1
|
Tharra P, Švejkar J, Jadhav AS, Nečas M, Dub PA, Halls MD, Švenda J. Enantioselective Transfer Hydrogenation of α-Methoxyimino-β-keto Esters. J Org Chem 2024; 89:12902-12911. [PMID: 39213600 PMCID: PMC11421019 DOI: 10.1021/acs.joc.4c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
α-Methoxyimino-β-keto esters are reported to undergo highly enantioselective catalytic transfer hydrogenation using the Noyori-Ikariya complex RuCl(p-cymene)[(S,S)-Ts-DPEN] in a mixture of formic acid-triethylamine and dimethylformamide at 25 °C. The experimental study performed on over 25 substrates combined with computational analysis revealed that a Z-configured methoxyimino group positioned alpha to a ketone carbonyl leads to higher reactivity and mostly excellent enantioselectivity within this substrate class. Density functional theory calculations of competing transition states were used in rationalizing the origins of enantioselectivity and the possible role of the methoxyimino group in the reaction outcome.
Collapse
Affiliation(s)
- Prabhakara
R. Tharra
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Pekařská 53, Brno 656 91, Czech Republic
| | - Jiří Švejkar
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
| | - Abhijeet S. Jadhav
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
| | - Marek Nečas
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
| | - Pavel A. Dub
- Schrödinger,
Inc., San Diego, California 92121, United States
| | - Mathew D. Halls
- Schrödinger,
Inc., San Diego, California 92121, United States
| | - Jakub Švenda
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Pekařská 53, Brno 656 91, Czech Republic
| |
Collapse
|
2
|
Hu R, Wang F, Pan F, Ratovelomanana-Vidal V, Chen GQ, Li X, Zhang X. Dynamic Kinetic Resolution of β-Cyano α-Ketoesters via Asymmetric Transfer Hydrogenation. Org Lett 2024; 26:7457-7462. [PMID: 39186632 DOI: 10.1021/acs.orglett.4c02844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
An efficient rhodium-catalyzed asymmetric transfer hydrogenation of β-cyano α-ketoesters via dynamic kinetic resolution has been developed. Despite the challenge posed by multiple functional groups, the reaction proceeded smoothly under mild conditions, generating versatile synthons with two adjacent stereocenters in high yields with excellent enantio- and diastereoselectivities. Furthermore, the power of this strategy is highlighted by the scale-up reaction and the follow-up synthesis of cytoxazone and paclitaxel intermediates.
Collapse
Affiliation(s)
- Ruiyu Hu
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Fangyuan Wang
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Fan Pan
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Virginie Ratovelomanana-Vidal
- PSL University, Chimie ParisTech, CNRS, Institute1 of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Gen-Qiang Chen
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xiuxiu Li
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xumu Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| |
Collapse
|
3
|
Meng X, Lan S, Chen T, Luo H, Zhu L, Chen N, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of Acylboronates: BMIDA as the Privileged Directing Group. J Am Chem Soc 2024; 146:20357-20369. [PMID: 38869937 DOI: 10.1021/jacs.4c05924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Developing a general, highly efficient, and enantioselective catalytic method for the synthesis of chiral alcohols is still a formidable challenge. We report in this article the asymmetric transfer hydrogenation (ATH) of N-methyliminodiacetyl (MIDA) acylboronates as a general substrate-independent entry to enantioenriched secondary alcohols. ATH of acyl-MIDA-boronates with (het)aryl, alkyl, alkynyl, alkenyl, and carbonyl substituents delivers a variety of enantioenriched α-boryl alcohols. The latter are used in a range of stereospecific transformations based on the boron moiety, enabling the synthesis of carbinols with two closely related α-substituents, which cannot be obtained with high enantioselectivities using direct asymmetric hydrogenation methods, such as the (R)-cloperastine intermediate. Computational studies illustrate that the BMIDA group is a privileged enantioselectivity-directing group in Noyori-Ikariya ATH compared to the conventionally used aryl and alkynyl groups due to the favorable CH-O attractive electrostatic interaction between the η6-arene-CH of the catalyst and the σ-bonded oxygen atoms in BMIDA. The work expands the domain of conventional ATH and shows its huge potential in addressing challenges in symmetric synthesis.
