1
|
Du J, Dollberg K, Seed JA, Wooles AJ, von Hänisch C, Liddle ST. f-Element Zintl Chemistry: Actinide-Mediated Dehydrocoupling of H 2Sb 1- Affords the Trithorium and Triuranium Undeca-Antimontriide Zintl Clusters [{An(Tren TIPS)} 3(μ 3-Sb 11)] (An = Th, U; Tren TIPS = {N(CH 2CH 2NSi iPr 3) 3} 3-). Inorg Chem 2024; 63:20153-20160. [PMID: 38767623 PMCID: PMC11523227 DOI: 10.1021/acs.inorgchem.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Reaction of the cesium antimonide complex [Cs(18C6)2][SbH2] (1, 18C6 = 18-crown-6 ether) with the triamidoamine actinide separated ion pairs [An(TrenTIPS)(L)][BPh4] (TrenTIPS = {N(CH2CH2NSiiPr3)3}3-; An/L = Th/DME (2Th); U/THF (2U)) affords the triactinide undeca-antimontriide Zintl clusters [{An(TrenTIPS)}3(μ3-Sb11)] (An = Th (3Th), U (3U)) by dehydrocoupling. Clusters 3Th and 3U provide two new examples of the Sb113- Zintl trianion and are unprecedented examples of molecular Sb113- being coordinated to anything since all previous reports featured isolated Sb113- Zintl trianions in separated ion quadruple formulations with noncoordinating cations. Quantum chemical calculations describe dominant ionic An-Sb interactions in 3Th and 3U, though the data suggest that the latter exhibits slightly more covalent An-Sb linkages than the former. Complexes 3Th and 3U have been characterized by single crystal X-ray diffraction, NMR, IR, and UV/vis/NIR spectroscopies, elemental analysis, and quantum chemical calculations.
Collapse
Affiliation(s)
- Jingzhen Du
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Kevin Dollberg
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - John A. Seed
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Ashley J. Wooles
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Carsten von Hänisch
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Stephen T. Liddle
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| |
Collapse
|
2
|
Ordoñez O, Yu X, Schuerlein MA, Wu G, Autschbach J, Hayton TW. An Actinide Complex with a Nucleophilic Allenylidene Ligand. J Am Chem Soc 2024. [PMID: 39371031 DOI: 10.1021/jacs.4c09076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The reaction of [Cp3Th(3,3-diphenylcyclopropenyl)] (Cp = η5-C5H5) with 1 equiv of lithium diisopropylamide (LDA) results in cyclopropenyl ring opening and formation of the thorium allenylidene complex, [Li(Et2O)2][Cp3Th(CCCPh2)] ([Li(Et2O)2][1]), in good yield. Additionally, deprotonation of [Cp3Th(3,3-diphenylcyclopropenyl)] with 1 equiv of LDA, in the presence of 12-crown-4 or 2.2.2-cryptand, results in the formation of discrete cation/anion pairs, [Li(12-crown-4)(THF)][Cp3Th(CCCPh2)] ([Li(12-crown-4)(THF)][1]) and [Li(2.2.2-cryptand)][Cp3Th(CCCPh2)] ([Li(2.2.2-cryptand)][1]), respectively. Interestingly, the complex [Li(Et2O)2][1] undergoes dimerization upon standing at room temperature, resulting in the formation of [Cp2Th(μ:η1:η3-CCCPh2)]2 (2), via loss of LiCp. The reaction of [Li(Et2O)2][1] with MeI results in electrophilic attack at the Cγ carbon atom, leading to the formation of a thorium acetylide complex, [Cp3Th(C≡CC(Me)Ph2)] (3), which can be isolated in 83% yield upon workup, whereas the reaction of [Li(Et2O)2][1] with benzophenone results in the formation of 1,1,4,4-tetraphenylbutatriene (4) in 99% yield, according to integration against an internal standard. Density functional theory (DFT) calculations performed on [1]- and 2 reveal significant electron delocalization across the allenylidene ligand. Additionally, calculations of the 13C NMR chemical shifts for the Cα, Cβ, and Cγ nuclei of the allenylidene ligand were in good agreement with the experimental shifts. The calculations reveal modest deshielding induced by spin-orbital effects originating at Th due to the involvement of the 5f orbitals in the Th-C bonds. According to a DFT analysis, the cyclopropenyl ring-opening reaction proceeds via [Cp3Th(η1-3,3-Ph2-cyclo-C3)]- (IM), which features a carbanion character at Cβ.
