1
|
Ma J, Zhao M, Kong X, Xie H, Li H, Jiao Z, Zhang Z. An innovative dual-organelle targeting NIR fluorescence probe for detecting hydroxyl radicals in biosystem and inflammation models. Bioorg Chem 2024; 151:107678. [PMID: 39068715 DOI: 10.1016/j.bioorg.2024.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The hydroxyl radical (OH) is highly reactive and plays a significant role in a number of physiological and pathological processes within biosystems. Aberrant changes in the level of hydroxyl radical are associated with many disorders including tumor, inflammatory and cardiovascular diseases. Thus, detecting reactive oxygen species (ROS) in biological systems and imaging them is highly significant. In this work, a novel fluorescent probe (HR-DL) has been developed, targeting two organelles simultaneously. The probe is based on a coumarin-quinoline structure and exhibits high selectivity and sensitivity towards hydroxyl radicals (OH). When reacting with OH, the hydrogen abstraction process released its long-range π-conjugation and ICT processes, leading to a substantial red-shift in wavelength. This probe has the benefits of good water solubility (in its oxidative state), short response time (within 10 s), and unique dual lysosome/mitochondria targeting capabilities. It has been applied for sensing OH in biosystem and inflammation mice models.
Collapse
Affiliation(s)
- Junyan Ma
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China; Department of Chemistry, Clemson University, Clemson 29634, SC, United States.
| | - Mingtao Zhao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Xiangtao Kong
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - He Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Zilin Jiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Zhenxing Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China; Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Misra R, Bhuyan HJ, Dutta A, Bhabak KP. Recent Developments On Activatable Turn-On Fluorogenic Donors of Hydrogen Sulfide (H 2S). ChemMedChem 2024; 19:e202400251. [PMID: 38746978 DOI: 10.1002/cmdc.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Hydrogen sulfide (H2S) is considered the third member of the gasotransmitter family, along with nitric oxide (NO) and carbon monoxide (CO). Besides its role in physiological and pathophysiological conditions, the promising therapeutic potential of this small-molecule makes it advantageous for various pharmaceutical applications. The endogenous production of H2S at a lower concentration is crucial in maintaining redox balance and cellular homeostasis, and the dysregulation leads to various disease states. In the event of H2S deficiency, the exogenous donation of H2S could help maintain the optimal cellular concentration of H2S and cellular homeostasis. Over the last several years, researchers have developed numerous small-molecule non-fluorogenic organosulfur compounds as H2S donors and investigated their pharmacological potentials. However, reports on stimuli-responsive turn-on fluorogenic donors of H2S have appeared recently. Interestingly, the fluorogenic H2S donors offer additional advantages with the non-invasive real-time monitoring of the H2S release utilizing the simultaneous turn-on fluorogenic processes. The review summarizes the recent developments in turn-on fluorogenic donors of H2S and the potential biological applications that have developed over the years.
Collapse
Affiliation(s)
- Roopjyoti Misra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Hirak Jyoti Bhuyan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amlan Dutta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
3
|
Gu M, Yu Z, Wu X, Sun Y, Hu J, Dong Y, Wang GL. Thioredoxin Reductase-Mediated Reaction Evokes In Situ Surface Polarization Effect on BiOIO 3: Toward a New Sensing Strategy for Cathodic Photoelectrochemistry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8518-8526. [PMID: 38335724 DOI: 10.1021/acsami.3c18323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
We have witnessed the fast progress of cathodic photoelectrochemistry over the past decades, though its signal transduction tactic still lacks diversity. Exploring new sensing strategies for cathodic photoelectrochemistry is extremely demanding yet hugely challenging. This article puts forward a unique idea to incorporate an enzymatic reaction-invoked surface polarization effect (SPE) on the surface of BiOIO3 to implement an innovative cathodic photoelectrochemical (PEC) bioanalysis. Specifically, the thioredoxin reductase (TrxR)-mediated reaction produced the polar glutathione (GSH), which spontaneously coordinated to the surface of BiOIO3 and induced SPE by forming a polarized electric field, resulting in improved electron (e-) and hole (h+) pair separation efficiency and an enhanced photocurrent output. Correlating this phenomenon with the detection of TrxR exhibited a high performance in terms of sensitivity and selectivity, achieving a linear range of 0.007-0.5 μM and a low detection limit of 2.0 nM (S/N = 3). This study brings refreshing inspiration for the cathodic PEC signal transduction tactic through enzyme-mediated in situ reaction to introduce SPE, which enriches the diversity of available signaling molecules. Moreover, this study unveils the potential of in situ generated SPE for extended and futuristic applications.