Collapse
Affiliation(s)
- Xiangjian Meng
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350007, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Ting Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Lixuan Zhu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Nanchu Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
4
|
Liu W, Ren C, Zhou L, Luo H, Meng X, Luo P, Luo Y, Dong W, Lan S, Liu J, Yang S, Zhang Q, Fang X. Regio- and Stereoselective Transfer Hydrogenation of Aryloxy Group-Substituted Unsymmetrical 1,2-Diketones: Synthetic Applications and Mechanistic Studies. J Am Chem Soc 2024; 146:20092-20106. [PMID: 39007870 DOI: 10.1021/jacs.4c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Developing a general method that leads to the formation of different classes of chiral bioactive compounds and their stereoisomers is an attractive but challenging research topic in organic synthesis. Furthermore, despite the great value of asymmetric transfer hydrogenation (ATH) in both organic synthesis and the pharmaceutical industry, the monohydrogenation of unsymmetrical 1,2-diketones remains underdeveloped. Here, we report the aryloxy group-assisted highly regio-, diastereo-, and enantioselective ATH of racemic 1,2-diketones. The work produces a myriad of enantioenriched dihydroxy ketones, and further transformations furnish all eight stereoisomers of diaryl triols, polyphenol, emblirol, and glycerol-type natural products. Mechanistic studies and calculations reveal two working modes of the aryloxy group in switching the regioselectivity from a more reactive carbonyl to a less reactive one, and the potential of ATH on 1,2-diketones in solving challenging synthetic issues has been clearly demonstrated.
Collapse
Affiliation(s)
- Wenjun Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Caiyi Ren
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Liyuan Zhou
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiangjian Meng
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Peng Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Yingkun Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
5
|
Rong N, Zhou A, Liang M, Wang SG, Yin Q. Asymmetric Hydrogenation of Racemic 2-Substituted Indoles via Dynamic Kinetic Resolution: An Easy Access to Chiral Indolines Bearing Vicinal Stereogenic Centers. J Am Chem Soc 2024; 146:5081-5087. [PMID: 38358355 DOI: 10.1021/jacs.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The asymmetric hydrogenation (AH) of N-unprotected indoles is a straightforward, yet challenging method to access biologically interesting NH chiral indolines. This method has for years been limited to 2/3-monosubstituted or 2,3-disubstituted indoles, which produce chiral indolines bearing endocyclic chiral centers. Herein, we have reported an innovative Pd-catalyzed AH of racemic α-alkyl or aryl-substituted indole-2-acetates using an acid-assisted dynamic kinetic resolution (DKR) process, affording a range of structurally fascinating chiral indolines that contain exocyclic stereocenters with excellent yields, diastereoselectivities, and enantioselectivities. Mechanistic studies support that the DKR process relies on a rapid interconversion of each enantiomer of racemic substrates, leveraged by an acid-promoted isomerization between the aromatic indole and nonaromatic exocyclic enamine intermediate. The reaction can be performed on a gram scale, and the products can be derivatized into non-natural β-amino acids via facile debenzylation and amino alcohol upon reduction.