Collapse
Affiliation(s)
- Osvaldo Ordoñez
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Megan A Schuerlein
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
3
|
Kirk RM, Hill AF. Electrophilic As-functionalisation of σ-arsolido complexes. Dalton Trans 2024; 53:11959-11969. [PMID: 38958558 DOI: 10.1039/d4dt01371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The σ-arsolido complex [Mo(AsC4Me4)(CO)3(η5-C5H5)] is alkylated at arsenic by MeOTf to afford the pentamethylarsole complex [Mo(MeAsC4Me4)(CO)3(η5-C5H5)](OTf) while iodomethane affords a mixture of [Me2AsC4Me4]I, [MoMe(CO)3(η5-C5H5)], [MoI(CO)3(η5-C5H5)] and the arsole complexes cisoid- and transoid-[MoI(MeAsC4Me4)(CO)2(η5-C5H5)] and transoid-[Mo{C(O)Me}(MeAsC4Me4)(CO)2(η5-C5H5)], The arsole ligand in [Mo(MeAsC4Me4)(CO)3(η5-C5H5)](OTf) is readily liberated by NaI in acetone to afford free MeAsC4Me4 and [MoI(CO)3(η5-C5H5)]. In a similar manner, the reaction of [Mo(AsC4Ph4)(CO)3(η5-C5H5)] with MeI affords MeAsC4Ph4 and [MoI(CO)3(η5-C5H5)], while [Mo{AsC4(SiMe3)-2-Me2-3,4}(CO)3(η5-C5H5)] with MeOTf affords [Mo{MeAsC4(SiMe3)-2-Me2-3,4}(CO)3(η5-C5H5)](OTf). The reaction of [Mo(AsC4Me4)(CO)3(η5-C5H5)] with activated alkynes (RCCR: R = CF3, CO2Me) does not proceed via [4 + 2] cyclo-addition but rather electrophilic attack at arsenic followed by metallacyclisation with incorporation of a carbonyl ligand in the spirocyclic complexes [Mo{As(C4Me4)CRCRCO}(CO)2(η5-C5H5)].
Collapse
Affiliation(s)
- Ryan M Kirk
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Anthony F Hill
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
4
|
MacGregor F, Tarula-Marin JL, Metta-Magaña A, Fortier S. A Metallocene Bis(phosphoranocarbene) of Uranium and a Probe of Its Reactivity with Alcohols. Inorg Chem 2024; 63:9648-9658. [PMID: 38506446 DOI: 10.1021/acs.inorgchem.3c04565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The addition of 2 equiv of the phosphaylide H2C═PPh3 to the dimethyl uranium metallocene Cp*2UMe2 (Cp* = η5-C5Me5) in toluene with gentle heating at 40 °C generates the phosphorano-stabilized bis(carbene) Cp*2U[C(H)PPh3]2 (1) in good yield. Characterization of 1 by X-ray crystallographic analysis reveals two short uranium-carbon bonds, ranging from 2.301(5) to 2.322(5) Å, consistent with the presence of U═C carbene-type bonds. Monitoring the reaction by NMR spectroscopy suggests that it proceeds through the intermediate formation of the methyl carbene complex Cp*2U[C(H)PPh3](Me) (1Int); however, prolonged heating of these solutions leads to the ortho-cyclometalated carbene species Cp*2U{κ2-[C(H)PPh2(C6H4)]} (2) via intramolecular C-H activation. Rapid conversion from 1 to 2 occurs within hours upon heating its toluene solutions to 100 °C. Preliminary reactivity studies of 1 show that it readily reacts with alcohols, such as HODipp (Dipp = 2,6-diisopropylphenyl) and HOC(CF3)3, to give the mixed carbene alkoxide compounds Cp*2U[C(H)PPh3](OR) (R = Dipp (4Dipp), C(CF3)3 (5CF3)). In one case, the reaction of 1 with HODipp in the presence of adventitious water led to the formation of a few crystals of the terminal U(IV) oxo complex, [Ph3PCH3][Cp*2U(O)(ODipp)] (3oxo). The isolation of 1 marks the first instance of an unchelated, heteroatom-stabilized bis(carbene) complex of uranium that also provides an entryway to the synthesis of its monocarbene derivatives through protonolysis.