Collapse
Affiliation(s)
- Mengmeng Gu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhangcong Yu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiuming Wu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Sun
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiangwei Hu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Guang-Li Wang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
4
|
Deng K, Tian H, Zhang T, Gao Y, Nice EC, Huang C, Xie N, Ye G, Zhou Y. Chemo-photothermal nanoplatform with diselenide as the key for ferroptosis in colorectal cancer. J Control Release 2024; 366:684-693. [PMID: 38224739 DOI: 10.1016/j.jconrel.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Colorectal cancer (CRC) is a prevalent clinical malignancy of the gastrointestinal system, and its clinical drug resistance is the leading cause of poor prognosis. Mechanistically, CRC cells possess a specific oxidative stress defense mechanism composed of a significant number of endogenous antioxidants, such as glutathione, to combat the damage produced by drug-induced excessive reactive oxygen species (ROS). We report on a new anti-CRC nanoplatform, a multifunctional chemo-photothermal nanoplatform based on Camptothecin (CPT) and IR820, an indocyanine dye. The implementation of a GSH-triggered ferroptosis-integrated tumor chemo-photothermal nanoplatform successfully addressed the poor targeting ability of CPT and IR820 while exhibiting significant growth inhibitory effects on CRC cells. Mechanistically, to offset the oxidative stress created by the broken SeSe bonds, endogenous GSH was continuously depleted, which inactivated GPX4 to accumulate lipid peroxides and induce ferroptosis. Concurrently, exogenously administered linoleic acid was oxidized under photothermal conditions, resulting in an increase in LPO accumulation. With the breakdown of the oxidative stress defense system, chemotherapeutic efficacy could be effectively enhanced. In combination with photoacoustic imaging, the nanoplatform could eradicate solid tumors by means of ferroptosis-sensitized chemotherapy. This study indicates that chemotherapy involving a ferroptosis mechanism is a viable method for the treatment of CRC.
Collapse
Affiliation(s)
- Kaili Deng
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Hailong Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Tingting Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yajie Gao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Canhua Huang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Guoliang Ye
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China.
| | - Yuping Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China.
| |
Collapse
|
5
|
Chen J, Gao F, Xu Z, Liu Y, Hu M, Yuan C, Zhang Y, Liu W, Wang X. A terbium(III) complex-based time-resolved luminescent probe for selenocysteine as an inhibitor of selenoproteins. Chem Commun (Camb) 2024; 60:1440-1443. [PMID: 38206371 DOI: 10.1039/d3cc05680e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A terbium(III) complex-based time-resolved luminescence probe for selenocysteine can inhibit selenoprotein activity via a selenolate-triggered cleavage reaction of sulfonamide bonds in living cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Furong Gao
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Zhongren Xu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yuanhao Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Ming Hu
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Chengyi Yuan
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yunhua Zhang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Wukun Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xiaohui Wang
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
6
|
Wu G, Dilinaer A, Nie P, Liu X, Zheng Z, Luo P, Chen W, Wu Y, Shen Y. Dual-Modal Bimetallic Nanozyme-Based Sensing Platform Combining Colorimetric and Photothermal Signal Cascade Catalytic Enhancement for Detection of Hypoxanthine to Judge Meat Freshness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16381-16390. [PMID: 37908144 DOI: 10.1021/acs.jafc.3c05899] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Considering the enormous demand for meat in people's daily lives, the development of efficient meat freshness assays is of great significance for safeguarding food safety. Here, a novel bimetallic nanozyme Fe@CeO2 with high peroxidase-like activity was first synthesized by embedding ferrocenecarboxylic acid (Fc) into hollow CeO2 nanospheres, which combined with xanthine oxidase (XOD) to develop a self-supplying H2O2-facilitated enzymatic cascade catalytic system of XOD + Fe@CeO2, yielding a meat freshness indicator hypoxanthine (Hx)-responsive colorimetric and photothermal dual-mode analytical platform for judging meat freshness upon the assistance of 3,3',5,5'-tetramethylbenzidine (TMB). Owing to the catalytic activity of XOD to convert Hx into H2O2, Fe@CeO2 rapidly dissociated it into •OH via a peroxidase activity-triggered Fenton-like reaction, emerging a typical enzymatic cascade catalytic reaction. As a result, the colorless TMB was oxidized to be the product of dark-blue oxTMB by •OH, with a chromogenic reaction-driven absorption enhancement at 652 nm, which endowed it with a significant photothermal effect under 660 nm laser irradiation. On this basis, an Hx concentration-dependent colorimetric and photothermal dual-mode signal cascade catalytic enhancement sensing platform was proposed by integrating with a Color Picker App-installed smartphone and a 660 nm laser-equipped handheld thermal imager, achieving the onsite quantitative, reliable, and visual detection of Hx in real meat samples for judging meat freshness with acceptable results. Notably, the colorimetric and photothermal dual-mode signal cascade catalytic enhancement improved not only the reliability but also the sensitivity of the assay, which provided new insights for efficient onsite visual monitoring of meat freshness to safeguard food safety.