Collapse
Affiliation(s)
- Nianxin Rong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ao Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingrong Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
6
|
Lan S, Huang H, Liu W, Xu C, Lei X, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Asymmetric Transfer Hydrogenation of Cyclobutenediones. J Am Chem Soc 2024; 146:4942-4957. [PMID: 38326715 DOI: 10.1021/jacs.3c14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Four-membered carbocycles are fundamental substructures in bioactive molecules and approved drugs and serve as irreplaceable building blocks in organic synthesis. However, developing efficient protocols furnishing diversified four-membered ring compounds in a highly regio-, diastereo-, and enantioselective fashion remains challenging but very desirable. Here, we report the unprecedented asymmetric transfer hydrogenation of cyclobutenediones. The reaction can selectively afford three types of four-membered products in high yields with high stereoselectivities, and the highly functionalized products enable a series of further transformations to form more diversified four-membered compounds. Asymmetric synthesis of di-, tri-, and tetrasubstituted bioactive molecules has also been achieved. Systematic mechanistic studies and theoretical calculations have revealed the origin of the regioselectivity, the key hydrogenation transition state models, and the sequence of the double and triple hydrogenation processes. The work provides a new choice for the catalytic asymmetric synthesis of cyclobutanes and related structures and demonstrates the robustness of asymmetric transfer hydrogenation in the accurate selectivity control of highly functionalized substrates.
Collapse
Affiliation(s)
- Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Huangjiang Huang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Wenjun Liu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Chao Xu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiang Lei
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
7
|
Cao S, Kim D, Lee W, Hong S. Photocatalytic Enantioselective Hydrosulfonylation of α,β-Unsaturated Carbonyls with Sulfonyl Chlorides. Angew Chem Int Ed Engl 2023; 62:e202312780. [PMID: 37782249 DOI: 10.1002/anie.202312780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
This research explores the enantioselective hydrosulfonylation of various α,β-unsaturated carbonyl compounds via the use of visible light and redox-active chiral Ni-catalysis, facilitating the synthesis of enantioenriched α-chiral sulfones with remarkable enantioselectivity (exceeding 99 % ee). A significant challenge entails enhancing the reactivity between chiral metal-coordinated carbonyl compounds and moderate electrophilic sulfonyl radicals, aiming to minimize the background reactions. The success of our approach stems from two distinctive attributes: 1) the Cl-atom abstraction employed for sulfonyl radical generation from sulfonyl chlorides, and 2) the single-electron reduction to produce a key enolate radical Ni-complex. The latter process appears to enhance the feasibility of the sulfonyl radical's addition to the electron-rich enolate radical. An in-depth investigation into the reaction mechanism, supported by both experimental observations and theoretical analysis, offers insight into the intricate reaction process. Moreover, the versatility of our methodology is highlighted through its successful application in the late-stage functionalization of complex bioactive molecules, demonstrating its practicality as a strategy for producing α-chiral sulfones.
Collapse
Affiliation(s)
- Shi Cao
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doyoung Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wooseok Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Ramar T, Ilangovan A, A M Subbaiah M. Promoting Catalytic C-Selective Sulfonylation of Cyclopropanols against Conventional O-Sulfonylation Using Readily Available Sulfonyl Chlorides. J Org Chem 2023; 88:13553-13567. [PMID: 37708032 DOI: 10.1021/acs.joc.3c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Against the backdrop of the well-known O-sulfonylation of cyclopropyl alcohols with sulfonyl chlorides, we examined the feasibility of conducting regioselective C-sulfonylation. By emulating an umpolung strategy-guided design, we report for the first time the Cu(II)-catalyzed β-sulfonylation of cyclopropanols by a mechanism that potentially involves an oxidative addition of a sulfonyl radical to a metal homoenolate. Unlike reported methods, this protocol allows a practical synthetic route to γ-keto sulfone building blocks from cyclopropanols by leveraging commercially available aryl- and alkyl-sulfonyl chlorides, common reagents in organic chemistry laboratories. Using operationally simple open-flask conditions, the preparative scope of starting materials was demonstrated using an array of aryl- and alkyl-substituted sulfonyl chlorides and cyclopropanols (43 examples, up to 96% yield).