Collapse
Affiliation(s)
- Frank MacGregor
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - José L Tarula-Marin
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Alejandro Metta-Magaña
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
5
|
Liddle ST. Progress in Nonaqueous Molecular Uranium Chemistry: Where to Next? Inorg Chem 2024; 63:9366-9384. [PMID: 38739898 PMCID: PMC11134516 DOI: 10.1021/acs.inorgchem.3c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
There is long-standing interest in nonaqueous uranium chemistry because of fundamental questions about uranium's variable chemical bonding and the similarities of this pseudo-Group 6 element to its congener d-block elements molybdenum and tungsten. To provide historical context, with reference to a conference presentation slide presented around 1988 that advanced a defining collection of top targets, and the challenge, for synthetic actinide chemistry to realize in isolable complexes under normal experimental conditions, this Viewpoint surveys progress against those targets, including (i) CO and related π-acid ligand complexes, (ii) alkylidenes, carbynes, and carbidos, (iii) imidos and terminal nitrides, (iv) homoleptic polyalkyls, -alkoxides, and -aryloxides, (v) uranium-uranium bonds, and (vi) examples of topics that can be regarded as branching out in parallel from the leading targets. Having summarized advances from the past four decades, opportunities to build on that progress, and hence possible future directions for the field, are highlighted. The wealth and diversity of uranium chemistry that is described emphasizes the importance of ligand-metal complementarity in developing exciting new chemistry that builds our knowledge and understanding of elements in a relativistic regime.
Collapse
Affiliation(s)
- Stephen T. Liddle
- Department of Chemistry and Centre
for Radiochemistry Research, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
6
|
Dan X, Du J, Zhang S, Seed JA, Perfetti M, Tuna F, Wooles AJ, Liddle ST. Arene-, Chlorido-, and Imido-Uranium Bis- and Tris(boryloxide) Complexes. Inorg Chem 2024; 63:9588-9601. [PMID: 38557081 PMCID: PMC11134490 DOI: 10.1021/acs.inorgchem.3c04275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
We introduce the boryloxide ligand {(HCNDipp)2BO}- (NBODipp, Dipp = 2,6-di-isopropylphenyl) to actinide chemistry. Protonolysis of [U{N(SiMe3)2}3] with 3 equiv of NBODippH produced the uranium(III) tris(boryloxide) complex [U(NBODipp)3] (1). In contrast, treatment of UCl4 with 3 equiv of NBODippK in THF at room temperature or reflux conditions produced only [U(NBODipp)2(Cl)2(THF)2] (2) with 1 equiv of NBODippK remaining unreacted. However, refluxing the mixture of 2 and unreacted NBODippK in toluene instead of THF afforded the target complex [U(NBODipp)3(Cl)(THF)] (3). Two-electron oxidation of 1 with AdN3 (Ad = 1-adamantyl) afforded the uranium(V)-imido complex [U(NBODipp)3(NAd)] (4). The solid-state structure of 1 reveals a uranium-arene bonding motif, and structural, spectroscopic, and DFT calculations all suggest modest uranium-arene δ-back-bonding with approximately equal donation into the arene π4 and π5 δ-symmetry π* molecular orbitals. Complex 4 exhibits a short uranium(V)-imido distance, and computational modeling enabled its electronic structure to be compared to related uranium-imido and uranium-oxo complexes, revealing a substantial 5f-orbital crystal field splitting and extensive mixing of 5f |ml,ms⟩ states and mj projections. Complexes 1-4 have been variously characterized by single-crystal X-ray diffraction, 1H NMR, IR, UV/vis/NIR, and EPR spectroscopies, SQUID magnetometry, elemental analysis, and CONDON, F-shell, DFT, NLMO, and QTAIM crystal field and quantum chemical calculations.
Collapse
Affiliation(s)
- Xuhang Dan
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Jingzhen Du
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Shuhan Zhang
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - John A. Seed
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Mauro Perfetti
- Department
of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Floriana Tuna
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Ashley J. Wooles
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Stephen T. Liddle
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
7
|
