NANOSCALE ADVANCES 2024; 6:3181-3187. [PMID: 38868836 PMCID: PMC11166120 DOI: 10.1039/d4na00149d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/24/2024] [Indexed: 06/14/2024]
Abstract
We present the design and synthesis of two new organic polymer films making use of a liquid-liquid interfacial amine-acid chloride polymerization strategy. One of them was additionally functionalized in situ by the anchoring of N-phenyl-phenothiazine through a monomer truncation strategy, which endowed it with photocatalytic activity. This photoactive film displays interesting luminescence phenomena that were used for the oxidation of a variety of sulphides to their corresponding sulfoxides and reduction of aryl bromines.
Collapse
Affiliation(s)
- Jorge Vega-Fernández
- Departamento de Química Orgánica (Módulo 1), Facultad de Ciencias, Universidad Autónoma de Madrid 28049-Madrid Spain https://josealemanlara.wixsite.com/froncat
| | - Vanesa Marcos
- Departamento de Química Orgánica (Módulo 1), Facultad de Ciencias, Universidad Autónoma de Madrid 28049-Madrid Spain https://josealemanlara.wixsite.com/froncat
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049-Madrid Spain
| | - Jesús Álvarez
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid 29049-Madrid Spain
- Instituto de Ciencia de Materiales "Nicolás Cabrera", Univ. Autónoma de Madrid 28049-Madrid Spain
- Instituto de Física de la Materia Condensada IFIMAC, Univ. Autónoma de Madrid 28049-Madrid Spain
- Física de Sistemas Crecidos con Baja Dimensionalidad, Universidad Autónoma de Madrid, Unidad Asociada al CSIC por el IEM DP Madrid Spain
| | - María José Capitán
- Instituto de Estructura de la Materia IEM-CSIC 28006-Madrid Spain
- Física de Sistemas Crecidos con Baja Dimensionalidad, Universidad Autónoma de Madrid, Unidad Asociada al CSIC por el IEM DP Madrid Spain
| | - Alberto Fraile
- Departamento de Química Orgánica (Módulo 1), Facultad de Ciencias, Universidad Autónoma de Madrid 28049-Madrid Spain https://josealemanlara.wixsite.com/froncat
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049-Madrid Spain
| | - José Alemán
- Departamento de Química Orgánica (Módulo 1), Facultad de Ciencias, Universidad Autónoma de Madrid 28049-Madrid Spain https://josealemanlara.wixsite.com/froncat
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049-Madrid Spain
| |
Collapse
|
4
|
Zhang Q, Wu D, Fu Y, Li J, Chen Y, Zhang B. Molecular-Potential and Redox Coregulated Cathodic Electrosynthesis toward Ionic Azulene-Based Thin Films for Organic Memristors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22217-22228. [PMID: 38639367 DOI: 10.1021/acsami.3c19527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Organic memristors as promising electronic units are attracting significant attention owing to their simplicity of molecular structure design. However, fabricating high-quality organic films via novel synthetic technologies and exploring unprecedented chemical structures to achieve excellent memory performance in organic memristor devices are highly challenging. In this work, we report a cathodic electropolymerization to synthesize an ionic azulene-based memristive film (PPMAz-Py+Br-) under the molecular-potential and redox coregulation. During the cathodic electropolymerization process, electropositive pyridinium salts migrate to the cathode under an electric field, undergo a reduction-coupling deprotonation reaction, and polymerize into a uniform film with a controllable thickness on the electrode surface. The prepared Al/PPMAz-Py+Br-/ITO devices not only exhibit a high ON/OFF ratio of 1.8 × 103, high stability, long memory retention, and endurance under a wide range of voltage scans, but also achieve excellent multilevel storage and history-dependent memristive performance. In addition, the devices can mimic important biosynaptic functions, such as learning/forgetting function, synaptic enhancement/inhibition, paired-pulse facilitation/depression, and spiking-rate-dependent plasticity. The tunable memristive performances are attributed to the capture of free electrons on pyridinium cations, the migration of the aluminum ions (Al3+), and the form of Al conductive filaments under voltage scans.
Collapse
Affiliation(s)
- Qiongshan Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongchuang Wu
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Jinyong Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Zhang Q, Li M, Li L, Geng D, Chen W, Hu W. Recent progress in emerging two-dimensional organic-inorganic van der Waals heterojunctions. Chem Soc Rev 2024; 53:3096-3133. [PMID: 38373059 DOI: 10.1039/d3cs00821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Two-dimensional (2D) materials have attracted significant attention in recent decades due to their exceptional optoelectronic properties. Among them, to meet the growing demand for multifunctional applications, 2D organic-inorganic van der Waals (vdW) heterojunctions have become increasingly popular in the development of optoelectronic devices. These heterojunctions demonstrate impressive capability to synergistically combine the favourable characteristics of organic and inorganic materials, thereby offering a wide range of advantages. Also, they enable the creation of innovative device structures and introduce novel functionalities in existing 2D materials, avoiding the need for lattice matching in different material systems. Presently, researchers are actively working on improving the performance of devices based on 2D organic-inorganic vdW heterojunctions by focusing on enhancing the quality of 2D materials, precise stacking methods, energy band regulation, and material selection. Therefore, this review presents a thorough examination of the emerging 2D organic-inorganic vdW heterojunctions, including their classification, fabrication, and corresponding devices. Additionally, this review offers profound and comprehensive insight into the challenges in this field to inspire future research directions. It is expected to propel researchers to harness the extraordinary capabilities of 2D organic-inorganic vdW heterojunctions for a wider range of applications by further advancing the understanding of their fundamental properties, expanding the range of available materials, and exploring novel device architectures. The ongoing research and development in this field hold potential to unlock captivating advancements and foster practical applications across diverse industries.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Menghan Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
6
|
Mills HA, Rahman S, Zigelstein R, Xu H, Varju BR, Bender TP, Wilson MWB, Seferos DS. Sequence-Defined Conjugated Oligomers in Donor-Acceptor Dyads. J Am Chem Soc 2023; 145:23519-23526. [PMID: 37862238 DOI: 10.1021/jacs.3c06923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Conjugated macromolecules have a rich history in chemistry, owing to their chemical arrangements that intertwine physical and electronic properties. The continuing study and application of these systems, however, necessitates the development of atomically precise models that bridge the gap between molecules, polymers, and/or their blends. One class of conjugated polymers that have facilitated the advancement of structure-property relationships is discrete, precision oligomers that have remained an outstanding synthetic challenge with only a handful of reported examples. Here we show the first synthesis of molecular dyads featuring sequence-defined oligothiophene donors covalently linked a to small-molecule acceptor. These dyads serve as a platform for probing complex photophysical interactions involving sequence-defined oligomers. This assessment is facilitated through the unprecedented control of oligothiophene length- and sequence-dependent arrangement relative to the acceptor unit, made possible by the incorporation of hydroxyl-containing side chains at precise positions along the backbone through sequence-defined oligomerizations. We show that both the oligothiophene sequence and length play complementary roles in determining the transfer efficiency of photoexcited states. Overall, the work highlights the importance of the spatial arrangement of donor-acceptor systems that are commonly studied for a range of uses, including light harvesting and photocatalysis.