Collapse
Affiliation(s)
- Thangeswaran Ramar
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka PIN 560099, India
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu PIN 620024, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu PIN 620024, India
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka PIN 560099, India
| |
Collapse
|
9
|
Al-Qudimat AR, Ameen A, Sabir DM, Alkharraz H, Elaarag M, Althani A, Singh K, Alhimoney WM, Al-Zoubi RM, Aboumarzouk OM. The Association of Hypertension with Increased Mortality Rate During the COVID-19 Pandemic: An Update with Meta-analysis. J Epidemiol Glob Health 2023; 13:495-503. [PMID: 37318701 PMCID: PMC10469154 DOI: 10.1007/s44197-023-00130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND AND AIM The impact of multiple risk factors on COVID-19 mortality has been previously reported in multiple systematic reviews and meta-analyses. The aim of this review is to provide a comprehensive update on the association between hypertension (HTN) and mortality in patients with COVID-19. METHODS A systematic review and meta-analysis were performed and followed the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines. A search was achieved using PubMed, Scopus, and Cochrane Databases for research publications on hypertension, COVID-19, and mortality published between December 2019 and August 2022. RESULTS A total of 23 observational studies involving 611,522 patients from 5 countries (China, Korea, the UK, Australia, and the USA) were included in our study. The confirmed number of COVID-19 with HTN cases in each study ranged from 5 to 9964. The mortality ranged from 0.17% to 31% in different studies. Pooled results show that the mortality rate of COVID-19 among the included studies ranges from a minimum of 0.39 (95% CI 0.13-1.12) to a maximum of 5.74 (95% CI 3.77-8.74). Out of the 611,522 patients, 3119 died which resulted in an overall mortality prevalence of 0.5%. Subgroup analyses indicated that patients with COVID-19 who have hypertension and male patients had slightly less risk of mortality than female patients [the percentage of men > 50%; OR 1.33: 95% CI (1.01, 1.76); the percentage of men ≤ 50%: OR 2.26; and 95% CI (1.15, 4.48)]. Meta-regression analysis results also showed a statistically significant association between hypertension and COVID-19 mortality. CONCLUSION This systematic review and meta-analysis suggest that hypertension may not be the only risk factor associated with the increased mortality rate during the COVID-19 pandemic. In addition, a combination of other comorbidities and old age appears to increase the risk of mortality from COVID-19. The impact of hypertension on mortality rate among COVID-19 patients.
Collapse
Affiliation(s)
- Ahmad R. Al-Qudimat
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Public Health, QU-Health, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ayisha Ameen
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Doaa M. Sabir
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Heba Alkharraz
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Mai Elaarag
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Aisha Althani
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Kalpana Singh
- Nursing Research Department, Nursing Corporate, Hamad Medical Corporation, Doha, Qatar
| | - Wassim M. Alhimoney
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, 2713 Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110 Jordan
| | - Omar M. Aboumarzouk
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- School of Medicine, Dentistry and Nursing, The University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Chen T, Liu W, Gu W, Niu S, Lan S, Zhao Z, Gong F, Liu J, Yang S, Cotman AE, Song J, Fang X. Dynamic Kinetic Resolution of β-Substituted α-Diketones via Asymmetric Transfer Hydrogenation. J Am Chem Soc 2023; 145:585-599. [PMID: 36563320 DOI: 10.1021/jacs.2c11149] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing innovative dynamic kinetic resolution (DKR) modes and achieving the highly regio- and enantioselective semihydrogenation of unsymmetrical α-diketones are two formidable challenges in the field of contemporary asymmetric (transfer) hydrogenation. In this work, we report the highly regio- and stereoselective asymmetric semi-transfer hydrogenation of unsymmetrical α-diketones through a unique DKR mode, which features the reduction of the carbonyl group distal from the labile stereocenter, while the proximal carbonyl remains untouched. Moreover, the protocol affords a variety of enantioenriched acyclic ketones with α-hydroxy-α'-C(sp2)-functional groups, which represent a new product class that has not been furnished in known arts. The utilities of the products have been demonstrated in a series of further transformations including the rapid synthesis of drug molecules. Density functional theory calculations and plenty of control experiments have also been conducted to gain more mechanistic insights into the highly selective semihydrogenation.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wenjun Liu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wei Gu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shengtong Niu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Zhifei Zhao