Murillo J, Seed JA, Wooles AJ, Oakley MS, Goodwin CAP, Gregson M, Dan D, Chilton NF, Gaunt AJ, Kozimor SA, Liddle ST, Scott BL. Carbene Complexes of Plutonium: Structure, Bonding, and Divergent Reactivity to Lanthanide Analogs. J Am Chem Soc 2024; 146:4098-4111. [PMID: 38301208 PMCID: PMC10870714 DOI: 10.1021/jacs.3c12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Organoplutonium chemistry was established in 1965, yet structurally authenticated plutonium-carbon bonds remain rare being limited to π-bonded carbocycle and σ-bonded isonitrile and hydrocarbyl derivatives. Thus, plutonium-carbenes, including alkylidenes and N-heterocyclic carbenes (NHCs), are unknown. Here, we report the preparation and characterization of the diphosphoniomethanide-plutonium complex [Pu(BIPMTMSH)(I)(μ-I)]2 (1Pu, BIPMTMSH = (Me3SiNPPh2)2CH) and the diphosphonioalkylidene-plutonium complexes [Pu(BIPMTMS)(I)(DME)] (2Pu, BIPMTMS = (Me3SiNPPh2)2C) and [Pu(BIPMTMS)(I)(IMe4)2] (3Pu, IMe4 = C(NMeCMe)2), thus disclosing non-actinyl transneptunium multiple bonds and transneptunium NHC complexes. These Pu-C double and dative bonds, along with cerium, praseodymium, samarium, uranium, and neptunium congeners, enable lanthanide-actinide and actinide-actinide comparisons between metals with similar ionic radii and isoelectronic 4f5 vs 5f5 electron-counts within conserved ligand fields over 12 complexes. Quantum chemical calculations reveal that the orbital-energy and spatial-overlap terms increase from uranium to neptunium; however, on moving to plutonium the orbital-energy matching improves but the spatial overlap decreases. The bonding picture that emerges is more complex than the traditional picture of the bonding of lanthanides being ionic and early actinides being more covalent but becoming more ionic left to right. Multiconfigurational calculations on 2M and 3M (M = Pu, Sm) account for the considerably more complex UV/vis/NIR spectra for 5f5 2Pu and 3Pu compared to 4f5 2Sm and 3Sm. Supporting the presence of Pu═C double bonds in 2Pu and 3Pu, 2Pu exhibits metallo-Wittig bond metathesis involving the highest atomic number element to date, reacting with benzaldehyde to produce the alkene PhC(H)═C(PPh2NSiMe3)2 (4) and "PuOI". In contrast, 2Ce and 2Pr do not react with benzaldehyde to produce 4.
Collapse
Affiliation(s)
- Jesse Murillo
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - John A. Seed
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ashley J. Wooles
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Meagan S. Oakley
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Conrad A. P. Goodwin
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Matthew Gregson
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David Dan
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas F. Chilton
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Research
School of Chemistry, The Australian National
University, Sullivans
Creek Road, Canberra, ACT 2601, Australia
| | - Andrew J. Gaunt
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Stosh A. Kozimor
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Stephen T. Liddle
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Brian L. Scott
- Materials
Physics & Applications Division, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
8
|
Yao YR, Zhao J, Meng Q, Hu HS, Guo M, Yan Y, Zhuang J, Yang S, Fortier S, Echegoyen L, Schwarz WHE, Li J, Chen N. Synthesis and Characterization of U≡C Triple Bonds in Fullerene Compounds. J Am Chem Soc 2023; 145:25440-25449. [PMID: 37955678 DOI: 10.1021/jacs.3c10042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Despite decades of efforts, the actinide-carbon triple bond has remained an elusive target, defying synthesis in any isolable compound. Herein, we report the successful synthesis of uranium-carbon triple bonds in carbide-bridged bimetallic [U≡C-Ce] units encapsulated inside the fullerene cages of C72 and C78. The molecular structures of UCCe@C2n and the nature of the U≡C triple bond were characterized through X-ray crystallography and various spectroscopic analyses, revealing very short uranium-carbon bonds of 1.921(6) and 1.930(6) Å, with the metals existing in their highest oxidation states of +6 and +4 for uranium and cerium, respectively. Quantum-chemical studies further demonstrate that the C2n cages are crucial for stabilizing the [UVI≡C-CeIV] units through covalent and coordinative interactions. This work offers a new fundamental understanding of the elusive uranium-carbon triple bond and informs the design of complexes with similar bonding motifs, opening up new possibilities for creating distinctive molecular compounds and materials.