Collapse
Affiliation(s)
- Guojian Wu
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Abudoushukeer Dilinaer
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Peng Nie
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Xin Liu
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Pengjie Luo
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Wenjuan Chen
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
7
|
Song Z, Fan C, Zhao J, Wang L, Duan D, Shen T, Li X. Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives. BIOSENSORS 2023; 13:811. [PMID: 37622897 PMCID: PMC10452626 DOI: 10.3390/bios13080811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The modulation of numerous signaling pathways is orchestrated by redox regulation of cellular environments. Maintaining dynamic redox homeostasis is of utmost importance for human health, given the common occurrence of altered redox status in various pathological conditions. The cardinal component of the thioredoxin system, mammalian thioredoxin reductase (TrxR) plays a vital role in supporting various physiological functions; however, its malfunction, disrupting redox balance, is intimately associated with the pathogenesis of multiple diseases. Accordingly, the dynamic monitoring of TrxR of live organisms represents a powerful direction to facilitate the comprehensive understanding and exploration of the profound significance of redox biology in cellular processes. A number of classic assays have been developed for the determination of TrxR activity in biological samples, yet their application is constrained when exploring the real-time dynamics of TrxR activity in live organisms. Fluorescent probes offer several advantages for in situ imaging and the quantification of biological targets, such as non-destructiveness, real-time analysis, and high spatiotemporal resolution. These benefits facilitate the transition from a poise to a flux understanding of cellular targets, further advancing scientific studies in related fields. This review aims to introduce the progress in the development and application of TrxR fluorescent probes in the past years, and it mainly focuses on analyzing their reaction mechanisms, construction strategies, and potential drawbacks. Finally, this study discusses the critical challenges and issues encountered during the development of selective TrxR probes and proposes future directions for their advancement. We anticipate the comprehensive analysis of the present TrxR probes will offer some glitters of enlightenment, and we also expect that this review may shed light on the design and development of novel TrxR probes.
Collapse
Affiliation(s)
- Zilong Song
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Chengwu Fan
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| | - Lei Wang
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China;
| | - Tong Shen
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| |
Collapse
|
8
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
9
|
Wen Y, Jing N, Zhang M, Huo F, Li Z, Yin C. A Space-Dependent 'Enzyme-Substrate' Type Probe based on 'Carboxylesterase-Amide Group' for Ultrafast Fluorescent Imaging Orthotopic Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206681. [PMID: 36651112 PMCID: PMC10015879 DOI: 10.1002/advs.202206681] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Indexed: 05/14/2023]
Abstract
Fast and selective fluorescence imaging for a biomarker to related-disease diagnosis remains a significant challenge due to complex physical environment. Human carboxylesterase (CE) is expected to be a potential biomarker of hepatocellular carcinoma (HCC) to improve the accuracy of diagnosis. However, existing probes for CE has slow response rate and low selectivity. Herein, the amide group is selected as CE-responsive sites based on the "substrate-hydrolysis enzymatic reaction" approach. From a series of off-on probes with leave groups in the amide unit, probe JFast is screened with the optimal combination of rapid response rate and high selectivity toward CE. JFast requires only 150 s to reach the maximum fluorescence at 676 nm in the presence of CE and free from the interference of other esterase. Computational docking simulations indicate the shortest distance between the CE and active site of JFast . Cell and in vivo imaging present that the probe can turn on the liver cancer cells and tumor region precisely. Importantly, JFast is allowed to specifically image orthotopic liver tumor rather than metastatic tumor and distinguish human primary liver cancer tissue from adjacent ones. This study provides a new tool for CE detection and promotes advancements in accurate HCC diagnosis.