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Fan Gong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
11
|
Wang F, Zhang Z, Chen Y, Ratovelomanana-Vidal V, Yu P, Chen GQ, Zhang X. Stereodivergent synthesis of chiral succinimides via Rh-catalyzed asymmetric transfer hydrogenation. Nat Commun 2022; 13:7794. [PMID: 36528669 PMCID: PMC9759521 DOI: 10.1038/s41467-022-35124-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Chiral succinimide moieties are ubiquitous in biologically active natural products and pharmaceuticals. Until today, despite the great interest, little success has been made for stereodivergent synthesis of chiral succinimides. Here, we report a general and efficient method for accessing 3,4-disubstituted succinimides through a dynamic kinetic resolution strategy based on asymmetric transfer hydrogenation. The Rh catalyst system exhibit high activities, enantioselectivities, and diastereoselectivities (up to 2000 TON, up to >99% ee, and up to >99:1 dr). Products with syn- and anti-configuration are obtained separately by control of the reaction conditions. For the N-unprotected substrates, both the enol and the imide group can be reduced by control of reaction time and catalyst loading. In addition, the detailed reaction pathway and origin of stereoselectivity are elucidated by control experiments and theoretical calculations. This study offers a straightforward and stereodivergent approach to the valuable enantioenriched succinimides (all 4 stereoisomers) from cheap chemical feedstocks in a single reaction step.
Collapse
Affiliation(s)
- Fangyuan Wang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Zongpeng Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Yu Chen
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Virginie Ratovelomanana-Vidal
- grid.4444.00000 0001 2112 9282PSL University, Chimie ParisTech, CNRS, Institute1 of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Peiyuan Yu
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Gen-Qiang Chen
- grid.263817.90000 0004 1773 1790Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Xumu Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| |
Collapse
|
12
|
Franco F, Meninno S, Overgaard J, Rossi S, Benaglia M, Lattanzi A. Catalytic Enantioselective Entry to Triflones Featuring a Quaternary Stereocenter. Org Lett 2022; 24:4371-4376. [PMID: 35687515 PMCID: PMC9490835 DOI: 10.1021/acs.orglett.2c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 11/30/2022]
Abstract
A highly enantioselective one-pot synthesis of functionalized triflones, bearing a quaternary stereocenter, has been developed, exploiting the Michael reaction of α-(trifluoromethylsulfonyl) aryl acetic acid esters with N-acryloyl-1H-pyrazole catalyzed by commercially available Takemoto's catalyst, followed by nucleophilic acyl substitution with alcohols. Preliminary investigations highlighted the attractive potential of the triflinate anion as the leaving group for stereocontrolled postfunctionalizations.
Collapse
Affiliation(s)
- Francesca Franco
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Sara Meninno
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Jacob Overgaard
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Sergio Rossi
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Maurizio Benaglia
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Alessandra Lattanzi
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| |
Collapse
|
13
|
Cotman AE, Dub PA, Sterle M, Lozinšek M, Dernovšek J, Zajec Ž, Zega A, Tomašič T, Cahard D. Catalytic Stereoconvergent Synthesis of Homochiral β-CF 3, β-SCF 3, and β-OCF 3 Benzylic Alcohols. ACS ORGANIC & INORGANIC AU 2022; 2:396-404. [PMID: 36217345 PMCID: PMC9542724 DOI: 10.1021/acsorginorgau.2c00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
We describe an efficient
catalytic strategy for enantio- and diastereoselective
synthesis of homochiral β-CF3, β-SCF3, and β-OCF3 benzylic alcohols. The approach is
based on dynamic kinetic resolution (DKR) with Noyori–Ikariya
asymmetric transfer hydrogenation leading to simultaneous construction
of two contiguous stereogenic centers with up to 99.9% ee, up to 99.9:0.1
dr, and up to 99% isolated yield. The origin of the stereoselectivity
and racemization mechanism of DKR is rationalized by density functional
theory calculations. Applicability of the previously inaccessible
chiral fluorinated alcohols obtained by this method in two directions
is further demonstrated: As building blocks for pharmaceuticals, illustrated
by the synthesis of heat shock protein 90 inhibitor with in vitro
anticancer activity, and in particular, needle-shaped crystals of
representative stereopure products that exhibit either elastic or
plastic flexibility, which opens the door to functional materials
based on mechanically responsive chiral molecular crystals.