Collapse
Affiliation(s)
- Harrison A Mills
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Samihat Rahman
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Rachel Zigelstein
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Hao Xu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Bryton R Varju
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Timothy P Bender
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Mark W B Wilson
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
7
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
8
|
Yan H, Kou Z, Li S, Zhang T. Synthesis of sp 2 Carbon-Conjugated Covalent Organic Framework Thin-Films via Copper-Surface-Mediated Knoevenagel Polycondensation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207972. [PMID: 37129557 DOI: 10.1002/smll.202207972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/04/2023] [Indexed: 05/03/2023]
Abstract
sp2 carbon-conjugated covalent organic framework (sp2 c-COF) featured with high π-conjugation, high chemical stabilities, and designable chemical structures, are thus promising for applications including adsorption and separation, optoelectronic devices, and catalysis. For the most of these applications, large-area and continuous films are required. However, due to the needs of harsh conditions in the formation of CC bonds, classical interfacial methodologies are challenged in the synthesis of sp2 c-COFs films. Herein, a novel and robust interfacial method namely copper-surface-mediated Knoevenagel polycondensation (Cu-SMKP), is shown for scalable synthesis of sp2 c-COF films on various Cu substrates. Using this approach, large-area and continuous sp2 c-COF films could be prepared on various complicated Cu surfaces with thickness from tens to hundreds of nanometers. The resultant sp2 c-COF films on Cu substrate could be used directly as functional electrode for extraction of uranium from spiked seawater, which gives an exceptionally uptake capacity of 2475 mg g-1 . These results delineate significant synthetic advances in sp2 c-COF films and implemented them as functional electrodes for uranyl capture.
Collapse
Affiliation(s)
- Haokai Yan
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Zhenhui Kou
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Shengxu Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
9
|
Guo F, Zhang W, Yang S, Wang L, Yu G. 2D Covalent Organic Frameworks Based on Heteroacene Units. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207876. [PMID: 36703526 DOI: 10.1002/smll.202207876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Covalent organic frameworks (COFs) are a unique new class of porous materials that arrange building units into periodic ordered frameworks through strong covalent bonds. Accompanied with structural rigidity and well-defined geometry, heteroacene-based COFs have natural advantages in constructing COFs with high stability and crystallinity. Heteroacene-based COFs usually have high physical and chemical properties, and their extended π-conjugation also leads to relatively low energy gap, effectively promoting π-electron delocalization between network units. Owing to excellent electron-withdrawing or -donating ability, heteroacene units have incomparable advantages in the preparation of donor-acceptor type COFs. Therefore, the physicochemical robust and fully conjugated heteroacene-based COFs solve the problem of traditional COFs lacking π-π interaction and chemical stability. In recent years, significant breakthroughs are made in this field, the choice of various linking modes and building blocks has fundamentally ensured the final applications of COFs. It is of great significance to summarize the heteroacene-based COFs for improving its complexity and controllability. This review first introduces the linkages in heteroacene-based COFs, including reversible and irreversible linkages. Subsequently, some representative building blocks are summarized, and their related applications are especially emphasized. Finally, conclusion and perspectives for future research on heteroacene-based COFs are presented.
Collapse
Affiliation(s)
- Fu Guo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Alcón I, Ribas-Ariño J, Moreira IDPR, Bromley ST. Emergent Spin Frustration in Neutral Mixed-Valence 2D Conjugated Polymers: A Potential Quantum Materials Platform. J Am Chem Soc 2023; 145:5674-5683. [PMID: 36877195 PMCID: PMC10021012 DOI: 10.1021/jacs.2c11185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Two-dimensional conjugated polymers (2DCPs)─organic 2D materials composed of arrays of carbon sp2 centers connected by π-conjugated linkers─are attracting increasing attention due to their potential applications in device technologies. This interest stems from the ability of 2DCPs to host a range of correlated electronic and magnetic states (e.g., Mott insulators). Substitution of all carbon sp2 centers in 2DCPs by nitrogen or boron results in diamagnetic insulating states. Partial substitution of C sp2 centers by B or N atoms has not yet been considered for extended 2DCPs but has been extensively studied in the analogous neutral mixed-valence molecular systems. Here, we employ accurate first-principles calculations to predict the electronic and magnetic properties of a new class of hexagonally connected neutral mixed-valence 2DCPs in which every other C sp2 nodal center is substituted by either a N or B atom. We show that these neutral mixed-valence 2DCPs significantly energetically favor a state with emergent superexchange-mediated antiferromagnetic (AFM) interactions between C-based spin-1/2 centers on a triangular sublattice. These AFM interactions are surprisingly strong and comparable to those in the parent compounds of cuprate superconductors. The rigid and covalently linked symmetric triangular AFM lattice in these materials thus provides a highly promising and robust basis for 2D spin frustration. As such, extended mixed-valence 2DCPs are a highly attractive platform for the future bottom-up realization of a new class of all-organic quantum materials, which could host exotic correlated electronic states (e.g., unusual magnetic ordering, quantum spin liquids).