Collapse
Affiliation(s)
- Yang-Rong Yao
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jing Zhao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Qingyu Meng
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Min Guo
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yingjing Yan
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jiaxin Zhuang
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Shangfeng Yang
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Luis Echegoyen
- Institut Catalá d'Investigació Química, Ave. Països Catalans 16, 43007 Tarragona, Spain
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - W H Eugen Schwarz
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
- Physikalische und Theoretische Chemie, Universität Siegen, Siegen 57068, Germany
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Guo Y, Li X, Liu K, Hu K, Mei L, Chai Z, Gibson JK, Yu J, Shi W. Tetravalent Uranium and Thorium Complexes: Elucidating Disparate Reactivities of An IVCl 2 (An = U, Th) Supported by a Pyridine-Decorated Dianionic Ligand. Inorg Chem 2023. [PMID: 37377407 DOI: 10.1021/acs.inorgchem.3c01145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Although synthesis, reactivity, and bonding of U(IV) and Th(IV) complexes have been extensively studied, direct comparison of fully analogous compounds is rare. Herein, we report corresponding complexes 1-U and 1-Th, in which U(IV) and Th(IV) are supported by the tetradentate pyridine-decorated dianionic ligand N2NN' (1,1,1-trimethyl-N-(2-(((pyridin-2-ylmethyl)(2-((trimethylsilyl)amino)benzyl)amino)methyl)phenyl)silanamine). Although 1-U and 1-Th are structurally very similar, they display disparate reactivities with TMS3SiK (tris(trimethylsilyl)silylpotassium). The reaction of (N2NN')UCl2 (1-U) and 1 equiv of TMS3SiK in THF unexpectedly formed [Cl(N2NN')U]2O (2-U) featuring an unusual bent U-O-U moiety. In contrast, a salt elimination reaction between (N2NN')ThCl2 (1-Th) and 1 equiv of TMS3SiK led to thorium complex 2-Th, in which the pyridyl group has undergone a 1,4-addition nucleophilic attack. Complex 2-Th serves as a synthon for preparing dimetallic bis-azide complex 3-Th by reaction with NaN3. The complexes were characterized by X-ray crystal diffraction, solution NMR, FT-IR, and elemental analysis. Computations of the formation mechanism of 2-U from 1-U suggest reduced U(III) as a key intermediate for promoting the cleavage of the C-O bonds of THF. The inaccessible nature of Th(III) as an intermediate oxidation state explains the very different reactivity of 1-Th versus 1-U. Given that reactants 1-U and 1-Th and products 2-U and 2-Th all comprise tetravalent actinides, this is an unusual case of very disparate reactivity despite no net change in the oxidation state. Complexes 2-U and 3-Th provide a basis for the synthesis of other dinuclear actinide complexes with novel reactivity and properties.
Collapse
Affiliation(s)
- Yan Guo
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaobo Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720, United States
| | - Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Hsueh FC, Rajeshkumar T, Kooij B, Scopelliti R, Severin K, Maron L, Zivkovic I, Mazzanti M. Bonding and Reactivity in Terminal versus Bridging Arenide Complexes of Thorium Acting as Th II Synthons. Angew Chem Int Ed Engl 2023; 62:e202215846. [PMID: 36576035 DOI: 10.1002/anie.202215846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Thorium redox chemistry is extremely scarce due to the high stability of ThIV . Here we report two unique examples of thorium arenide complexes prepared by reduction of a ThIV -siloxide complex in presence of naphthalene, the mononuclear arenide complex [K(OSi(Ot Bu)3 )3 Th(η6 -C10 H8 )] (1) and the inverse-sandwich complex [K(OSi(Ot Bu)3 )3 Th]2 (μ-η6 ,η6 -C10 H8 )] (2). The electrons stored in these complexes allow the reduction of a broad range of substrates (N2 O, AdN3 , CO2 , HBBN). Higher reactivity was found for the complex 1 which reacts with the diazoolefin IDipp=CN2 to yield the unexpected ThIV amidoalkynyl complex 5 via a terminal N-heterocyclic vinylidene intermediate. This work showed that arenides can act as convenient redox-active ligands for implementing thorium-ligand cooperative multielectron transfer and that the reactivity can be tuned by the arenide binding mode.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Bastiaan Kooij
- Laboratory of Supramolecular Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Laboratory of Supramolecular Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
11
|
Seed JA, Vondung L, Adams RW, Wooles AJ, Lu E, Liddle ST. Mesoionic Carbene Complexes of Uranium(IV) and Thorium(IV). Organometallics 2022; 41:1353-1363. [PMID: 36157256 PMCID: PMC9490841 DOI: 10.1021/acs.organomet.2c00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/30/2022]
Abstract
We report the synthesis and characterization of uranium(IV) and thorium(IV) mesoionic carbene complexes [An{N(SiMe3)2}2(CH2SiMe2NSiMe3){MIC}] (An = U, 4U and Th, 4Th; MIC = {CN(Me)C(Me)N(Me)CH}), which represent rare examples of actinide mesoionic carbene linkages and the first example of a thorium mesoionic carbene complex. Complexes 4U and 4Th were prepared via a C-H activation intramolecular cyclometallation reaction of actinide halides, with concomitant formal 1,4-proton migration of an N-heterocyclic olefin (NHO). Quantum chemical calculations suggest that the An-carbene bond comprises only a σ-component, in contrast to the uranium(III) analogue [U{N(SiMe3)2}3(MIC)] (1) where computational studies suggested that the 5f3 uranium(III) ion engages in a weak one-electron π-backbond to the MIC. This highlights the varying nature of actinide-MIC bonding as a function of actinide oxidation state. In solution, 4Th exists in equilibrium with the Th(IV) metallacycle [Th{N(SiMe3)2}2(CH2SiMe2NSiMe3)] (6Th) and free NHO (3). The thermodynamic parameters of this equilibrium were probed using variable-temperature NMR spectroscopy yielding an entropically favored but enthalpically endothermic process with an overall reaction free energy of ΔG 298.15K = 0.89 kcal mol-1. Energy decomposition analysis (EDA-NOCV) of the actinide-carbon bonds in 4U and 4Th reveals that the former is enthalpically stronger and more covalent than the latter, which accounts for the respective stabilities of these two complexes.