Collapse
Affiliation(s)
- Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maša Sterle
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Jaka Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Dominique Cahard
- CNRS UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| |
Collapse
|
14
|
Wang Z, Ye X, Jin M, Tang Q, Fan S, Song Z, Shi X. 4-Aminobenzotriazole (ABTA) as a Removable Directing Group for Palladium-Catalyzed Aerobic Oxidative C-H Olefination. Org Lett 2022; 24:3107-3112. [PMID: 35324203 DOI: 10.1021/acs.orglett.2c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
4-Aminobenzotriazole (ABTA) was applied as an effective removable directing group (DG) in Pd-catalyzed C-H activation for the first time. Compared with the widely applied pyridine and quinoline analogs, ABTA showed significantly improved reactivity, achieving aerobic oxidative C-H olefination in excellent yields (up to 95% vs <50% with other reported DGs under identical conditions). Using this new strategy, macrocyclization was achieved to give cyclic peptides in good yields with easy ABTA removal under mild conditions, highlighting the promising potential of this new DG.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. hina
| | - Xiaohan Ye
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Meina Jin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. hina
| | - Qi Tang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Shengyu Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. hina
| | - Zhiguang Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. hina
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
15
|
Deng R, Wu S, Mou C, Liu J, Zheng P, Zhang X, Chi YR. Carbene-Catalyzed Enantioselective Sulfonylation of Enone Aryl Aldehydes: A New Mode of Breslow Intermediate Oxidation. J Am Chem Soc 2022; 144:5441-5449. [PMID: 35274946 DOI: 10.1021/jacs.1c13384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A carbene-catalyzed sulfonylation reaction between enone aryl aldehydes and sulfonyl chlorides is disclosed. The reaction effectively installs sulfone moieties in a highly enantioselective manner to afford sulfone-containing bicyclic lactones. The sulfonyl chloride behaves both as an oxidant and a nucleophilic substrate (via its reduced form) in this N-heterocyclic carbene (NHC)-catalyzed process. The NHC catalyst provides both activation and stereoselectivity control on a very remote site of enone aryl aldehyde substrates. Water plays an important role in modulating catalyst deactivation and reactivation routes that involve reactions between NHC and sulfonyl chloride. Experimental studies and DFT calculations suggest that an unprecedented intermediate and a new oxidation mode of the NHC-derived Breslow intermediate are involved in the new asymmetric sulfonylation reaction.
Collapse
Affiliation(s)
- Rui Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shuquan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chengli Mou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Jianjian Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Pengcheng Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xinglong Zhang
- Institute of High-Performance Computing, A*STAR (Agency for Science, Technology and Research), Singapore 138632, Singapore
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
16
|
Betancourt RM, Phansavath P, Ratovelomanana-Vidal V. Ru(II)-Catalyzed Asymmetric Transfer Hydrogenation of 3-Fluorochromanone Derivatives to Access Enantioenriched cis-3-Fluorochroman-4-ols through Dynamic Kinetic Resolution. J Org Chem 2021; 86:12054-12063. [PMID: 34375115 DOI: 10.1021/acs.joc.1c01415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enantioenriched cis-3-fluoro-chroman-4-ol derivatives were conveniently prepared by the ruthenium-catalyzed asymmetric transfer hydrogenation of a new family of 3-fluoro-chromanones through a dynamic kinetic resolution process. The reaction proceeded under mild conditions using a low catalyst loading and HCO2H/Et3N (1:1) as the hydrogen source, affording the reduced fluorinated alcohols in good yields (80-96%), high diastereomeric ratios (up to 99:1 dr), and excellent enantioselectivities (up to >99% ee).