Collapse
Affiliation(s)
- Isaac Alcón
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Jordi Ribas-Ariño
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ibério de P R Moreira
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Stefan T Bromley
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Wang Y, Dong H. Long-range ordered C 60-based polymer crystals for high-performance conducting materials. Sci Bull (Beijing) 2023; 68:562-564. [PMID: 36872205 DOI: 10.1016/j.scib.2023.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Yongshuai Wang
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanli Dong
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Zhang Y, Wang Y, Gao C, Ni Z, Zhang X, Hu W, Dong H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem Soc Rev 2023; 52:1331-1381. [PMID: 36723084 DOI: 10.1039/d2cs00720g] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Organic semiconductors have received broad attention and research interest due to their unique integration of semiconducting properties with structural tunability, intrinsic flexibiltiy and low cost. In order to meet the requirements of organic electronic devices and their integrated circuits, p-type, n-type and ambipolar organic semiconductors are all necessary. However, due to the limitation in both material synthesis and device fabrication, the development of n-type and ambipolar materials is quite behind that of p-type materials. Recent development in synthetic methods of organic semiconductors greatly enriches the range of n-type and ambipolar materials. Moreover, the newly developed materials with multiple functions also put forward multi-functional device applications, including some emerging research areas. In this review, we give a timely summary on these impressive advances in n-type and ambipolar organic semiconductors with a special focus on their synthesis methods and advanced materials with enhanced properties of charge carrier mobility, integration of high mobility and strong emission and thermoelectric properties. Finally, multi-functional device applications are further demonstrated as an example of these developed n-type and ambipolar materials.
Collapse
Affiliation(s)
- Yihan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.,Department of Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Shang S, Du C, Liu Y, Liu M, Wang X, Gao W, Zou Y, Dong J, Liu Y, Chen J. A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers. Nat Commun 2022; 13:7599. [PMID: 36494377 PMCID: PMC9734122 DOI: 10.1038/s41467-022-35315-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Conductive metal-organic frameworks (MOFs) have performed well in the fields of energy and catalysis, among which two-dimensional (2D) and three-dimensional (3D) MOFs are well-known. Here, we have synthesized a one-dimensional (1D) conductive metal-organic framework (MOF) in which hexacoordinated 1,5-Diamino-4,8-dihydroxy-9,10-anthraceneedione (DDA) ligands are connected by double Cu ions, resulting in nanoribbon layers with 1D π-d conjugated nanoribbon plane and out-of-plane π-π stacking, which facilitates charge transport along two dimensions. The DDA-Cu as a highly conductive n-type MOF has high crystalline quality with a conductivity of ~ 9.4 S·m-1, which is at least two orders of magnitude higher than that of conventional 1D MOFs. Its electrical band gap (Eg) and exciton binding energy (Eb) are approximately 0.49 eV and 0.3 eV, respectively. When utilized as electrode material in a supercapacitor, the DDA-Cu exhibits good charge storage capacity and cycle stability. Meanwhile, as thse active semiconductor layer, it successfully simulates the artificial visual perception system with excellent bending resistance and air stability as a MOF-based flexible optoelectronic synaptic case. The controllable preparation of high-quality 1D DDA-Cu MOF may enable new architectural designs and various applications in the future.
Collapse
Affiliation(s)
- Shengcong Shang
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Changsheng Du
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Youxing Liu
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Minghui Liu
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Xinyu Wang
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Wenqiang Gao
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Ye Zou
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Jichen Dong
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Yunqi Liu
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Jianyi Chen
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| |
Collapse
|
14
|
Umabharathi PS, Karpagam S. Real scenario of metal ion sensor: is conjugated polymer helpful to detect hazardous metal ion. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Metal ions from natural and anthropogenic sources cause pollution to society and the environment is major concern in the present scenario. The deposition and contamination of metal ions in soil and water affect the biogeochemical cycles. Thus, it threatens the everyday life of living and non-living organisms. Reviews on the detection of metal ions through several techniques (Analytical methods, electrochemical techniques, and sensors) and materials (Nanoparticles, carbon dots (quantum dots), polymers, chiral molecules, metal-organic framework, carbon nanotubes, etc.) are addressed separately in the present literature. This review reveals the advantages and disadvantages of the techniques and materials for metal ion sensing with crucial factors. Furthermore, it focus on the capability of conjugated polymers (CPs) as metal ion sensors able to detect/sense hazardous metal ions from environmental samples. Six different routes can synthesize this type of CPs to get specific properties and better metal ion detecting capability in vast research areas. The metal ion detection by CP is time-independent, simple, and low cost compared to other materials/techniques. This review outlines recent literature on the conjugated polymer for cation, anion, and dual ion sensors. Over the last half decades published articles on the conjugated polymer are discussed and compared.
Collapse
Affiliation(s)
| | - Subramanian Karpagam
- Department of Chemistry , School of Advanced Sciences, Vellore Institute of Technology , Vellore - 14 , Tamil Nadu , India
| |
Collapse
|
15
|
Liu Y, Cui X, Wang X, Jiang N, Liu HG. Large area nanodot arrays of PS-b-P2VP with heteropolyacid or metal ions via liquid/liquid interfacial self-assembly. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zhang T, Zhang P, Liao Z, Wang F, Wang J, Wang M, Zschech E, Zhuang X, Schmidt OG, Feng X. Interfacial synthesis of crystalline quasi-two-dimensional polyaniline thin films for high-performance flexible on-chip micro-supercapacitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Liu D, Wu X, Gao C, Li C, Zheng Y, Li Y, Xie Z, Ji D, Liu X, Zhang X, Li L, Peng Q, Hu W, Dong H. Integrating Unexpected High Charge-Carrier Mobility and Low-Threshold Lasing Action in an Organic Semiconductor. Angew Chem Int Ed Engl 2022; 61:e202200791. [PMID: 35298062 DOI: 10.1002/anie.202200791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 12/17/2022]
Abstract
Integrating high charge-carrier mobility and low-threshold lasing action in an organic semiconductor is crucial for the realization of an electrically pumped laser, but remains a great challenge. Herein, we present an organic semiconductor, named as 2,7-di(2-naphthyl)-9H-fluorene (LD-2), which shows an unexpected high charge-carrier mobility of 2.7 cm2 V-1 s-1 and low-threshold lasing characteristic of 9.43 μJ cm-2 and 9.93 μJ cm-2 and high-quality factor (Q) of 2131 and 1684 at emission peaks of 420 and 443 nm, respectively. Detailed theoretical calculations and photophysical data analysis demonstrate that a large intermolecular transfer integral of 10.36-45.16 meV together with a fast radiative transition rate of 8.0×108 s-1 are responsible for the achievement of the superior integrated optoelectronic properties in the LD-2 crystal. These optoelectronic performances of LD-2 are among the highest reported low-threshold lasing organic semiconductors with efficient charge transport, suggesting its promise for research of electrically pumped organic lasers (EPOLs).