Collapse
Affiliation(s)
- Ying Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationKey Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceInstitute of Molecular ScienceShanxi UniversityTaiyuan030006China
| | - Ning Jing
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationKey Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceInstitute of Molecular ScienceShanxi UniversityTaiyuan030006China
| | - Min Zhang
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Fangjun Huo
- Research Institute of Applied ChemistryShanxi UniversityTaiyuan030006China
| | - Zhuoyu Li
- Institute of BiotechnologyKey Laboratory of Chemical Biology and Molecular Engineering of National Ministry of EducationShanxi UniversityTaiyuan030006China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationKey Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceInstitute of Molecular ScienceShanxi UniversityTaiyuan030006China
| |
Collapse
|
10
|
Shen Y, Wei Y, Gao X, Nie C, Wang J, Wu Y. Engineering an Enzymatic Cascade Catalytic Smartphone-Based Sensor for Onsite Visual Ratiometric Fluorescence-Colorimetric Dual-Mode Detection of Methyl Mercaptan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1680-1691. [PMID: 36642941 DOI: 10.1021/acs.est.2c07899] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Precise and reliable onsite detection of methyl mercaptan (CH3SH) is of great significance for environmental surveillance. Here, we synthesized a novel blue fluorescence nanozyme CeO2@TPE with high peroxidase-like activity by employing aggregation-induced emission (AIE) tetraphenylethene (TPE) to embed into hollow CeO2 nanospheres. In the presence of ethanol oxidase (AOX) and o-phenylenediamine (OPD), we engineered an enzymatic cascade activation ratiometric fluorescence-colorimetric dual-mode system AOX/CeO2@TPE + OPD toward CH3SH. In this design, CH3SH initiated AOX catalytic activity to convert it into H2O2 for activating the peroxidase-like activity of CeO2@TPE, producing •OH for oxidizing the naked-eye colorless OPD into deep yellow 2,3-diaminophenazine (DAP) with an absorption enhancement at ∼425 nm, companied by a new emission peak at ∼550 nm to match with the intrinsic emission at ∼441 nm for observing ratiometric fluorescence response, enabling a ratiometric fluorescence-colorimetric dual-mode analysis. Interestingly, both the ratiometric fluorescence and colorimetric signals could be gathered for being converted into the hue parameter on a smartphone-based sensor, achieving the onsite visual fluorescence-colorimetric dual-mode detection of CH3SH in real environmental media with acceptable results. This study gave a novel insight into designing target-responsive enzymatic cascade activation system-based efficient and reliable dual-mode point-of-care sensors for safeguarding environmental health.