Collapse
Affiliation(s)
- Ricardo Molina Betancourt
- UMR CNRS 8060, Institute of Chemistry for Life and Health Sciences, Paris Sciences et Lettres (PSL) University, Chimie ParisTech, CSB2D Team, 75005 Paris, France
| | - Phannarath Phansavath
- UMR CNRS 8060, Institute of Chemistry for Life and Health Sciences, Paris Sciences et Lettres (PSL) University, Chimie ParisTech, CSB2D Team, 75005 Paris, France
| | - Virginie Ratovelomanana-Vidal
- UMR CNRS 8060, Institute of Chemistry for Life and Health Sciences, Paris Sciences et Lettres (PSL) University, Chimie ParisTech, CSB2D Team, 75005 Paris, France
| |
Collapse
|
17
|
η
6
‐Arene CH−O Interaction Directed Dynamic Kinetic Resolution – Asymmetric Transfer Hydrogenation (DKR‐ATH) of α‐Keto/enol‐Lactams. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Mishra AA, Bhanage BM. Ru-TsDPEN catalysts and derivatives in asymmetric transfer hydrogenation reactions. Chirality 2021; 33:337-378. [PMID: 34010454 DOI: 10.1002/chir.23317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
This review summarizes current developments, novel synthetic routes for Ruthenium tethered chiral catalyst, and its derivatives along with its application in asymmetric synthesis. The review also covers derivatization in tethering unit, modification in N-monofunctionalized ligand as well as ligation of other ligand with Ru metal in chiral catalyst. Apparently, the effect of a modified tethered catalyst in the enantioselective synthesis of chiral products as well as in synthetic chemistry is also discussed in detail.
Collapse
Affiliation(s)
- Ashish A Mishra
- Department of Chemistry, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
19
|
Touge T, Nara H, Kida M, Matsumura K, Kayaki Y. Convincing Catalytic Performance of Oxo-Tethered Ruthenium Complexes for Asymmetric Transfer Hydrogenation of Cyclic α-Halogenated Ketones through Dynamic Kinetic Resolution. Org Lett 2021; 23:3070-3075. [PMID: 33780258 DOI: 10.1021/acs.orglett.1c00739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient dynamic kinetic resolution of cyclic halohydrins was achieved by the asymmetric transfer hydrogenation of racemic α-haloketones. Bifunctional oxo-tethered Ru(II) catalysts could promote the reduction without deterioration of halogens. By structural tuning of the catalyst, chiral alcohols having halogen, ester, carboxamide, and sulfone functions were obtained variably with excellent diastereo- and enantioselectivities (up to >99:1 d.r. and >99.9 ee), which provided a concise synthetic approach to a dopamine D3 receptor ligand, (+)-PHNO.