Collapse
Affiliation(s)
- Dan Liu
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianxin Wu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Can Gao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenguang Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Yingshuang Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yang Li
- Normal College, Shenyang University, Shenyang, 110044, China
| | - Ziyi Xie
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xinfeng Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Qian Peng
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), Tianjin, 300072, China
| | - Huanli Dong
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
18
|
Shang P, Yan X, Li Y, Liu J, Zhang G, Chen L. Heterogeneous photocatalytic borylation of aryl iodides mediated by isoreticular 2D covalent organic frameworks. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Wei Y, Geng Y, Wang K, Gao H, Wu Y, Jiang L. Organic ultrathin nanostructure arrays: materials, methods and applications. NANOSCALE ADVANCES 2022; 4:2399-2411. [PMID: 36134127 PMCID: PMC9417106 DOI: 10.1039/d1na00863c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
Organic ultrathin semiconductor nanostructures have attracted continuous attention in recent years owing to their excellent charge transport capability, favorable flexibility, solution-processability and adjustable photoelectric properties, providing opportunities for next-generation optoelectronic applications. For integrated electronics, organic ultrathin nanostructures need to be prepared as large-area patterns with precise alignment and high crystallinity to achieve organic electronic devices with high performance and high throughput. However, the fabrication of organic ultrathin nanostructure arrays still remains challenging due to uncontrollable growth along the height direction in solution processes. In this review, we first introduce the properties, assembly methods and applications of four typical organic ultrathin nanostructures, including small molecules, polymers, and other organic-inorganic hybrid materials. Five categories of representative solution-processing techniques for patterning organic micro- and nanostructures are summarized and discussed. Finally, challenges and perspectives in the controllable preparation of organic ultrathin arrays and potential applications are featured on the basis of their current development.
Collapse
Affiliation(s)
- Yanjie Wei
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Yue Geng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
| | - Kui Wang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Hanfei Gao
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Yuchen Wu
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Lei Jiang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| |
Collapse
|
20
|
Ma B, Shi Q, Ma X, Li Y, Chen H, Wen K, Zhao R, Zhang F, Lin Y, Wang Z, Huang H. Defect-Free Alternating Conjugated Polymers Enabled by Room- Temperature Stille Polymerization. Angew Chem Int Ed Engl 2022; 61:e202115969. [PMID: 35099844 DOI: 10.1002/anie.202115969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/08/2022]
Abstract
The Stille cross-coupling polymerization is one of the most efficient synthetic methods for donor-acceptor (D-A) type π-conjugated polymers (CPs). Nevertheless, thermal-activation Stille polymerization readily produced homocoupling defects, resulting in batch-to-batch variations in copolymers quality and deteriorating the device performance of electronics and optoelectronics. Here, a room-temperature Stille-type polymerization was developed, the utility and generality of which were demonstrated by synthesis of twelve D-A CPs with high molecular weights. Importantly, the resultant copolymers possessed no homocoupling (hc) structural defects, while hc reactions were observed in the thermal-activation Stille reactions. Thus, the organic field-effect transistors (OFETs) based on the former exhibited twofold higher charge transport mobility (2.10 cm2 V-1 s-1 ), since it possessed stronger crystallinity and lower trap density of states (tDOS).
Collapse
Affiliation(s)
- Bowei Ma
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qinqin Shi
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoying Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hao Chen
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaikai Wen
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruihua Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhixiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Wang C, Zhang Z, Zhu Y, Yang C, Wu J, Hu W. 2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Optical-Electrical-Magnetic Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102290. [PMID: 35052010 DOI: 10.1002/adma.202102290] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs), an emerging class of organic crystalline polymers with highly oriented structures and permanent porosity, can adopt 2D or 3D architectures depending on the different topological diagrams of the monomers. Notably, 2D COFs have particularly gained much attention due to the extraordinary merits of their extended in-plane π-conjugation and topologically ordered columnar π-arrays. These properties together with high crystallinity, large surface area, and tunable porosity distinguish 2D COFs as an ideal candidate for the fabrication of functional materials. Herein, this review surveys the recent research advances in 2D COFs with special emphasis on the preparation of 2D COF powders, single crystals, and thin films, as well as their advanced optical, electrical, and magnetic functionalities. Some challenging issues and potential research outlook for 2D COFs are also provided for promoting their development in terms of structure, synthesis, and functionalities.
Collapse
Affiliation(s)
- Congyong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yating Zhu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chenhuai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
22
|
Kim SW, Chung S, Han GF, Seo JM, Noh HJ, Kim SJ, Jeon JP, Lee E, Kang B, Mahmood J, Cho K, Baek JB. Solution-Processable Semiconducting Conjugated Planar Network. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14588-14595. [PMID: 35311266 DOI: 10.1021/acsami.2c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
After the emergence of graphene in the material science field, top-down and bottom-up studies to develop semiconducting organic materials with layered structures became highly active. However, most of them have suffered from poor processability, which hampers device fabrication and frustrates practical applications. Here, we suggest an unconventional approach to fabricating semiconducting devices, which avoids the processability issue. We designed a soluble amorphous network using a solution process to form a thin film on a substrate. We then employed heat treatment to develop a flattened organic structure in the thin film, as an active layer for organic thin-film transistors (TFTs). The fabricated TFTs showed good performance in both horizontal and vertical charge transport, suggesting a versatile and useful approach for the development of organic semiconductors.