Collapse
Affiliation(s)
- John A. Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lisa Vondung
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ralph W. Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ashley J. Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Erli Lu
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Stephen T. Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
12
|
King DM, Atkinson BE, Chatelain L, Gregson M, Seed JA, Wooles AJ, Kaltsoyannis N, Liddle ST. Uranium-nitride chemistry: uranium-uranium electronic communication mediated by nitride bridges. Dalton Trans 2022; 51:8855-8864. [PMID: 35622422 PMCID: PMC9171730 DOI: 10.1039/d2dt00998f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatment of [UIV(N3)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-) with excess Li resulted in the isolation of [{UIV(μ-NLi2)(TrenTIPS)}2] (2), which exhibits a diuranium(IV) 'diamond-core' dinitride motif. Over-reduction of 1 produces [UIII(TrenTIPS)] (3), and together with known [{UV(μ-NLi)(TrenTIPS)}2] (4) an overall reduction sequence 1 → 4 → 2 → 3 is proposed. Attempts to produce an odd-electron nitride from 2 resulted in the formation of [{UIV(TrenTIPS)}2(μ-NH)(μ-NLi2)Li] (5). Use of heavier alkali metals did not result in the formation of analogues of 2, emphasising the role of the high charge-to-radius-ratio of lithium stabilising the charge build up at the nitride. Variable-temperature magnetic data for 2 and 5 reveal large low-temperature magnetic moments, suggesting doubly degenerate ground states, where the effective symmetry of the strong crystal field of the nitride dominates over the spin-orbit coupled nature of the ground multiplet of uranium(IV). Spin Hamiltonian modelling of the magnetic data for 2 and 5 suggest U⋯U anti-ferromagnetic coupling of -4.1 and -3.4 cm-1, respectively. The nature of the U⋯U electronic communication was probed computationally, revealing a borderline case where the prospect of direct uranium-uranium bonding was raised, but in-depth computational analysis reveals that if any uranium-uranium bonding is present it is weak, and instead the nitride centres dominate the mediation of U⋯U electronic communication. This highlights the importance of obtaining high-level ab initio insight when probing potential actinide-actinide electronic communication and bonding in weakly coupled systems. The computational analysis highlights analogies between the 'diamond-core' dinitride of 2 and matrix-isolated binary U2N2.
Collapse
Affiliation(s)
- David M King
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Benjamin E Atkinson
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Lucile Chatelain
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Matthew Gregson
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - John A Seed
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Ashley J Wooles
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Stephen T Liddle
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
13
|
Goodwin CAP, Wooles AJ, Murillo J, Lu E, Boronski JT, Scott BL, Gaunt AJ, Liddle ST. Carbene Complexes of Neptunium. J Am Chem Soc 2022; 144:9764-9774. [PMID: 35609882 PMCID: PMC9490846 DOI: 10.1021/jacs.2c02152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Since the advent
of organotransuranium chemistry six decades ago,
structurally verified complexes remain restricted to π-bonded
carbocycle and σ-bonded hydrocarbyl derivatives. Thus, transuranium-carbon
multiple or dative bonds are yet to be reported. Here, utilizing diphosphoniomethanide
precursors we report the synthesis and characterization of transuranium-carbene
derivatives, namely, diphosphonio-alkylidene- and N-heterocyclic carbene–neptunium(III) complexes that exhibit
polarized-covalent σ2π2 multiple
and dative σ2 single transuranium-carbon bond interactions,
respectively. The reaction of [NpIIII3(THF)4] with [Rb(BIPMTMSH)] (BIPMTMSH = {HC(PPh2NSiMe3)2}1–) affords
[(BIPMTMSH)NpIII(I)2(THF)] (3Np) in situ, and subsequent treatment with the N-heterocyclic carbene {C(NMeCMe)2} (IMe4) allows
isolation of [(BIPMTMSH)NpIII(I)2(IMe4)] (4Np). Separate treatment of in situ
prepared 3Np with benzyl potassium in 1,2-dimethoxyethane
(DME) affords [(BIPMTMS)NpIII(I)(DME)] (5Np, BIPMTMS = {C(PPh2NSiMe3)2}2–). Analogously, addition of benzyl
potassium and IMe4 to 4Np gives [(BIPMTMS)NpIII(I)(IMe4)2] (6Np). The synthesis of 3Np–6Np was facilitated by adopting a scaled-down prechoreographed approach
using cerium synthetic surrogates. The thorium(III) and uranium(III)
analogues of these neptunium(III) complexes are currently unavailable,
meaning that the synthesis of 4Np–6Np provides an example of experimental grounding of 5f- vs 5f- and
5f- vs 4f-element bonding and reactivity comparisons being led by
nonaqueous transuranium chemistry rather than thorium and uranium
congeners. Computational analysis suggests that these NpIII=C bonds are more covalent than UIII=C,
CeIII=C, and PmIII=C congeners
but comparable to analogous UIV=C bonds in terms
of bond orders and total metal contributions to the M=C bonds.