Collapse
Affiliation(s)
- Taichiro Touge
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishi-Yawata, Hiratsuka, Kanagawa 254-0073, Japan
| | - Hideki Nara
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishi-Yawata, Hiratsuka, Kanagawa 254-0073, Japan
| | - Michio Kida
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishi-Yawata, Hiratsuka, Kanagawa 254-0073, Japan
| | - Kazuhiko Matsumura
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishi-Yawata, Hiratsuka, Kanagawa 254-0073, Japan
| | - Yoshihito Kayaki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
20
|
Caleffi GS, Brum JDOC, Costa AT, Domingos JLO, Costa PRR. Asymmetric Transfer Hydrogenation of Arylidene-Substituted Chromanones and Tetralones Catalyzed by Noyori–Ikariya Ru(II) Complexes: One-Pot Reduction of C═C and C═O bonds. J Org Chem 2021; 86:4849-4858. [DOI: 10.1021/acs.joc.0c02981] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guilherme S. Caleffi
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Juliana de O. C. Brum
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, Brazil
| | - Angela T. Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jorge L. O. Domingos
- Departamento de Química Orgânica, Instituto de Química, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil
| | - Paulo R. R. Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Wang F, Yang T, Wu T, Zheng LS, Yin C, Shi Y, Ye XY, Chen GQ, Zhang X. Asymmetric Transfer Hydrogenation of α-Substituted-β-Keto Carbonitriles via Dynamic Kinetic Resolution. J Am Chem Soc 2021; 143:2477-2483. [PMID: 33529522 DOI: 10.1021/jacs.0c13273] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A catalytic protocol for the enantio- and diastereoselective reduction of α-substituted-β-keto carbonitriles is described. The reaction involves a DKR-ATH process with the simultaneous construction of β-hydroxy carbonitrile scaffolds with two contiguous stereogenic centers. A wide range of α-substituted-β-keto carbonitriles were obtained in high yields (94%-98%) and excellent enantio- and diastereoselectivities (up to >99% ee, up to >99:1 dr). The origin of the diastereoselectivity was also rationalized by DFT calculations. Furthermore, this methodology offers rapid access to the pharmaceutical intermediates of Ipenoxazone and Tapentadol.
Collapse
Affiliation(s)
- Fangyuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Tilong Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Ting Wu
- College of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Long-Sheng Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Congcong Yin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yongjie Shi
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Xiang-Yu Ye
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | | | | |
Collapse
|
22
|
Zhu C, Cai Y, Jiang H. Recent advances for the synthesis of chiral sulfones with the sulfone moiety directly connected to the chiral center. Org Chem Front 2021. [DOI: 10.1039/d1qo00663k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The recent development of strategies for the asymmetric synthesis of chiral sulfones with sulfone moieties directly connected to the stereocenters.
Collapse
Affiliation(s)
- Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
23
|
Sun SX, Yan JH, Zuo JT, Wang XB, Chen M, Lu AM, Yang CL, Li GH. Design, synthesis, antifungal evaluation, and molecular docking of novel 1,2,4-triazole derivatives containing oxime ether and cyclopropyl moieties as potential sterol demethylase inhibitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj03578a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of novel triazole derivatives containing oxime ether and cyclopropyl moieties were designed and synthesized. Some compounds exhibited remarkable antifungal activities. The molecular docking of compound 5k with FgCYP51 was investigated.
Collapse
Affiliation(s)
- Sheng-Xin Sun
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jing-Hua Yan
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jiang-Tao Zuo
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiao-Bin Wang
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Ai-Min Lu
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chun-Long Yang
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Guo-Hua Li
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
24
|
Wang F, Tan X, Wu T, Zheng LS, Chen GQ, Zhang X. Ni-Catalyzed asymmetric reduction of α-keto-β-lactams via DKR enabled by proton shuttling. Chem Commun (Camb) 2020; 56:15557-15560. [PMID: 33244528 DOI: 10.1039/d0cc05599a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chiral α-hydroxy-β-lactams are key fragments of many bioactive compounds and antibiotics, and the development of efficient synthetic methods for these compounds is of great value. The highly enantioselective dynamic kinetic resolution (DKR) of α-keto-β-lactams was realized via a novel proton shuttling strategy. A wide range of α-keto-β-lactams were reduced efficiently and enantioselectively by Ni-catalyzed asymmetric hydrogenation, providing the corresponding α-hydroxy-β-lactam derivatives with high yields and enantioselectivities (up to 92% yield, up to 94% ee). Deuterium-labelling experiments indicate that phenylphosphinic acid plays a pivotal role in the DKR of α-keto-β-lactams by promoting the enolization process. The synthetic potential of this protocol was demonstrated by its application in the synthesis of a key intermediate of Taxol and (+)-epi-Cytoxazone.
Collapse
Affiliation(s)
- Fangyuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | | | | | | | | | | |
Collapse
|