Collapse
Affiliation(s)
- Seong-Wook Kim
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Gao-Feng Han
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Jeong-Min Seo
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Seok-Jin Kim
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Jong-Pil Jeon
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Eunho Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology (KIT), Gumi 39248, South Korea
| | - Boseok Kang
- SKKU Advanced Institute of Nanotechnology and Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Javeed Mahmood
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| |
Collapse
|
23
|
Liu D, Wu X, Gao C, Li C, Zheng Y, Li Y, Xie Z, Ji D, Liu X, Zhang X, Li L, Peng Q, Hu W, Dong H. Integrating unexpected high charge‐carrier mobility and low‐threshold lasing action in an organic semiconductor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dan Liu
- Institute of Chemistry Chinese Academy of Sciences Key laboratory of organic solids CHINA
| | - Xianxin Wu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Can Gao
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Organic Solids CHINA
| | - Chenguang Li
- Henan University Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering ,Collaborative Innovation Centre of Nano Functional Materials and Applications CHINA
| | - yingshuang Zheng
- tian jin da xue: Tianjin University Tian jin Key Laboratory of Molecular Optoelectronic Department of Chemistry, Insititue of Molecular Aggregation Science CHINA
| | - Yang Li
- Shenyang University Normal College CHINA
| | - Ziyi Xie
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Organic Solids CHINA
| | - Deyang Ji
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectrinic Sciences, Department of Chemistry, Institute of Molecular Aggregation Sciencs CHINA
| | - Xinfeng Liu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechlolgy CHINA
| | - Xiaotao Zhang
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry,Institute of Molecular Aggregation Science CHINA
| | - Liqiang Li
- Tianjin University Tianjin Key Laboratory of Mecular Optoelectronic Sciences,Deportment of Chemistry, Institute of Melecular Aggregation Science CHINA
| | - Qian Peng
- University of Chinese Academy of Sciences School of Computer and Control Engineering: University of the Chinese Academy of Sciences School of Computer Science and Technology School of Chemical Science CHINA
| | - Wenping Hu
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University &Collaborative Innovation Center od Chemical Science and Enginering CHINA
| | - Huanli Dong
- Institute of Chemistry, Chinese Academy of Sciences Key laboratory of organic solids zhongguancun 100190 Beijing CHINA
| |
Collapse
|
24
|
Liu M, Liu Y, Dong J, Bai Y, Gao W, Shang S, Wang X, Kuang J, Du C, Zou Y, Chen J, Liu Y. Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion. Nat Commun 2022; 13:1411. [PMID: 35301302 PMCID: PMC8931112 DOI: 10.1038/s41467-022-29050-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Covalent organic frameworks (COFs) can exhibit high specific surface area and catalytic activity, but traditional solution-based synthesis methods often lead to insoluble and infusible powders or fragile films on solution surface. Herein we report large-area –C=N– linked two-dimensional (2D) COF films with controllable thicknesses via vapor induced conversion in a chemical vapor deposition (CVD) system. The assembly process is achieved by reversible Schiff base polycondensation between PyTTA film and TPA vapor, which results in a uniform organic framework film directly on growth substrate, and is driven by π‐π stacking interactions with the aid of water and acetic acid. Wafer-scale 2D COF films with different structures have been successfully synthesized by adjusting their building blocks, suggesting its generic applicability. The carrier mobility of PyTTA-TPA COF films can reach 1.89 × 10−3 cm2 V−1 s−1. When employed as catalysts in hydrogen evolution reaction (HER), they show high electrocatalytic activity compared with metal-free COFs or even some metallic catalysts. Our results represent a versatile route for the direct construction of large-area uniform 2D COF films on substrates towards multi-functional applications of 2D π‐conjugated systems. Solution-based synthesis of covalent organic frameworks (COFs) often leads to insoluble powders or fragile films on solution surfaces. Here, the authors report large-area two-dimensional (2D) COF films with controllable thicknesses via vapour induced conversion.
Collapse
Affiliation(s)
- Minghui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.,University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Youxing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.,University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.,University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Yichao Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.,University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.,University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shengcong Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.,University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Xinyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.,University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Junhua Kuang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.,University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Changsheng Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.,University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.,University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China. .,University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China. .,University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| |
Collapse
|
25
|
Wang F, Zhang Z, Shakir I, Yu C, Xu Y. 2D Polymer Nanosheets for Membrane Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103814. [PMID: 35084113 PMCID: PMC8922124 DOI: 10.1002/advs.202103814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/10/2021] [Indexed: 05/12/2023]
Abstract
Since the discovery of single-layer graphene in 2004, the family of 2D inorganic nanosheets is considered as ideal membrane materials due to their ultrathin atomic thickness and fascinating physicochemical properties. However, the intrinsically nonporous feature of 2D inorganic nanosheets hinders their potential to achieve a higher flux to some extent. Recently, 2D polymer nanosheets, originated from the regular and periodic covalent connection of the building units in 2D plane, have emerged as promising candidates for preparing ultrafast and highly selective membranes owing to their inherently tunable and ordered pore structure, light weight, and high specific surface. In this review, the synthetic methodologies (including top-down and bottom-up methods) of 2D polymer nanosheets are first introduced, followed by the summary of 2D polymer nanosheets-based membrane fabrication as well as membrane applications in the fields of gas separation, water purification, organic solvent separation, and ion exchange/transport in fuel cells and lithium-sulfur batteries. Finally, based on their current achievements, the authors' personal insights are put forward into the existing challenges and future research directions of 2D polymer nanosheets for membrane separation. The authors believe this comprehensive review on 2D polymer nanosheets-based membrane separation will definitely inspire more studies in this field.
Collapse
Affiliation(s)
- Fei Wang
- School of Materials Science and EngineeringShanghai UniversityShanghai201800China
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Zhao Zhang
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Imran Shakir
- Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesCA90095USA
- Sustainable Energy Technologies CenterCollege of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| | - Chengbing Yu
- School of Materials Science and EngineeringShanghai UniversityShanghai201800China
| | - Yuxi Xu
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| |
Collapse
|
26
|
Vaillard AS, El Haitami A, Dreier LB, Fontaine P, Cousin F, Gutfreund P, Goldmann M, Backus EHG, Cantin S. Vertically Heterogeneous 2D Semi-Interpenetrating Networks Based on Cellulose Acetate and Cross-Linked Polybutadiene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2538-2549. [PMID: 35171621 DOI: 10.1021/acs.langmuir.1c03084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work reports the feasibility of polybutadiene (PB) cross-linking under UV irradiation in the presence of a linear polymer, cellulose acetate (CA), to form semi-interpenetrating polymer networks at the air-water interface. The thermodynamic properties and the morphology of two-dimensional (2D) CA/PB blends are investigated after UV irradiation and for a wide range of CA volume fractions. A contraction of the mixed Langmuir films is observed independent of the composition, in agreement with that recorded for the individual PB monolayer after cross-linking. The PB network formation is demonstrated by in situ sum-frequency generation spectroscopy on the equivolumic CA/PB mixed film. From Brewster angle microscopy observations, the PB network synthesis does not induce any morphology change at the mesoscopic scale, and all of the mixed films remain homogeneous laterally. In situ neutron reflectometry is used to probe the effect of PB cross-linking on the vertical structure of CA/PB mixed films. For all studied compositions, significant thickening of the films is evidenced, consistent with their contraction ratio. This thickening is accompanied by a partial expulsion of the PB toward the film-air interface, which is attributed to the hydrophobic character of the PB. This phenomenon is stronger for films rich in PB. In particular, the structure of the PB-rich film undergoes a transition from vertically homogeneous to inhomogeneous along the depth. 2D semi-interpenetrating polymer networks can thus be synthesized at the air-water interface with a morphology that is strongly influenced by the polymer-polymer and polymer-environment interactions.