A preliminary assessment of NpIII=C reactivity has
introduced multiple bond metathesis to transuranium chemistry, extending
the range of known metallo-Wittig reactions to encompass actinide
oxidation states III-VI.
Collapse
Affiliation(s)
- Conrad A P Goodwin
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ashley J Wooles
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jesse Murillo
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Erli Lu
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Josef T Boronski
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Brian L Scott
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
14
|
Kent G, Yu X, Wu G, Autschbach J, Hayton TW. Ring-opening of a Thorium Cyclopropenyl Complex Generates a Transient Thorium-bound Carbene. Chem Commun (Camb) 2022; 58:6805-6808. [DOI: 10.1039/d2cc01780f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of [Cp3ThCl] with in situ generated lithium-3,3-diphenylcyclopropene results in the formation of [Cp3Th(3,3-diphenylcyclopropenyl)] (1), in good yields. Thermolysis of 1 results in isomerization to the ring-opened product, [Cp3Th(3-phenyl-1H-inden-1-yl)]...
Collapse
|
15
|
Kent GT, Yu X, Wu G, Autschbach J, Hayton TW. Synthesis and electronic structure analysis of the actinide allenylidenes, [{(NR 2) 3}An(CCCPh 2)] - (An = U, Th; R = SiMe 3). Chem Sci 2021; 12:14383-14388. [PMID: 34880989 PMCID: PMC8580070 DOI: 10.1039/d1sc04666g] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/02/2021] [Indexed: 11/26/2022] Open
Abstract
The reaction of [AnCl(NR2)3] (An = U, Th, R = SiMe3) with in situ generated lithium-3,3-diphenylcyclopropene results in the formation of [{(NR2)3}An(CH[double bond, length as m-dash]C[double bond, length as m-dash]CPh2)] (An = U, 1; Th, 2) in good yields after work-up. Deprotonation of 1 or 2 with LDA/2.2.2-cryptand results in formation of the anionic allenylidenes, [Li(2.2.2-cryptand)][{(NR2)3}An(CCCPh2)] (An = U, 3; Th, 4). The calculated 13C NMR chemical shifts of the Cα, Cβ, and Cγ nuclei in 2 and 4 nicely reproduce the experimentally assigned order, and exhibit a characteristic spin-orbit induced downfield shift at Cα due to involvement of the 5f orbitals in the Th-C bonds. Additionally, the bonding analyses for 3 and 4 show a delocalized multi-center character of the ligand π orbitals involving the actinide. While a single-triple-single-bond resonance structure (e.g., An-C[triple bond, length as m-dash]C-CPh2) predominates, the An[double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash]CPh2 resonance form contributes, as well, more so for 3 than for 4.