Collapse
Affiliation(s)
- Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei230009, China
| | - Yunlong Wei
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei230009, China
| | - Xiang Gao
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei230009, China
| | - Chao Nie
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei230009, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Yangling712100, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing100022, China
| |
Collapse
|
11
|
Zhang X, Yu F, Wang Z, Jiang T, Song X, Yu F. Fluorescence probes for lung carcinoma diagnosis and clinical application. SENSORS & DIAGNOSTICS 2023; 2:1077-1096. [DOI: 10.1039/d3sd00029j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This review provides an overview of the most recent developments in fluorescence probe technology for the accurate detection and clinical therapy of lung carcinoma.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Department of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Feifei Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhenkai Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xinyu Song
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medicine University, Guangzhou 510120, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
12
|
Shen Y, Gao X, Zhang Y, Chen H, Ye Y, Wu Y. Polydopamine-based nanozyme with dual-recognition strategy-driven fluorescence-colorimetric dual-mode platform for Listeria monocytogenes detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129582. [PMID: 35863223 DOI: 10.1016/j.jhazmat.2022.129582] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Development of a simple and efficient dual-mode analytical technique with the built-in cross reference correction feature is benefit to achieve the highly accurate detection of the target pollutants and avoid the false-positive outputs in environmental media. Here, we synthesized a Fe-doped polydopamine (Fe@PDA)-based nanozyme with prominent peroxide-mimetic enzyme activity and high fluorescence emission ability. On this basis, we designed a dual-recognition strategy-driven fluorescence-colorimetric dual-mode detection platform, consisting of Listeria monocytogenes (L. monocytogenes) recognition aptamer-modified Fe@PDA (apt/Fe@PDA) and vancomycin-functionalized Fe3O4 (van/Fe3O4), for L. monocytogenes. Owing to van/Fe3O4-powered magnetic separation, there was a L. monocytogenes concentration-dependent fluorescence enhancement of apt/Fe@PDA for performing fluorescence assay in the precipitate. In this case, the prominent peroxide-mimetic enzyme activity of the residual apt/Fe@PDA in the precipitation could catalyze H2O2 to further oxidate colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxTMB, which displayed a L. monocytogenes concentration-dependent absorbance enhancement for carrying out colorimetric assay as well. As a result, a fluorescence-colorimetric dual-mode analytical platform was proposed to successfully detect the residual L. monocytogenes in real environmental media with acceptable results. This work showed the great prospects by integrating dual-recognition strategy into fluorescence nanozyme to develop efficient and reliable dual-mode analytical platforms for safeguarding environmental health.
Collapse
Affiliation(s)
- Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Xiang Gao
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yiyin Zhang
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Huanhuan Chen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China.
| |
Collapse
|
13
|
Pan T, Chen H, Gao X, Wu Z, Ye Y, Shen Y. Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128996. [PMID: 35487006 DOI: 10.1016/j.jhazmat.2022.128996] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 05/15/2023]
Abstract
Bacterial biofilms have evoked worldwide attention owing to their serious threats to public health, but how to effectively eliminate bacterial biofilms still remains great challenges. Here, we rationally designed a novel and vigorous chitosan grafted Fe-doped-carbon dots (CS@Fe/CDs) as an efficient artificial nanozyme to combat rigid bacterial biofilms through the selective activation of Fenton-like reaction-triggered peroxidase-like catalytic activity and the synergistic antibacterial activity of CS. On the one hand, the peroxidase-like catalytic activity made CS@Fe/CDs catalyze H2O2 for producing hydroxyl radicals (•OH), resulting in efficient cleavage of extracellular DNA (eDNA). On the other hand, CS was capable of binding with the negatively charged cell membrane through electrostatic interaction, changing the cell membrane permeability and causing cell death within bacterial biofilms. Based on their synergistic effects, the fragments of bacterial biofilm and exposed bacteria were persistently eradicated. Remarkably, CS@Fe/CDs-based nanozyme not only enabled the effective destroying of gram-positive Staphylococcus aureus (S. aureus) biofilms, but also completely eliminated gram-negative Pseudomonas aeruginosa (P. aeruginosa) biofilms, showing great potential as a promising anti-biofilm agent against bacteria biofilms. This proposed synergistic strategy for bacterial biofilm eradication might offer a powerful modality to manage of bacterial biofilm fouling in food safety and environmental protection.
Collapse
Affiliation(s)
- Ting Pan
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Huanhuan Chen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Xiang Gao
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Zeyu Wu
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
14
|
Zeisel L, Felber JG, Scholzen KC, Poczka L, Cheff D, Maier MS, Cheng Q, Shen M, Hall MD, Arnér ES, Thorn-Seshold J, Thorn-Seshold O. Selective cellular probes for mammalian thioredoxin reductase TrxR1: Rational design of RX1, a modular 1,2-thiaselenane redox probe. Chem 2022; 8:1493-1517. [PMID: 35936029 PMCID: PMC9351623 DOI: 10.1016/j.chempr.2022.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Quantifying the activity of key cellular redox players is crucial for understanding physiological homeostasis, and for targeting their perturbed states in pathologies including cancer and inflammatory diseases. However, cellularly-selective probes for oxidoreductase turnover are sorely lacking. We rationally developed the first probes that selectively target the mammalian selenoprotein thioredoxin reductase (TrxR), using a cyclic selenenylsulfide oriented to harness TrxR's unique selenolthiol chemistry while resisting the cellular monothiol background. Lead probe RX1 had excellent TrxR1-selective performance in cells, cross-validated by knockout, selenium starvation, knock-in, and chemical inhibitors. Its background-free fluorogenicity enabled us to perform the first quantitative high-throughput live cell screen for TrxR1 inhibitors, which indicated that tempered SNAr electrophiles may be more selective TrxR drugs than the classical electrophiles used hitherto. The RX1 design thus sets the stage for in vivo imaging of the activity of this key oxidoreductase in health and disease, and can also drive TrxR1-inhibitor drug design.