Collapse
Affiliation(s)
| | | | - Lisa B Dreier
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | | | - Michel Goldmann
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
- Institut des NanoSciences de Paris, Sorbonne Université, 75252 Paris Cedex 05, France
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 75006 Paris, France
| | - Ellen H G Backus
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Physical Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | | |
Collapse
|
27
|
Ma B, Shi Q, Ma X, Li Y, Chen H, Wen K, Zhao R, Zhang F, Lin Y, Wang Z, Huang H. Defect‐Free Alternating Conjugated Polymers Enabled by Room‐ Temperature Stille Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bowei Ma
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qinqin Shi
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaoying Ma
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Chen
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Kaikai Wen
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ruihua Zhao
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fengjiao Zhang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhixiang Wang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
28
|
Deng T, Yan W, Liu X, Hu G, Xiao W, Mao S, Lin J, Jiao Y, Jin Y. Cu-Catalyzed Radical Addition and Oxidation Cascade: Unsymmetrical Trimerization of Indole to Access Isotriazatruxene. Org Lett 2022; 24:1502-1506. [PMID: 35166543 DOI: 10.1021/acs.orglett.2c00180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein we describe a Cu-catalyzed radical addition and oxidation cascade reaction for the chemo/regioselective synthesis of unsymmetrical indole trimers (isotriazatruxenes, i-TATs) from easily available starting materials. The i-TATs exhibited blue fluorescence in various solvents with different fluorescence intensities and showed good structural expansibility. A wider range of products could be used in optoelectronic materials by developing suitable derivatives.
Collapse
Affiliation(s)
- Ting Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Wenxin Yan
- School of Chemistry and Chemical Engineering; Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Xiaoyu Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Guizhimeng Hu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian 116081, P. R. China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yinchun Jiao
- School of Chemistry and Chemical Engineering; Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
29
|
Yang Y, Börjesson K. Electroactive covalent organic frameworks: a new choice for organic electronics. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Górski K, Mech-Piskorz J, Pietraszkiewicz M. From truxenes to heterotruxenes: playing with heteroatoms and the symmetry of molecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj00816e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a result of the modification of truxene, we can change the electronic structure or create multidimensional materials. Thus, the use of truxenes is very wide.
Collapse
Affiliation(s)
- Krzysztof Górski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Justyna Mech-Piskorz
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Marek Pietraszkiewicz
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
31
|
Duan L, Wang C, Zhang W, Ma B, Deng Y, Li W, Zhao D. Interfacial Assembly and Applications of Functional Mesoporous Materials. Chem Rev 2021; 121:14349-14429. [PMID: 34609850 DOI: 10.1021/acs.chemrev.1c00236] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional mesoporous materials have gained tremendous attention due to their distinctive properties and potential applications. In recent decades, the self-assembly of micelles and framework precursors into mesostructures on the liquid-solid, liquid-liquid, and gas-liquid interface has been explored in the construction of functional mesoporous materials with diverse compositions, morphologies, mesostructures, and pore sizes. Compared with the one-phase solution synthetic approach, the introduction of a two-phase interface in the synthetic system changes self-assembly behaviors between micelles and framework species, leading to the possibility for the on-demand fabrication of unique mesoporous architectures. In addition, controlling the interfacial tension is critical to manipulate the self-assembly process for precise synthesis. In particular, recent breakthroughs based on the concept of the "monomicelles" assembly mechanism are very promising and interesting for the synthesis of functional mesoporous materials with the precise control. In this review, we highlight the synthetic strategies, principles, and interface engineering at the macroscale, microscale, and nanoscale for oriented interfacial assembly of functional mesoporous materials over the past 10 years. The potential applications in various fields, including adsorption, separation, sensors, catalysis, energy storage, solar cells, and biomedicine, are discussed. Finally, we also propose the remaining challenges, possible directions, and opportunities in this field for the future outlook.
Collapse
Affiliation(s)
- Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Changyao Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Bing Ma
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Yonghui Deng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
32
|
Oh M, Jo S, Huh TH, Kwark YJ, Lee TS. Synthesis of a conjugated polymer film via interfacial Knoevenagel polymerization and conversion to covalent triazine polymer for photocatalysis. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Li C, Yu G. Controllable Synthesis and Performance Modulation of 2D Covalent-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100918. [PMID: 34288393 DOI: 10.1002/smll.202100918] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Covalent-organic frameworks (COFs) are especially interesting and unique as their highly ordered topological structures entirely built from plentiful π-conjugated units through covalent bonds. Arranging tailorable organic building blocks into periodically reticular skeleton bestows predictable lattices and various properties upon COFs in respect of topology diagrams, pore size, properties of channel wall interfaces, etc. Indeed, these peculiar features in terms of crystallinity, conjugation degree, and topology diagrams fundamentally decide the applications of COFs including heterogeneous catalysis, energy conversion, proton conduction, light emission, and optoelectronic devices. Additionally, this research field has attracted widespread attention and is of importance with a major breakthrough in recent year. However, this research field is running with the lack of summaries about tailorable construction of 2D COFs for targeted functionalities. This review first covers some crucial polymeric strategies of preparing COFs, containing boron ester condensation, amine-aldehyde condensation, Knoevenagel condensation, trimerization reaction, Suzuki CC coupling reaction, and hybrid polycondensation. Subsequently, a summary is made of some representative building blocks, and then underlines how the electronic and molecular structures of building blocks can strongly influence the functional performance of COFs. Finally, conclusion and perspectives on 2D COFs for further study are proposed.
Collapse
Affiliation(s)
- Chenyu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
34
|
Large area layered ultrathin films of metal-diacid via liquid/liquid interfacial self-assembly. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Li Z, Lin Z. Two-Dimensional Polymers: Synthesis and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45130-45138. [PMID: 34524804 DOI: 10.1021/acsami.1c12392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) polymers represent an emerging class of nanomaterials possessing covalent sheet-like morphology. They display a set of intriguing properties, including large specific surface area, low density, versatile control over sizes and compositions, and high adaptability. As such, they find application in energy conversion and storage, nanotechnology, and biotechnology. However, it remains challenging to synthesize thin-layer 2D polymers with conventional methods. Herein, in this perspective, recent advances in synthesis and applications of thin-layer 2D polymers via capitalizing on various "top-down" and "bottom-up" strategies are summarized. Particularly, some new methods (e.g., free radical polymerization in solution and surfactant-monolayer-assisted interfacial synthesis) in combination with electrostatic repulsion or steric hindrance effect to engineer single-layer 2D polymers at large scale are highlighted.