Collapse
Affiliation(s)
- Greggory T Kent
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260 USA
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260 USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| |
Collapse
|
16
|
Staun SL, Kent GT, Gomez-Torres A, Wu G, Fortier S, Hayton TW. Reductive Coupling of Xylyl Isocyanide Mediated by Low-Valent Uranium. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Selena L. Staun
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Greggory T. Kent
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Alejandra Gomez-Torres
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
17
|
Reinholdt A, Jafari MG, Sandoval-Pauker C, Ballestero-Martínez E, Gau MR, Driess M, Pinter B, Mindiola DJ. Phosphorus and Arsenic Atom Transfer to Isocyanides to Form π-Backbonding Cyanophosphide and Cyanoarsenide Titanium Complexes. Angew Chem Int Ed Engl 2021; 60:17595-17600. [PMID: 34192399 DOI: 10.1002/anie.202104688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/07/2022]
Abstract
Decarbonylation along with E atom transfer from Na(OCE) (E=P, As) to an isocyanide coordinated to the tetrahedral TiII complex [(TptBu,Me )TiCl], yielded the [(TptBu,Me )Ti(η3 -ECNAd)] species (Ad=1-adamantyl, TptBu,Me- =hydrotris(3-tert-butyl-5-methylpyrazol-1-yl)borate). In the case of E=P, the cyanophosphide ligand displays nucleophilic reactivity toward Al(CH3 )3 ; moreover, its bent geometry hints to a reduced Ad-NCP3- resonance contributor. The analogous and rarer mono-substituted cyanoarsenide ligand, Ad-NCAs3- , shows the same unprecedented coordination mode but with shortening of the N=C bond. As opposed to TiII , VII fails to promote P atom transfer to AdNC, yielding instead [(TptBu,Me )V(OCP)(CNAd)]. Theoretical studies revealed the rare ECNAd moieties to be stabilized by π-backbonding interactions with the former TiII ion, and their assembly to most likely involve a concerted E atom transfer between Ti-bound OCE- to AdNC ligands when studying the reaction coordinate for E=P.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | | | - Ernesto Ballestero-Martínez
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Reinholdt A, Jafari MG, Sandoval‐Pauker C, Ballestero‐Martínez E, Gau MR, Driess M, Pinter B, Mindiola DJ. Phosphorus and Arsenic Atom Transfer to Isocyanides to Form π‐Backbonding Cyanophosphide and Cyanoarsenide Titanium Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Mehrafshan G. Jafari
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | | | - Ernesto Ballestero‐Martínez
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Michael R. Gau
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Balazs Pinter
- Department of Chemistry Universidad Técnica Federico Santa María Valparaíso 2390123 Chile
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
19
|
Yu J, Liu K, Wu Q, Li B, Kong X, Hu K, Mei L, Yuan L, Chai Z, Shi W. Facile Access to Uranium and Thorium Phosphaethynolate Complexes Supported by Tren: Experimental and Theoretical Study. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Qunyan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Bin Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Xianghe Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Advanced Energy Materials Institute of Industrial Technology Chinese Academy of Sciences, Ningbo Zhejiang 315201 China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Anomalous magnetism of uranium(IV)-oxo and -imido complexes reveals unusual doubly degenerate electronic ground states. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Boronski JT, Seed JA, Wooles AJ, Liddle ST. Fragmentation, catenation, and direct functionalisation of white phosphorus by a uranium(IV)-silyl-phosphino-carbene complex. Chem Commun (Camb) 2021; 57:5090-5093. [PMID: 33899851 DOI: 10.1039/d1cc01741a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Room temperature reaction of the uranium(iv)-carbene [U{C(SiMe3)(PPh2)}(BIPMTMS)(μ-Cl)Li(TMEDA)(μ-TMEDA)0.5]2 (1, BIPMTMS = C(PPh2NSiMe3)2) with white phosphorus (P4) produces the organo-P5 compound [P5{C(SiMe3)(PPh2)}2][Li(TMEDA)2] (2) and the uranium(iv)-methanediide [U{BIPMTMS}{Cl}{μ-Cl}2{Li(TMEDA)}] (3). This is an unprecedented example of cooperative metal-carbene P4 activation/insertion into a metal-carbon double bond and also an actinide complex reacting with P4 to directly form an organophosphorus species. Conducting the reaction at low temperature permits the isolation of the diuranium(iv) complex [{U(BIPMTMS)([μ-η2:η2-P2]C[SiMe3][PPh2])}2] (4), which then converts to 2 and 3. Thus, surprisingly, in contrast to all other actinide P4 reactivity, although this reaction produces catenation overall it proceeds via P4 cleavage to functionalised P2 units. Hence, this work establishes a proof of concept synthetic cycle for direct fragmentation, catenation, and functionalisation of P4.
Collapse
Affiliation(s)
- Josef T Boronski
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
22
|
Li B, Yu J, Liu K, Wu Q, Liu Q, Shi W. Research Progress of Actinide-Ligand Multiple Bonding Supported by Tripodal Ligands. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21040140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Réant BLL, Berryman VEJ, Seed JA, Basford AR, Formanuik A, Wooles AJ, Kaltsoyannis N, Liddle ST, Mills DP. Polarised covalent thorium(iv)– and uranium(iv)–silicon bonds. Chem Commun (Camb) 2020; 56:12620-12623. [DOI: 10.1039/d0cc06044e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report thorium- and uranium–silicon bonds in structurally analogous complexes with surprisingly similar actinide–silicon bonding regimes.
Collapse
Affiliation(s)
- Benjamin L. L. Réant
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | | | - John A. Seed
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Annabel R. Basford
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Alasdair Formanuik
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Ashley J. Wooles
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Stephen T. Liddle
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - David P. Mills
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| |
Collapse
|