Collapse
|
15
|
Yang YP, Qi FJ, Zheng YL, Duan DC, Bao XZ, Dai F, Zhang S, Zhou B. Fast Imaging of Mitochondrial Thioredoxin Reductase Using a Styrylpyridinium-Based Two-Photon Ratiometric Fluorescent Probe. Anal Chem 2022; 94:4970-4978. [PMID: 35297621 DOI: 10.1021/acs.analchem.1c04637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thioredoxin reductase (TrxR) is a pivotal antioxidant enzyme, but there remains a challenge for its fast imaging. This work describes the combination of a hydroxyl styrylpyridinium scaffold as the push-pull fluorophore with a carbonate-bridged 1,2-dithiolane unit as the reaction site to develop a fast mitochondrial TrxR2 probe, DSMP. It manifested a plethora of excellent properties including a rapid specific response (12 min), large Stokes shift (170 nm), ratiometric two-photon imaging, favorable binding with TrxR (Km = 12.5 ± 0.2 μM), and the ability to cross the blood-brain barrier. With the aid of DSMP, we visualized the increased mitochondrial TrxR2 activity in cancer cells compared to normal cells. This offers the direct imaging evidence of the connection between the increased TrxR2 activity and the development of cancer. Additionally, the probe allowed the visualization of the loss in TrxR2 activity in a cellular Parkinson's disease model and, more importantly, in mouse brain tissues of a middle cerebral artery occlusion model for ischemic stroke.
Collapse
Affiliation(s)
- Yong-Peng Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fu-Jian Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - De-Chen Duan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xia-Zhen Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
16
|
Yang Y, Zhai H, Yuan J, Wang K, Zhang H. Recent Advances in Fluorescent Probes for Flavinase Activity: Design and Applications. Chem Asian J 2022; 17:e202200043. [PMID: 35174973 DOI: 10.1002/asia.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Indexed: 11/11/2022]
Abstract
Flavinases, including monoamine oxidase (MAO-A/MAO-B), quinone oxidoreductase (NQO1), thioredoxin reductase (TrxR), nitroreductase (NTR) and so on, are important redox enzymes in organisms. They are considered as biomarkers of cell energy metabolism and cell vitality. Importantly, their aberrant expression is related to various disease processes. Therefore, the accurate measurement of flavinase is useful for the early diagnosis of diseases, which has aroused great concern in the scientific community. Various methods are also available for the detection of flavinases, fluorescence probes are considered to be one of the best detection methods due to their easy and accurate sensing capability. This review aims to introduce the advances in the design and application of flavinase probes in the last five years. This study focuses on analyzing the design strategies and reaction mechanisms of flavinases fluorescent probes and discusses the current challenges, which will further advance the development of diagnostic and therapeutic approaches for flavinase-related diseases.
Collapse
Affiliation(s)
- Yiting Yang
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Hongchen Zhai
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chenistry and chemical Engineering, CHINA
| | - Jie Yuan
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Kui Wang
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Hua Zhang
- Henan Normal University, School of Chemistry and Chemical Engineering, 46 Jianshe Road, Muye Zone,, 453007, Xinxiang, CHINA
| |
Collapse
|
17
|
Bhabak KP, Mahato SK, Bhattacherjee D, Barman P. Thioredoxin Reductase-triggered Fluorogenic Donor of Hydrogen Sulfide: A Model Study with Symmetrical Organopolysulfide Probe with Turn-on Near-Infrared Fluorescence Emission. J Mater Chem B 2022; 10:2183-2193. [DOI: 10.1039/d1tb02425f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe herein the rational development of organopolysulfide-based fluorogenic donor of hydrogen sulfide (H2S) DCI-PS, which can be activated by the antioxidant selenoenzyme thioredoxin reductase (TrxR) with concomitant release of...