Collapse
Affiliation(s)
- Zili Li
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
36
|
Manzhos S, Chueh CC, Giorgi G, Kubo T, Saianand G, Lüder J, Sonar P, Ihara M. Materials Design and Optimization for Next-Generation Solar Cell and Light-Emitting Technologies. J Phys Chem Lett 2021; 12:4638-4657. [PMID: 33974435 DOI: 10.1021/acs.jpclett.1c00714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We review some of the most potent directions in the design of materials for next-generation solar cell and light-emitting technologies that go beyond traditional solid-state inorganic semiconductor-based devices, from both the experimental and computational standpoints. We focus on selected recent conceptual advances in tackling issues which are expected to significantly impact applied literature in the coming years. Specifically, we consider solution processability, design of dopant-free charge transport materials, two-dimensional conjugated polymeric semiconductors, and colloidal quantum dot assemblies in the fields of experimental synthesis, characterization, and device fabrication. Key modeling issues that we consider are calculations of optical properties and of effects of aggregation, including recent advances in methods beyond linear-response time-dependent density functional theory and recent insights into the effects of correlation when going beyond the single-particle ansatz as well as in the context of modeling of thermally activated fluorescence.
Collapse
Affiliation(s)
- Sergei Manzhos
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Giacomo Giorgi
- Department of Civil & Environmental Engineering (DICA), Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy
- CNR-SCITEC, 06123 Perugia, Italy
| | - Takaya Kubo
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Gopalan Saianand
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4001 Brisbane, Australia
- Global Center for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Johann Lüder
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, 80424, No. 70, Lien-Hai Road, Kaohsiung, Taiwan R.O.C
- Center of Crystal Research, National Sun Yat-sen University, 80424, No. 70, Lien-Hai Road, Kaohsiung, Taiwan R.O.C
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4001 Brisbane, Australia
| | - Manabu Ihara
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
37
|
Zhang L, Zhan W, Dong Y, Yang T, Zhang C, Ouyang M, Li W. Liquid/Liquid Interfacial Suzuki Polymerization Prepared Novel Triphenylamine-Based Conjugated Polymer Films with Excellent Electrochromic Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20810-20820. [PMID: 33886266 DOI: 10.1021/acsami.1c02745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Preparing conjugated polymer films via interfacial Suzuki polymerization is a promising method for obtaining desirable electrochromic materials with desired structures. Here, a series of aryl boronic esters and triphenylamine-based aryl bromides were applied as precursors, and several polymer films were finally obtained via the liquid/liquid interfacial Suzuki polymerization reaction under mild conditions. FT-IR, UV, and Raman as well as electrochemistry, SEM, and EDS results all provide strong evidence for the formation of the desired polymer structures. Among them, the TPA-Wu (containing triphenylamine and alkyl-fluorene) film exhibits the best film-forming quality. Besides, these polymer films were applied in electrochromic applications. The results show that electrochromic properties can be affected by the quality of film formation. It is worth mentioning that the TPA-Wu film could achieve excellent electrochromic properties with reversible multicolor changes from transparent yellow to orange-red to blue-green under varying potentials. Compared to other triphenylamine-based electrochromic materials, the TPA-Wu film possessed the most desirable coloring efficiency, higher optical contrast, and shorter switching time. This work provides an existing general approach of liquid/liquid interfacial Suzuki polymerization for constructing conjugated polymer films toward electrochromic applications.
Collapse
Affiliation(s)
- Ling Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wang Zhan
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yujie Dong
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Tao Yang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Cheng Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Mi Ouyang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Weijun Li
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
38
|
Han M, Liu Y, Qian DJ, Lee YI, Liu HG. Large-Area Assembly of Metal-Organic Layered Ultrathin Films at the Liquid/Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4515-4522. [PMID: 33821646 DOI: 10.1021/acs.langmuir.0c03670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional functional metal-organic frameworks and coordination polymers have attracted much attention and have been successfully prepared in solutions and at interfaces through the coordination of ligands to metal ions. However, the preparation of large-area ultrathin ordered films is still a challenge. Here, a modified liquid/liquid interfacial epitaxial growth method has been developed. A planar liquid/liquid interface between a chloroform solution of bipyridine derivatives and pure water was constructed first, and then an aqueous solution of Eu3+ or Cu2+ ions was added dropwise into the water phase. A layered ultrathin film with the size of several hundreds of square micrometers appeared at the liquid/liquid interface after a certain time. The monitoring results showed that the formation of ultrathin films was a result of continuous epitaxial growth of the adsorbed species due to the synergistic effects of hydrophobic effects of the alkyl chains, coordination bonds between the ligands and metal ions, π-π interactions between the ligands, and the restriction of the interface on the vertical growth. This offers a way to fabricate more large-area thin films of amphiphilic molecules.
Collapse
Affiliation(s)
- Ming Han
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100, P. R. China
| | - Yuwei Liu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100, P. R. China
| | - Dong-Jin Qian
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Yong-Ill Lee
- Department of Chemistry, Changwon National University, Changwon 641-773, Korea
| | - Hong-Guo Liu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
39
|
Donor–Acceptor Type Conjugated Microporous Polymer as a Metal-Free Photocatalyst for Visible-Light-Driven Aerobic Oxidative Coupling of Amines. Catal Letters 2021. [DOI: 10.1007/s10562-021-03574-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Liu H, Wang Y, Qin Z, Liu D, Xu H, Dong H, Hu W. Electrically Conductive Coordination Polymers for Electronic and Optoelectronic Device Applications. J Phys Chem Lett 2021; 12:1612-1630. [PMID: 33555195 DOI: 10.1021/acs.jpclett.0c02988] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Electrically conductive coordination polymers (generally known as metal-organic frameworks, MOFs) are a class of crystalline hybrid materials produced by the reasonable self-assembly of metal nodes and organic linkers. The unique and intriguing combination of inorganic and organic components endows coordination polymers with superior optical and electrical properties, which have recently aroused much attention in several electronic and optoelectronic technological applications. However, there are many challenging obstacles and issues that need to be addressed in this burgeoning field. In this Perspective, we first provide a fundamental understanding about the electronic design strategies that provide better guidance for realizing high conductivities and good mobilities in coordination polymers. We then examine the current established synthetic approaches to construct high-quality working samples of electrically conductive coordination polymers for device integration. This is followed by a discussion of the current state-of-the-art progress toward the preliminary achievements in (opto)electronic devices spanning chemiresistive sensors, field-effect transistors, organic photovoltaics, photodetectors, etc. Finally, we conclude this Perspective with the existing hurdles and limitations in this area, along with the critical directions and opportunities for future research.