Collapse
|
18
|
Zhao J, Wang Z, Zhong M, Xu Q, Li X, Chang B, Fang J. Integration of a Diselenide Unit Generates Fluorogenic Camptothecin Prodrugs with Improved Cytotoxicity to Cancer Cells. J Med Chem 2021; 64:17979-17991. [PMID: 34852457 DOI: 10.1021/acs.jmedchem.1c01362] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A diselenide/disulfide unit was introduced into camptothecin (CPT), and two selenoprodrugs (e.g., CPT-Se3 and CPT-Se4) were identified to show improved potency in killing cancer cells and inhibiting tumor growth in vivo. Interestingly, the intrinsic fluorescence of CPT was severely quenched by the diselenide bond. Both the selenoprodrugs were activated by glutathione with a nearly complete recovery of CPT's fluorescence. The activation of prodrugs was accompanied by the production of selenol intermediates, which catalyzed the constant conversion of glutathione and oxygen to oxidized glutathione and superoxides. The diselenide unit is widely employed in constructing thiol-responsive materials. However, the selenol intermediates were largely ignored in the activation process prior to this study. Our work verified that integration of the diselenide unit may further enhance the parent drug's efficacy. Also, the discovery of the fluorescence quenching property of the diselenide/disulfide bond further shed light on constructing novel theranostic agents.
Collapse
Affiliation(s)
- Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Du W, Pan D, Xiang P, Xiong C, Zhang M, Zhang Q, Tian Y, Zhang Z, Chen B, Luo K, Gong Q, Tian X. Terpyridine Zn(II) Complexes with Azide Units for Visualization of Histone Deacetylation in Living Cells under STED Nanoscopy. ACS Sens 2021; 6:3978-3984. [PMID: 34498846 DOI: 10.1021/acssensors.1c01287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Histones are the alkali proteins in eukaryotic somatic chromatin cells which constitute the nucleosome structure together with DNA. Their abnormality is often associated with multiple tumorigenesis and other human diseases. Nevertheless, a simple and efficient super-resolution method to visualize histone distribution at the subcellular level is still unavailable. Herein, a Zn(II) terpyridine complex with rich-electronic azide units, namely, TpZnA-His, was designed and synthesized. The initial in vitro and in silico studies suggested that this complex is able to detect histones rapidly and selectively via charge-charge interactions with the histone H3 subunit. Its live cell nuclear localization, red-emission tail, and large Stokes shift allowed super-resolution evaluation of histone distributions with a clear distinction against nuclear DNA. We were able to quantitatively conclude three histone morphology alternations in live cells including condensation, aggregation, and cavity during activating histone acetylation. This work offers a better understanding as well as a versatile tool to study histone-involved gene transcription, signal transduction, and differentiation in cells.
Collapse
Affiliation(s)
- Wei Du
- Huaxi Magnetic Resonance Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Dayi Pan
- Huaxi Magnetic Resonance Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pan Xiang
- Huaxi Magnetic Resonance Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaoya Xiong
- Department of Chemistry, School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230000, P. R. China
| | - Mingzhu Zhang
- Department of Chemistry, School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230000, P. R. China
| | - Qiong Zhang
- Department of Chemistry, School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230000, P. R. China
| | - Yupeng Tian
- Department of Chemistry, School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230000, P. R. China
| | - Zhongping Zhang
- Department of Chemistry, School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230000, P. R. China
- CAS Centre for Excellence in Nanoscience, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China
| | - Bo Chen
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Kui Luo
- Huaxi Magnetic Resonance Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi Magnetic Resonance Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Xiaohe Tian
- Huaxi Magnetic Resonance Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Department of Chemistry, School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230000, P. R. China
| |
Collapse
|
20
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
21
|
Sidhu JS, Kaur N, Singh N. Trends in small organic fluorescent scaffolds for detection of oxidoreductase. Biosens Bioelectron 2021; 191:113441. [PMID: 34167075 DOI: 10.1016/j.bios.2021.113441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Oxidoreductases are diverse class of enzymes engaged in modulating the redox homeostasis and cellular signaling cascades. Abnormal expression of oxidoreductases including thioredoxin reductase, azoreductase, cytochrome oxidoreductase, tyrosinase and monoamine oxidase leads to the initiation of numerous disorders. Thus, enzymes are the promising biomarkers of the diseased cells and their accurate detection has utmost significance for clinical diagnosis. The detection method must be extremely selective, sensitive easy to use, long self-life, mass manufacturable and disposable. Fluorescence assay approach has been developed potential substitute to conventional techniques used in enzyme's quantification. The fluorescent probes possess excellent stability, high spatiotemporal ratio and reproducibility represent applications in real sample analysis. Therefore, the enzymatic transformations have been monitored by small activatable organic fluorescent probes. These probes are generally integrated with enzyme's substrate/inhibitors to improve their binding affinity toward the enzyme's catalytic site. As the recognition unit bio catalyzed, the signaling unit produces the readout signals and provides novel insights to understand the biochemical reactions for diagnosis and development of point of care devices. Several structural modifications are required in fluorogenic scaffolds to tune the selectivity for a particular enzyme. Hence, the fluorescent probes with their structural features and enzymatic reaction mechanism of oxidoreductase are the key points discussed in this review. The basic strategies to detect each enzyme are discussed. The selectivity, sensitivity and real-time applications are critically compared. The kinetic parameters and futuristic opportunities are present, which would be enormous benefits for chemists and biologists to understand the facts to design and develop unique fluorophore molecules for clinical applications.
Collapse
Affiliation(s)
- Jagpreet Singh Sidhu
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
22
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
23
|
Abdillah A, Sonawane PM, Kim D, Mametov D, Shimodaira S, Park Y, Churchill DG. Discussions of Fluorescence in Selenium Chemistry: Recently Reported Probes, Particles, and a Clearer Biological Knowledge. Molecules 2021; 26:692. [PMID: 33525729 PMCID: PMC7866183 DOI: 10.3390/molecules26030692] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
In this review from literature appearing over about the past 5 years, we focus on selected selenide reports and related chemistry; we aimed for a digestible, relevant, review intended to be usefully interconnected within the realm of fluorescence and selenium chemistry. Tellurium is mentioned where relevant. Topics include selenium in physics and surfaces, nanoscience, sensing and fluorescence, quantum dots and nanoparticles, Au and oxide nanoparticles quantum dot based, coatings and catalyst poisons, thin film, and aspects of solar energy conversion. Chemosensing is covered, whether small molecule or nanoparticle based, relating to metal ion analytes, H2S, as well as analyte sulfane (biothiols-including glutathione). We cover recent reports of probing and fluorescence when they deal with redox biology aspects. Selenium in therapeutics, medicinal chemistry and skeleton cores is covered. Selenium serves as a constituent for some small molecule sensors and probes. Typically, the selenium is part of the reactive, or active site of the probe; in other cases, it is featured as the analyte, either as a reduced or oxidized form of selenium. Free radicals and ROS are also mentioned; aggregation strategies are treated in some places. Also, the relationship between reduced selenium and oxidized selenium is developed.
Collapse
Affiliation(s)
- Ariq Abdillah
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Prasad M. Sonawane
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Donghyeon Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Dooronbek Mametov
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Shingo Shimodaira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Yunseon Park
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering), Daejeon 34141, Korea
| |
Collapse
|
24
|
Mafireyi TJ, Escobedo JO, Strongin RM. Fluorogenic probes for thioredoxin reductase activity. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
25
|
Zhao J, Qu Y, Gao H, Zhong M, Li X, Zhang F, Chen Y, Gan L, Hu G, Zhang H, Zhang S, Fang J. Loss of thioredoxin reductase function in a mouse stroke model disclosed by a two-photon fluorescent probe. Chem Commun (Camb) 2020; 56:14075-14078. [DOI: 10.1039/d0cc05900e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first two-photon fluorescent probe (TP-TRFS) is reported, and it was successfully used in vivo.
Collapse
|