Collapse
Affiliation(s)
- Hao Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yongshuai Wang
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengsheng Qin
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Liu
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Xu
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
41
|
Liu Y, Wei Y, Liu M, Bai Y, Wang X, Shang S, Chen J, Liu Y. Electrochemical Synthesis of Large Area Two-Dimensional Metal-Organic Framework Films on Copper Anodes. Angew Chem Int Ed Engl 2021; 60:2887-2891. [PMID: 33300656 DOI: 10.1002/anie.202012971] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 12/30/2022]
Abstract
Owing to their excellent physical and electrical properties, metal-organic framework (MOF) materials with well-defined supramolecular structures have received extensive research attention. However, the fabrication of large-area two-dimensional (2D) MOF films is still a significant challenge. Herein, we propose a novel electrochemical (EC) synthesis method for the preparation of large-area Cu3 (HHTP)2 MOF film on single-crystal Cu (100) anode. The surface reaction was achieved via charge-induced molecular assembly. The synthesized MOF film exhibited a high crystalline quality with an electrical conductivity of approximately 0.087 S cm-1 , which was around 1000 times larger than the previously reported values for the same material prepared by the interface method. In addition, Cu2 (MTCP), Cu3 (BTPA)2 , and Cu3 (TPTC)2 MOF films were synthesized on Cu foil with the same strategy, which confirmed the universality of the proposed method. This controllable EC method can be effectively applied to the industrial-scale production of 2D MOF films on Cu foil.
Collapse
Affiliation(s)
- Youxing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanan Wei
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Minghui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yichao Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengcong Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
42
|
Wen J, Zhu L, Li M. C-C Coupling Reactions for the Synthesis of Two-Dimensional Conjugated Polymers. Chempluschem 2020; 85:2636-2651. [PMID: 33305907 DOI: 10.1002/cplu.202000643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Extension of conjugated polymers from 1D to 2D can not only significantly enhance the dissociation of charge and excitons, but also induce other advantages, such as high in-plane mechanical strength, large specific surface area and porosity, and more active centers. 2D conjugated polymers can be divided into C-C bonded 2D polymers based on C-C coupling reactions, and heteroatomic bonded 2D polymers based on reversible heteroatom coupling reactions. C-C bonded 2D polymers are generally more stable than heteroatomic bonded 2D polymers as the latter bonds are easily hydrolyzed. This Review mainly summarizes C-C coupling reactions that are suitable for synthesizing 2D conjugated polymers, and the properties of these 2D conjugated polymers are also introduced.
Collapse
Affiliation(s)
- Ju Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ling Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ming Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
43
|
Liu Y, Wei Y, Liu M, Bai Y, Wang X, Shang S, Chen J, Liu Y. Electrochemical Synthesis of Large Area Two‐Dimensional Metal–Organic Framework Films on Copper Anodes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Youxing Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanan Wei
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Minghui Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yichao Bai
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinyu Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shengcong Shang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
44
|
Liu T, Cui L, Zhao H, Zhang X. In Situ Generation of Regularly Ordered 2D Ultrathin Covalent Organic Framework Films for Highly Sensitive Photoelectrochemical Bioanalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47090-47098. [PMID: 33007157 DOI: 10.1021/acsami.0c15147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing new photoactive materials and electrode preparation technology with high stability, repeatability, easy fabrication, and a low electron-hole recombination rate is promising for ideal photoelectrochemical (PEC) biosensors, but it remains a great challenge. Here, a porous and crystalline oriented two-dimensional (2D) ultrathin covalent organic framework film (D-TA COF film) was formed in situ on indium-doped tin oxide (ITO) substrates under very mild conditions. The structure and morphology of D-TA COF film were characterized by means of Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and powder X-ray diffraction. Compared with the randomly oriented D-TA COF powder drop-coated on ITO, the photocurrent of the D-TA COF film grown on the ITO surface in situ achieved as high as ∼333-fold increase. This photocurrent can be further amplified by O2 (acting as electron acceptors). Benefiting from the fabrication in situ, D-TA COF film also exhibited tough adhesion, assuring the film was difficult to separate from the electrode. Accordingly, D-TA COF film was applied as the photoactive material to build a PEC biosensor for H2O2 detection based on coupling with large amounts of catalase (CAT) through simple adsorption. The introduced CAT catalyzed the decomposition of H2O2 to O2, leading to an enhancement of the photocurrent response. As a result, a "signal-on" PEC biosensor was fabricated with good sensitivity, rapid response, and high stability, and it can also detect H2O2 released from living cells. Taking into account these advantages, the D-TA COF film is expected to be an ideal photoactive material to construct various PEC biosensors, which as far as we know have not been reported.
Collapse
Affiliation(s)
- Tingting Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Huijuan Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
45
|
Zhang G, Xue N, Gu W, Yang X, Lv A, Zheng Y, Zhang L. Regiocontrolled dimerization of asymmetric diazaheptacene derivatives toward X-shaped porous semiconductors. Chem Sci 2020; 11:11235-11243. [PMID: 34094364 PMCID: PMC8162510 DOI: 10.1039/d0sc03744c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conformationally rigid X-shaped PAHs are attracting interest due to their self-assembly into unique networks and as models to study through-space exciton and charge delocalization in one single molecule. We report here the synthesis of X-shaped PAHs by dimerization of diazaheptacene diimides. The diimide groups are employed to effectively direct the self-assembly into antiparallel dimer aggregates, which assist the compounds to undergo a regiocontrolled [4 + 4] dimerization, leading to an X-shaped conformation bearing electron-poor and -rich subunits. The resulting PAHs are found to pack in 2D layers with large open channels and infinite π⋯π arrays. Furthermore, these highly crystalline porous materials serve as electron-transporting materials in OFETs due to the long-range π-stacked arrays in the layers. This work presents a potentially generalizable strategy, which may provide a unique class of porous semiconductors for organic devices, taking advantage of their open channels. The synthesis of conformationally rigid X-shaped PAHs by regiocontrolled cyclodimerization of diazaheptacene diimides is presented. The resulting porous materials exhibit enhanced semiconducting behaviors with large open channels.![]()
Collapse
Affiliation(s)
- Guowei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Ning Xue
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Wen Gu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Xingzhou Yang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC) Chengdu 610054 P. R. China
| | - Aifeng Lv
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC) Chengdu 610054 P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|